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Fig. 4. siMYBPH-induced peripheral actomyosin bundle formation is counteracted by simultaneous treatment with non-muscle myosin inhibitors. (A) Immunofluorescence
staining for actin (red) and NMHC HA (green) in blebbistatin- or BDM-treated NCI-H441 cells. Immunofluorescence staining was performed as previously described [26]. Bar
indicates 10 um. (B) Three-dimensional Matrigel invasion assay in NCI-H441 cell treated with siMYBPH and/or blebbistatin. Three-dimensional Matrigel invasion assays were
performed as previously described [26]. White bar indicates 50 pm. (C) Schematic diagram of multifaceted inhibitory roles of MYBPH in actomyosin organization at 2 distinct

steps.

to search for MYBPH alterations in cases with similar disease phe-
notypes without NMHC IIA mutations.

In summary, our results demonstrate that MYBPH inhibits
the assembly of NMHC IIA through direct binding to assembly-
competent NMHC 1IA, suggesting that this activity may in turn con-
tribute to suppression of cancer invasion and metastasis together
with its ROCK1 inhibitory function [26]. The dual roles of MYBPH
in NM IIA inhibition comprise an intriguing mechanism to impose
firm NM IIA inhibition. The present findings also provide clues for
better understanding of the molecular mechanisms involved in
inhibition of cancer invasion and metastasis by TTF-1 through
transcriptional activation of MYBPH, as well as for better prognosis
for TTF-1-positive lung adenocarcinoma patients.
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There is urgent need for biomarkers that provide early detection of pancreatic ductal adenocarcinoma (PDAC) as well as
discrimination of autoimmune pancreatitis, as current clinical approaches are not suitably accurate for precise diagnosis. We
used mass spectrometry to analyze protein profiles of more than 300 plasma specimens obtained from PDAC, noncancerous
pancreatic diseases including autoimmune pancreatitis patients and healthy subjects. We obtained 1063 proteomic signals from 160
plasma samples in the training cohort. A proteomic signature consisting of 7 mass spectrometry signals was used for construction
of a proteomic model for detection of PDAC patients. Using the test cohort, we confirmed that this proteomic model had
discrimination power equal to that observed with the training cohort. The overall sensitivity and specificity for detection of cancer
patients were 82.6% and 90.9%, respectively. Notably, 62.5% of the stage I and II cases were detected by our proteomic model.
We also found that 100% of autoimmune pancreatitis patients were correctly assigned as noncancerous individuals. In the present
paper, we developed a proteomic model that was shown able to detect early-stage PDAC patients. In addition, our model appeared
capable of discriminating patients with autoimmune pancreatitis from those with PDAC.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fifth lead-
ing cause of cancer death in Japan with more than 24,000
deaths annually [1], while 35,000 deaths each year in the
United States are caused by the disease [2]. Long-term
survival for PDAC patients remains unsatisfactory, with only

3-5% surviving for more than 5 years after surgical resection,
with the remainder succumbing to widespread metastasis
or massive local recurrence. Since surgical resection is the
only reliable curative treatment, early detection is essential
to improve the outcomes of affected individuals. However,
the clinical symptoms of PDAC are often unremarkable
until advanced stages of the disease, and the anatomic
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location of the pancreas deep in the abdomen makes physical
detection and imaging approaches difficult. Thus, less than
10% of patients diagnosed with PDAC are eligible for surgical
resection [3]. Although serum markers for PDAC including
carcinoembryonic antigen (CEA) and carbohydrate antigen
19-9 (CA19-9) play important roles in current clinical
practice for monitoring progression and treatment response,
as well as surveillance for recurrence, these markers are not
ideal for cancer screening due to their low specificity and/or
sensitivity in early stages of the disease [4-6].

The concept of autoimmune pancreatitis (AIP) is sup-
ported by recent advances in elucidating its pathogenesis
as a unique systemic disease. AIP has several characteristic
features, such as infiltration of CD4-positive T cells and
[gG4-positive plasmacytes, irregular narrowing of the pan-
creatic duct, and diffuse enlargement of the pancreas [7-9].
Although intensive investigations into the pathogenesis of
AIP have been conducted, its underlying molecular mecha-
nism remains unclear. The most important and difficult step
in diagnosing AIP is to distinguish it from PDAC. Clinical
symptoms such as obstructive jaundice are not helpful for
discrimination, while IgG4, the most accurate serum marker
for AIP, is not adequately specific to exclude the existence
of cancer. Furthermore, AIP is sometimes accompanied by
PDAC; thus percutaneous or endoscopic biopsy findings
are often needed for final diagnosis. Unfortunately, those
examinations are invasive for the patient and may fail to
detect small regions of cancer cells. As a result, unnecessary
surgery because of misdiagnosis performed for AIP patients
without cancer or those undergoing treatment for existing
cancer is a critical issue in clinical practice. Accordingly, there
is urgent need for elucidation of novel biomarker(s) and
noninvasive diagnostic strategies useful for early detection
of PDAC, as well as discrimination of patients with AIP to
improve clinical management and prognosis.

Comprehensive analysis of protein expression patterns
in biological materials might improve understanding of the
molecular complexities of human diseases [10] and could be
useful to detect diagnostic or predictive protein expression
patterns that reflect clinical features. Matrix-assisted laser
desorption/ionization mass spectrometry (MALDI MS) can
profile proteins up to 50kDa in size in serum, tissues, and
other various clinical specimens. Protein profiles obtained
may contain thousands of data points and provide proteomic
signatures that allow detection of patients with various
diseases [11, 12]. We previously employed MALDI MS
for expression profiling of proteins in human lung cancer
specimens and found that the resultant proteomic patterns
could predict various clinical features, as well as the potential
of recurrence in stage I lung cancer patients [13, 14].

In the present study, protein expression profiling with
MALDI MS was conducted to identify proteomic patterns
in plasma samples for discrimination of PDAC from AIP
as well as chronic pancreatitis (CP) using 3 independent
datasets. We found that a proteomic model consisting of 7
mass spectrometry signals constructed by use of the training
cohort could detect 82.6% (38 of 46, 95% CI 68.6-92.2) of
known PDAC cases, including 62.5% (5 of 8, 95% CI 24.5-
91.5) of the stage I and 11 cases in the independent test cohort,
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which successfully confirmed its discrimination power. We
further applied our model for discrimination of AIP as well
as CP from PDAC and found that it correctly assigned 100%
of the AIP and CP patients (19 of 19, 95% CI 82.4-100
and 11 of 11, 95% CI 71.5-100, resp.) as noncancerous.
These results indicate that our 7-signal proteomic model may
contribute to accurate decisions regarding the therapeutic
plan for patients with chronic pancreatic diseases, especially
PDAC and AIP.

2. Methods

2.1. Patients and Specimens. Plasma specimens from 96
PDAC patients were obtained from the Department of Epid-
emiology and Prevention, Aichi Cancer Center Research
Institute, Nagoya, Japan, collected from January 2001 and
November 2005. Of those, 80 were randomly assigned to
the training set and 16 to the test set. An additional 30
plasma specimens from PDAC patients were obtained from
the Department of Surgery, Nagoya University Hospital,
Nagoya, Japan, collected from May 2004 to July 2006, and
assigned to the test set. Plasma specimens from 147 healthy
control subjects were also obtained from the Department of
Epidemiology and Prevention, Aichi Cancer Center Research
Institute, and used. Of those, 80 were randomly assigned
to the training set and 67 to the test set. Plasma specimens
from 2 acute pancreatitis, 11 chronic pancreatitis, and
3 autoimmune pancreatitis patients were obtained from
the Department of Gastroenterology, Nagoya University
Hospital, collected from April 2005 and November 2007, and
assigned to the test set. In addition, 16 plasma specimens
from autoimmune pancreatitis were obtained from the
Department of Gastroenterology, Nagoya University Hospi-
tal, collected from September 2003 and August 2009, and
assigned to the confirmation set. More detailed information
is available in Supplementary Material available on line at
doi: 10.1155/2012/510397. The characteristics of the patients
and healthy subjects in the training, test, and confirmation
cohorts are summarized in Supplementary Table S1, which
shows that there were no statistically significant differences
in regard to clinicopathologic features among the cohorts.
All specimens were processed in the same manner and stored
at —80°C within 180 minutes after being collected from the
patients and healthy subjects, and not thawed until analysis.
Requisite approval from our institutional review boards and
written informed consent from all subjects were obtained.
One plasma specimen per patient or healthy subject was
analyzed, and the training, test, and confirmation datasets
were independently analyzed as different batches. Further
details are available in supplementary Material.

2.2. Proteomic Analysis. Five microliters of nonpre-treated
plasma was mixed with 5 nL drops of an energy absorbing
matrix solution (saturated Sinapinic acid in water/aceto-
nitrile/trifluoroacetic acid (500:500: 1, by volume), which
allows molecules to be protonated and desorbed from tissue
surfaces). Then, 1 uL mixtures were deposited into individual
wells of MALDI MS sample plates (PE Biosystems, Foster
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City, CA) and dried at room temperature for 5 minutes.
Six spots were generated for each plasma-matrix mixture
sample and spectra were acquired from all 6 using a 4800
Instrument (Applied Biosystems, Foster City, CA), essentially
as described previously [13, 14]. Further details are available
in Supplementary Material.

2.3. Statistical Methods. Protein profiles obtained by MALDI
MS were analyzed using 3 distinct statistical methods,
Fisher’s exact test, the Kruskal-Wallis test, and a significance
analysis of microarray (SAM) test [15], to investigate MS
signals that appeared to differentiate PDAC patients from
healthy individuals in the training set. MS signals that met
at least 1 of the 3 selection criteria were further analyzed.

To construct a generally applicable proteomic classifier
without specifically overfitting it to the training cohort,
we used a weighted voting algorithm, a well-established
technique for supervised classification, in which each weight
value was calculated as the signal-to-noise ratio and a leave-
one-out cross-validation strategy was utilized [16].

It is possible that unintended biased resubstitution or
partial cross-validation can result in underestimation of the
error rate after cross-validation; thus the performance of
any class prediction rule is best assessed by applying the
rule created by use of 1 dataset (the training set) to an
independent dataset (the validation or test set) [17]. In
the present study, the proteomic classifier constructed with
the training dataset of 160 individuals was validated using
a completely independent validation set composed of 145
individuals.

An agglomerative hierarchical clustering algorithm was
applied to investigate the pattern among the statistically
significant discriminator proteins as well as the biological
status with Eisen’s software [18].

2.4. Identification of Individual Proteins in the Proteomic
Signature. 40y of serum samples was pretreated with high
abundant protein depletion column (Agilent, Palo Alto,
CA) according to manufacturer’s instruction. The pretreated
serum samples were separated over a polymeric column
(Toso, Tokyo, Japan) with a high-performance liquid chro-
matography (HPLC) pump (Shimadzu, Osaka, Japan) and
HPLC fractions were collected every minute for 80 minutes.
Each fraction was lyophilized, reconstituted with a 50%
acetonitrile in water containing 0.1% trifluoroacetic acid,
and analyzed by MALDI mass spectrometry to identify the
HPLC fractions that contained proteins corresponding to
the peaks in the signature with molecular weights selected
by bioinfomatic analysis as candidate molecular markers
for the PDAC. The selected fractions were lyophilized and
reconstituted with a mixture of 10 4L of 0.4 M ammonium
hydrogen carbonate and 5L of 45 mM dithiothreitol, and
then 10 uL of 100 mM iodoacetamide was added. This mix-
ture was incubated for 4 hours at 37°C with 5 yL of 200 nM
mass-grade trypsin (Promega, Madison, WI) to obtain
peptides. The peptides were separated and sequenced by
a microcapillary reverse-phase column (KYA technologies,
Tokyo, Japan) with an HPLC pump (KYA) and MALDI

mass spectrometer (Applied Biosystems). These spectra were
compared with those in the human databases of the National
Center for Biotechnology Information (nonredundant) by
use of Mascot version 2.1.0 (Matrix Science Inc., Boston,
MA). A minimum of two peptide matches and a positive
association between the m/z values detected with MALDI
mass spectrometry and the molecular weight of the intact
protein (including posttranslational modifications) were
required for protein identification.

3. Results

3.1. Protein Expression Profiling in the Training Cohort. We
obtained protein expression profiles for the 160 human
plasma specimens obtained from 80 PDAC patients and
80 healthy subjects at Aichi Cancer Center (Figure 1(a))
and Supplementary Table S1) using MALDI MS. Spectra
were obtained from 6 replicates of single plasma specimens.
MarkerView (Applied Biosystems) and custom software were
used to bin the peaks across the spectra obtained from
960 samples, and then we calculate the average intensity of
each signal individually among the 160 cases. As a result,
we obtained expression profiles containing 1063 distinct
proteomic signals. To extract a proteomic signature able to
discriminate PDAC patients from healthy individuals, we
compared MS signals from the 80 healthy subjects and 80
PDAC patients using our statistical selection criteria (signals
met at least 2 of the following criteria: P value corrected
with Bonferroni was less than 0.05 in Fisher’s exact test and
Kruskal-Wallis test, and FDR < 0.1% for SAM). As a result,
134 MS signals were found to be differentially expressed.
Agglomerative hierarchical clustering analysis using the
identified proteomic signature showed a clear separation of
plasma specimens from PDAC patients as compared to those
from healthy individuals (Figure 1(b)), which confirmed that
the selected MS signals were informative for discrimination
of PDAC cases from healthy individuals. The left branch
mostly consisted of PDAC cases (81.3%, 65 of 80 cases,
95% CI 71.0-89.1), whereas the right branch consisted of
healthy subjects (78.8%, 63 of 80 cases, 95% CI 68.2-87.1).
Next, we investigated whether our proteomic prediction
model could best distinguish noncancerous individuals from
cancer patients. For this purpose, the 134 selected MS
signals, which were informative for discrimination, were
further ranked according to the SAM and weighted-voting
proteomic discriminatory models were constructed using
increasing numbers of the differentially expressed proteomic
signals (up to 134), for which learning errors were calculated
by leave-one-out cross-validation (Figure 2(a)). This cross-
validation analysis showed that the use of 7 MS signals
gave the lowest number of misclassifications, while 7 MS
signals (8562.3, 8684.4, 8765.1,9423.5, 13761.5, 14145.2, and
17250.8 m/z) were extracted as the most shared ones. Using
this proteomic model, plasma samples from both PDAC
patients and healthy subjects were classified as either positive
or negative for cancer, which showed that the sensitivity for
prediction was 76.3% (61 of 80 of the cancer patients, 95%
CI 65.4-85.1) and for specificity was 91.3% (73 of 80 of the
healthy subjects, 95% CI 82.8-96.4, Table 1), for an overall
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Figure 1: MALDI MS analysis of plasma specimens from human
PDAC patients and healthy subjects in the training cohort.
(a) Independent training-validation-confirmation datasets of 160
training cases, 129 validation cases, and 16 confirmation cases. (b)
Unsupervised hierarchical clustering analysis of 80 human PDAC
patients and 80 healthy subjects in the training cohort according
to the protein expression patterns of 134 MS signals. Each row
represents an individual proteomic signal and each column an
individual sample. The dendrogram at the top shows the similarities
in protein expression profiles among the samples. Substantially
elevated (red) expression of the proteins was observed in individual
plasma samples. HS: healthy subjects; PDAC: pancreatic ductal
adenocarcinoma. Red box case: PDAC: blue box case: healthy
subject.

classification accuracy of 83.8% (134 of 160, 95% CI 77.1—
89.1). We also calculated positive and negative predictive
values (PPV and NPV, resp.) to confirm the diagnostic power
of our model, which were 89.8% and 79.3%, respectively.
We observed no significant difference for detection of PDAC
patients related to lymph node positivity and prognosis.
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Furthermore, we analyzed the relationship between the age
of PDAC patients (<60 or >60 years old) and detection
power of the 7 MS signals. Those results showed that the
sensitivity for prediction was 69.8% (30 of 43, 95% CI 53.9—
82.8) and 83.8% (31 of 37, 95% CI 68.0-93.8) in the younger
and older groups, respectively (Table 1), with no significance
in discrimination found (P = 0.142, Fisher’s exact test).
Representative spectra that comprised the 7-signal proteomic
model for the healthy subjects and PDAC patients are shown
in Figure 2(b). It is of note that our model was able to
correctly distinguish 72.7% (8 of 11 cases, 95% CI 39.0-94.0)
of the stage I and II cases from the healthy subjects, while it
also correctly classified 78.8% (26 of 33, 95% CI 61.1-91.0)
of the PDAC patients eligible for surgical resection as positive
for cancer (Table 1).

3.2. Protein Expression Profiling in the Test Cohort. It hasbeen
well reported that the robustness, including accuracy, of a
prediction model should be assessed using an independent
validation cohort, even when cross-validation methods, such
as LOOCYV or n-fold CV, were properly used for developing
the prediction model [19]. To examine the robustness of
the 7-signal proteomic model constructed with data from
MALDI-MS analysis of the training cohort, we applied it to
an independent test dataset obtained from plasma samples
collected at two different institutions. We also determined
whether the identified proteomic model could discriminate
between acute and chronic pancreatitis patients, as well as
autoimmune pancreatitis, as the discovery of biomarkers
applicable for differential diagnosis between PDAC and
noncancerous pancreatic diseases has great potential for
clinical practice. For the test cohort, plasma samples were
obtained from 46 PDAC patients (16 and 30 cases of ACC
and NUH, resp.) and 67 healthy subjects from the ACC
group, while 16 pancreatitis samples obtained from Nagoya
University hospital (NUH) consisted of 2 acute pancreatitis,
11 chronic pancreatitis, and 3 autoimmune pancreatitis cases
(Figure 1(a), Supplementary Tables SI and S2 for additional
clinical information for AIP patients). With the 7-signal
proteomic model, 82.6% (38 of 46, 95% CI 68.6-92.2) of
the cancer cases were classified into the positive group, while
89.2% (74 of 83, 95% CI 80.4—94.9) of the noncancerous
subjects were assigned to the group negative for cancer
(Figure 3 and Table 2). We calculated PPV and NPV, which
were 80.9% and 90.2%, respectively, and the overall accuracy
of the classification with the test cohort was 86.8% (112 of
129, 95% CI 79.7-92.1). We also evaluated the relationship
between blood vessel invasion (surgery with or without
mesenteric venous tract resection) and detection power of
the 7 MS signals. Our results showed that the sensitivity for
prediction was 88.8% (8 of 9, 95% CI 51.8-99.7) for PDAC
patients who underwent mesenteric venous tract resection
and 78.6% (11 of 14, 95% CI 49.2--95.3) for those who did
not, with no significant difference found (P = 0.524, Fisher’s
exact test). Future studies with a larger number of PDAC
patients treated with surgery are warranted to validate the
clinical usefulness of our 7-signal proteomic signature. It is of
note that our model was able to correctly distinguish 62.5%
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Ficure 2: Construction of proteomic model for discrimination of PDAC cases from healthy subjects. (a) Schematic diagram of construction
of proteomic discrimination model. (b) Representative mass spectra comprising 7-signal proteomic signature. Arrowheads show informative
peaks for discrimination between healthy subjects and PDAC patients. Blue lines show representative spectra from healthy subjects and red

lines show representative spectra from PDAC patients.

TasLE 1: Discrimination of samples in the training cohort according to 7-signal proteomic model.

Number of cases Nur.nber of correctly 95% C.1* (%)
analyzed assigned cases (%)

All samples 160 134 (83.8) 77.1-89.1
Pancreatic ductal adenocarcinoma 80 61 (76.3) 65.4-85.1
Healthy subjects 80 73 (91.3) 82.8-96.4

age
<60 43 30 (69.8) 53.9-82.8
>60 37 31(83.8) 68.0-93.8

Clinical stage of pancreatic ductal adenocarcinoma patients
0/1 3 3 (100) 29.2-100
1I 8 5(62.5) 24.5-91.5
I 8 8 (100) 63.1-100
IVa 14 10 (71.4) 41.9-91.6
Vb 47 35 (74.5) 59.7-86.1

*95% confidence interval.
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FiGURe 3: Assessment of 7-signal proteomic model with the
validation cohort using weighted voting algorithm. The results of
proteomic analyses of the training cohort are shown. Each circle
represents a voting sum for a single patient. Solid circles: specimens
whose prediction with proteomic model matched clinical diagnosis;
open circles: specimens whose prediction with proteomic model did
not match clinical diagnosis; HS: healthy subjects; AP: acute pan-
creatitis; CP: chronic pancreatitis; AIP: autoimmune pancreatitis;
PDAC: pancreatic ductal adenocarcinoma.

(5 of 8 cases, 95% CI 24.5-91.5) of the stage I and II cases
from the healthy subjects and also classified 78.9% (30 of 38,
95% CI 62.7-90.5) of the PDAC patients eligible for surgical
resection as positive for cancer. It is also noteworthy that
the identified proteomic model distinguished 100% of the
patients with chronic pancreatitis (11 of 11, 95% CI 71.5-
100) and AIP (3 of 3, 95% CI 29.2—100) from cancer cases
(Figure 3 and Table 2).

3.3. Discrimination of Autoimmune Pancreatitis from PDAC
Using 7-Signal Proteomic Model. Autoimmune pancreatitis
is a systemic inflammatory disease of the pancreas and
several diagnostic criteria have been proposed. However,
their usefulness is under debate and accurate differential
diagnosis remains difficult. Moreover, an important step in
diagnosing AIP is to discriminate it from PDAC. In the
present study, all (3 of 3) of the AIP patients were correctly
discriminated from those with PDAC in the analysis with the
test dataset; thus we next performed a confirmatory analysis
using plasma samples collected from 16 AIP patients treated
at NUH (Figure 1(a) and Supplementary Table S2). For this,
we employed our 7-signal proteomic model to investigate
whether it would classify the AIP patients as noncancerous
and found that it correctly assigned those patients as negative
for cancer with 100% accuracy (16 of 16 cases, 95% CI 79.4—
100). Therefore, the high potential for discrimination of AIP
from PDAC was validated with an independent confirmatory
dataset used in a blinded manner. The serum level of CA19-9
was elevated in 4 (21.1%, 95% CI 7.3-52.4) of the AIP
cases in our cohort, while IgG4 levels have been reported
to be elevated in 10-30% of PDAC cases [7, 20]. Thus, our
proteomic model may be applicable as a novel serological
test to discriminate AIP from PDAC in clinical practice.

International Journal of Proteomics

Representative spectra obtained from the AIP and PDAC
cases are shown in Figure 4.

3.4. Combination of MALDI Proteomic Signature and CA19-9
for Cancer Screening. Our 7-signal proteomic model was able
to detect 82.6% (38 of 46, 95% CI 68.6-92.2) of the PDAC
patients in the test cohort (Table 2). Moreover, it assigned
78.9% (30 of 38, 95% CI 62.7-90.5) of the patients eligible
for an operation to the cancerous group, while 62.5% (5 of
8 and 95% CI 24.5-91.5) of the stage I and II cases were
also detected with the identified model. Since it is possible
that our 7-signal proteomic model and CA19-9 level are
complementary, we investigated whether their combined use
would improve the detection rate of patients who may benefit
from surgery. The overall sensitivity of CA19-9 (cutoff value,
37 units/mL) alone for stage 0-IVa patients was 71.1%
(27 of 38, 95% CI 54.1-84.6), while a combination of our
7-signal proteomic model and CA19-9 level detected 89.5%
(34 of 38, 95% CI 75.2-97.1) of operable cases. Notably,
for detection of stage I and II PDAC patients, CA19-9
assigned only 50.0% (4 of 8, 95% CI 15.7-84.3) of the
cases to the positive group and no additional discrimination
power of that marker was observed when combined with our
proteomic model. Accordingly, we consider that our 7-signal
proteomic model might be more sensitive for detection
of early stage PDAC patients than CA19-9, which would
improve clinical outcomes following surgical treatment.

3.5. Identification of Individual Proteins in the Proteomic
Signature. As an initial step toward elucidating the biologic
mechanism of the association between the proteomic signa-
ture and carcinogenesis, we identified a couple of proteins
that correspond to the mass spectrometry signals in the
proteomic signature obtained from serum. Extracts from two
serum samples of healthy individual were fractionated by
reverse phase-HPLC and analyzed by MALDI MS to identify
the HPLC fractions that contained proteins corresponding
to peaks in the proteomic signature. These selected fractions
were subjected to sequence analysis of tryptic peptides by
use of MALDI MS. Accordingly, we identified the following
proteins as part of the proteomic signature: apolipoprotein
A-I ([M + H]* = 17,250.8 m/z) and C-III ([M + H]* =
8765.1), and transthyretin ([M + H]* = 13761.5).

4. Discussion

In the present study, we analyzed the protein expression
profiles of plasma specimens obtained from patients with
PDAC, as well as acute and chronic pancreatitis cases, and
autoimmune pancreatitis (AIP) patients with MALDI MS.
Using bioinformatic analysis, we derived 7 MS signals that
allowed us to produce a proteomic model for discrimination
of PDAC from noncancerous individuals. When we used
our proteomic model with both independent test cohort
and confirmation group, 62.5% (5 of 8, 95% CI 24.5-91.5)
of stage 0-1I cases were correctly assigned to the cancerous
group, while all AIP patients (19 of 19, 95% CI 82.4-100)
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TaBLE 2: Discrimination of samples in the test cohort according to 7-signal proteomic model.
et gmede oy LT 00
All samples 129 112 (86.8) 79.7-92.1
Healthy subjects 67 60 (89.6) 79.7-95.7
Pancreatic ductal adenocarcinoma (ACCH) 16 13 (81.3) 54.4-96.0
Pancreatic ductal adenocarcinoma (NUH) 30 25 (83.3) 65.3-94.4
Acute pancreatitis (NUH) 2 0(0) 0-84.2
Chronic pancreatitis (NUH) 11 11 (100) 71.5-100
Autoimmune pancreatitis (NUH) 3 3 (100) 29.2-100
Clinical stage of pancreatic ductal adenocarcinoma patients at ACCH
0/1 0 NA NA
I 1 0 (0) 0-97.5
11 3 3(100) 29.2-100
IVa 4 2 (50) 6.8-93.2
Vb 8 8 (100) 63.1-100
Clinical stage of pancreatic ductal adenocarcinoma patients at NUH
o1 1 0 (0) 0-97.5
I 6 5 (83.3) 35.9-99.6
I 13 11 (84.6) 54.6-98.1
IVa 10 9 (90) 55.5-99.7
Vb 0 NA NA

*95% confidence interval
NA: not available.

were correctly assigned to the noncancerous group. Dis-
crimination of AIP from cancer is obviously important;
however it is currently problematic in clinical practice.
Although previous reports have shown discrimination power
of proteomic signature between PDAC patients and control
subjects [21-24], to the best of our knowledge, the present
7-signal proteomic model is the first system of proteomic
prediction based upon mass spectrometry found capable to
both detect early-stage PDAC cases and discriminate AIP
patients.

Early detection is essential for improving the outcomes of
PDAC patients. However, those in stages 0-II are difficult to
detect with current diagnostic approaches, including com-
puterized tomography scanning, positron emission tomog-
raphy scanning, and tissue-based diagnostic tests. CA19-9 is
a tumor marker widely used for evaluations of therapeutic
effects and detection of PDAC recurrence, though it is not
considered to be applicable for mass screening when used
alone [4, 6, 25, 26]. Recent advances in molecular biology
have also revealed that clinical features cannot be adequately
characterized or predicted by a single marker. Thus, microar-
ray analysis has been employed to simultaneously investigate
the expression levels of thousands of genes and identify
mRNA patterns associated with various human diseases
including PDAC [27-29]. However, mRNA expression does
not always indicate which of the corresponding proteins
are expressed or provide information regarding their post-
translational regulation. Moreover, blood and body fluids,
such as pancreatic juice and urine, do not contain mRNA.

Thus, proteome analysis of such specimens is considered to
better reflect the underlying clinical characteristics of human
diseases as compared to gene expression profiling, while
proteomic technologies including MS have been employed
to analyze proteomes in clinical specimens [10-14, 30-32].
Previous proteomics studies of PDAC with healthy controls
have shown promising results in distinguishing PDAC, with
a sensitivity ranging from 78 to 91% and specificity from
75 to 100% [21-24, 33, 34]. These discrimination power
results are better than those obtained with the current
CA19-9 marker, while improved diagnostic performance has
been observed when serum MS markers were combined
with CA19-9 [21, 22, 24]. In the present study, we found
that the combination of our 7-signal proteomic model and
CA19-9 level improved the positive rate of detection of PDAC
patients eligible for surgical resection to 89.5% (34 of 38,
95% CI 75.2-97.1). It is noteworthy that detection of stage
I-1I cases was also attainable at a sensitivity of 62.5% (5 of
8, 95% CI 24.591.5) without further improvement by adding
CA19-9. These results support the usefulness of our 7-signal
proteomic model for detection of early stage cases. Since we
constructed the present 7-signal model independent from
CA19-9, further optimization of selection of a proteomic
signature with focus on early detection possibly along with
adjustment of the CA19-9 cutoff value is warranted to obtain
increased sensitivity. The present 7-signal proteomic model
showed high potential to assign inflammatory pancreatic
disease patients to the noncancerous group (93.8%; 30 of
32, 95% CI 79.2-99.2). Interestingly, 2 of the misclassified
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patients suffered from acute pancreatitis; however, all of the
patients of chronic pancreatitis and AIP (11 of 11, 95% CI
71.5-100; and 19 of 19, 95% CI 82.4-100) were correctly
assigned to the noncancerous group by our proteomic
model. Discrimination of AIP from PDAC is difficult in
clinical practice, as symptoms such as obstructive jaundice
or space occupying lesions in the pancreas are commonly
observed in both cases. Actually, most of the AIP patients
in this study showed at least one of these symptoms. Our
proteomic model distinguished between AIP patients and
those with PDAC with high accuracy; thus it is considered
to be effective in future clinical applications, especially
for selecting those who are eligible for invasive diagnostic
procedures followed by inevitably invasive surgical treatment
for PDAC. During the course of our study, Frulloni et al.
reported that autoantigens against the plasminogen binding
protein of helicobacter pylori and ubiquitin-protein ligase E3
component n-recognin 2 were detected in most of the AIP
patients tested, as well as a small number of PDAC cases [35].
It would be interesting to combine our proteomic model
with testing for those autoantigens for diagnosis of chronic
pancreatic diseases.

In this study, 2 acute pancreatitis patients and 14 healthy
subjects were assigned to the cancerous group by our 7-signal
proteomic model in the training (7 healthy subjects) and test
(2 acute pancreatitis patients and 7 healthy subjects) cohorts.
Since that time, we have carefully followed their clinical
courses of these healthy subjects and found that 5 suffered
from cancerous disease within 3 years, including 2 with
rectal cancer, 1 with prostate cancer, 1 with hepatocellular
carcinoma, and 1 with a metastatic bone tumor from an
unknown primary site. In addition, another false positive
healthy subject later developed polyposis in the colon. These
observations suggest potential relation of our proteomic
model with these malignancies, although further in-depth
investigations are apparently required to draw definitive
conclusions.

Mass spectrometry profiles obtained from complex pro-
tein mixtures can contain thousands of data points derived
from real protein signatures. However, they can also be
contaminated by electronic and chemical noise, variability in
instrumentation, and variable crystallization of the matrix,
necessitating careful analytical techniques [11, 13, 14]. In
the present study, we employed multiple statistical methods
and leave-one-out cross-validation to combine differentially
expressed proteins with the clinical variables and found
‘that a minimal set of 7 low-molecular weight proteins
was sufficient to distinguish between healthy subjects and
PDAC patients. The discriminating power of the extracted
proteomic signature was further validated using independent
test datasets obtained from plasma specimens collected at
2 different institutions. With this protocol, we carefully
eliminated accidental identification of overly optimistic and
nonbiological/mathematical multivariate signatures within a
closed cohort by overfitting.

The primary goal of this study was development of
a bioassay applicable to clinical practice for detection of
PDAC and discrimination from AIP, as attempts to identify
proteins that comprise a proteomic model have not been

fully successful to date. However, the high reproducibility of
MALDI MS indicates that direct application of its findings
would be successful. In the previous study, Koomen et al.
reported that a set of 4 peaks could be used to detect
PDAC, of which one MS signal was downregulated in PDAC
patients and found to be derived from apolipoprotein A-
I [23], while Yan et al. found that transthyretin levels
were independently associated with PDAC likelihood when
obstructive jaundice was considered [36]. Accordingly, our
identification of apolipoprotein A-I and transthyretin, which
is a constituent of our proteomic model and downregulated
in PDAC patients in this study, is in accord with previous
reports from different institutes. We also identified the
downregulation of apolipoprotein C-III in serum samples
obtained from PDAC patients [37, 38]. Further investiga-
tions are warranted to identify discriminating proteins for
ascertainment of their functional significance. Notably, 2
downregulated peaks (8765 and 13762 m/z), which were
previously extracted as proteomic serum markers for lung
cancer [39], were also identified as downregulated proteomic
signals in PDAC patients in the present study.

Prospective multi-institutional studies with a larger
number of patients including those with early-stage PDAC,
AIP, and other pancreatic diseases are apparently warranted
to validate further significance of our 7-signal proteomic
signature for clinical application. Given that it has potential
for early detection of PDAC as well as accurate discrimina-
tion of AIP, our 7-signal proteomic model may ultimately
lead to a reduction in the large number of deaths caused by
devastating cancer and also provide better management for
chronic inflammatory disease of pancreas.
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The DNA methylation landscape of small cell lung cancer
suggests a differentiation defect of neuroendocrine cells

S Kalari'*, M Jung'*, KH Kernstine®>, T Takahashi® and GP Pfeifer’

INTRODUCTION

Lung cancer is divided by histology into small cell lung cancer (SCLC)
and non-small cell lung cancer (NSCLC). SCLC represents about 15%
of all lung cancer cases and is one of the most lethal forms of
cancer with properties of high mitotic rate and early metastasis.'
It is distinctly characterized by small cells with poorly defined cell
borders and minimal cytoplasm, rare nucleoli and finely granular
chromatin. Although SCLC patients initially respond to chemotherapy
and radiation therapy, the disease recurs in the majority of patients.
Because of the aggressiveness of SCLC and the lack of effective
therapy and early diagnosis, without treatment the median
survival time for SCLC is only 2-4 months. With current treatment
modalities, the median survival times for limited-stage disease,
< 5% of the total, is 16-24 months and for extensive disease, 7-12
months, in spite of the fact that 60-80% of patients respond to
therapy. It is essential to gain a better understanding of the
molecular pathogenesis of the disease and to identify molecular
alterations, which could lead to improved results in early detection
and a means of assessing response to therapy.

Several studies have identified abnormalities within tumor
suppressor genes, oncogenes, signaling pathways, receptor
kinases and growth factors that have a proven role in the
pathogenesis of various other human cancers. About 90% of SCLC

patients’ DNA samples have mutations in the TP53 gene?®
Similarly, another tumor suppressor gene, retinoblastoma, is either
deleted or mutated in the majority (about 90%) of SCLCs.** In
addition, higher expression of the MYC family of oncogenes has
been found in SCLC cell lines, xenografts and fresh tumor
specimens.®” Abnormalities in various receptor tyrosine kinase
families are commonly found in the majority of SCLC cases. These
changes are associated with a more aggressive tumor growth,
resistance to therapy and poor prognosis.®® The phosphoinositide
3-kinase/AKT pathway is defective in SCLC patients’ tumors.
Nearly two thirds of SCLCs have phosphorylated AKT® and this
constitutively active kinase can modulate a variety of cellular
functions such as cell proliferation, survival, motility, adhesion and
differentiation.? The cellular origin of SCLC is yet to be proven
definitively. Recent studies in mice indicated that neuroendocrine
cells seem to be the predominant cells of origin of SCLC.'®"
SCLC is also characterized by common deletion of the fragile
histidine triad (FHIT) gene, located at 3p14. Similarly, chromosome
3p21 is another locus, which is frequently subjected to loss in
almost all SCLCs, and this event is thought to be an early event in
lung cancer pathogenesis.'? At 3p21.3, there are several candidate
tumor suppresser genes, including the Ras association domain
family member 1A (RASSFIA), tumor suppressor candidate 2
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(TUSC2, also known as FUS7), semaphorin 3B (SEMA3B) and
semaphorin 3F (SEMA3F).'>"*

In contrast to the genetic alterations discussed above,
epigenetic aberrations, specifically DNA methylation changes
found in SCLC tumors, have not been studied so far in a
comprehensive manner. DNA methylation analysis might provide
vital information that could shed light on mechanisms of disease
initiation, development and progression, as well as lead to
cancer biomarker discovery.’'® There are several gene-specific
DNA methylation studies for SCLC. For example, promoter
hypermethylation of the tumor suppressor gene RASSF1A and
subsequent suppression of its expression is found in almost all of
the SCLC tumors.'”'® Another study found caveolin-1 (CAV1) gene
methylation in over 90% the tested SCLC cell lines."®

Lack of genome-wide DNA methylation studies in SCLC
prompted us to undertake this task. We applied the methylated-
CpG island recovery assay (MIRA), which has shown excellent
sensitivity for identification of methylated genomic regions in
cancer,’"2® to map DNA methylation patterns at promoters and
CpG islands of primary SCLC tumors, SCLC cell lines and normal
lung control sampiles.

RESULTS

Identification of methylated genes in human SCLC tissue on a
genome-wide platform

The MIRA technique, used in combination with microarray
analysis, is a high-resolution mapping technique and has proven
successful for profiling global DNA methylation patterns in
NSCLC and other tumors.>"2 In this study, we have applied this
sensitive method to study the methylation status of CpG islands
and promoters in SCLC to investigate the potential role of
methylation changes in the initiation and development of SCLC, as
well as to discover potential biomarkers for better management of
the disease. Eighteen human primary SCLC and five SCLC cell line
DNA samples were screened for methylation by MIRA-based
microarrays. DNAs from five normal healthy lung tissues adjacent
to the tumor and obtained at the time of surgical resection were
used as controls in the MIRA analysis. DNA was subjected to
MIRA enrichment as described previously’®*?” and subsequent
microarray analysis was performed on 720k Nimblegen CpG island
plus promoter arrays.

Microarray data analysis

To increase the specificity of MIRA-based enrichment signals, we
chose to call peaks based on different quantiles of four
neighboring probes. Peaks were then calculated using the base
functions of the Bioconductor package Ringo.?® Table 1 shows the
specificity and sensitivity of this approach relative to different
quantile ranges using DNA from the SCLC cell line SW1271. Based
on the validations conducted by combined bisulfite restriction
analysis (COBRA) single-gene methylation assays, we chose an
80% cutoff for medium to strongly methylated regions and a
cutoff below 56% defined as not methylated. Thus, compared with
the conventional NimbleScan method using the default settings,
we could increase the sensitivity of methylation peak detection to
94% without decreasing specificity. As this threshold was defined
for one SCLC cell line, we tested the same settings for primary
small lung cancer samples and did not observe a significant
increase of false positive predicted hypermethylated regions.
Using the peak identification algorithm described in the
Materials and methods section, we identified ~ 15000 methyla-
tion peaks in each sample (Supplementary Table 1). Our clustering
analysis of tumor samples and controls showed that SCLC cell
lines clustered together and that four of the five normal samples
were close to each other, but different tumor samples occupied
different spaces in the dendrogram (Supplementary Figure 1).
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Table 1. Validation of microarray results by COBRA assays

Top No. of Met  UnMet  PCR % %
quantile targets fails Met  UnMet
(%) tested”

929 10 9 = 1 100 0

95 10 9 — 1 100 0

90 10 9 1 — 90 10
85 10 9 1 — 90 10
80 10 7 3 — 70 30
70 14 3 5 6 375 62.5
60 19 3 12 4 20 80
50 13 2 11 — 15 85
Abbreviations: COBRA, combined bisulfite restriction analysis; Met,
methylated; UnMet, unmethylated. *COBRA was performed for each
quantile category with bisulfite-converted DNA from the SW1271 cell line.
Results were tabulated for number of Met and UnMet genes in these
various categories.

Taking into account that we had 18 tumor samples and 5
normal samples for microarray data analysis, we defined a
stringent tumor-specific methylated region as the overlapping
region that meets the minimum 80% quantile criterion in 14 of 18
tumors and is below the 56% quantile in 4 of 5 normal tissues. A
less stringent set was defined as an overlap between at least 6
peaks from tumor samples out of 18, using the same criteria as
above. Thus, we were mainly comparing strongly methylated
regions versus poorly methylated regions. Although small
methylation level differences could not be picked up this way,
the aim of discovering uniquely strongly methylated and tumor-
specific regions was well supported by this approach.

Methylated genes in primary SCLC

Supplementary Figure 2 shows examples of tumor-specific methyla-
tion peaks at the PROX1, CCDC140, PAX3 and SIM1 genes located on
chromosomes 1, 2 and 6, respectively. Supplementary Figure 3
shows extensive tumor-specific methylation of the HOXD cluster on
chromosome 2. Compilation of tumor-specific methylation peaks
revealed a total of 698 regions in 6 out of 18 tumors (>33% of SCLC
tumors) compared with normal lung DNA, which represented 339
ensembl gene IDs for promoter-related tumor-specifically methylated
regions (defined as —5000 to + 1000 relative to the TSS), 197
ensembl gene IDs related to peaks mapped to the gene bodies and
63 ensembl gene IDs for peaks mapped downstream of the
corresponding genes (Figure 1a; Supplementary Table 2). individual
primary SCLCs contained between 366 and almost 1500 tumor-
specific methylation peaks (Supplementary Table 3).

There were 73 tumor-specific methylated peaks, which were
found in at least 14 out of 18 SCLC tumors (>77% of SCLC
tumors), that corresponded to 28 ensembl gene IDs for promoters,
30 ensembl gene IDs for gene bodies and 11 for downstream
regions (Figure 1b). These methylated genes from 77% or more of
the SCLC tumors are presented in Table 2 and in Supplementary
Table 4, for more detailed information.

Identification of methylated genes in human SCLC lines

Owing to the limited availability of primary SCLC tissue, we added
several SCLC cell lines originally derived from primary tumor sites.
Owing to the unavailability of neuroendocrine cells, which are
believed to be the cell of origin of SCLC,'® we chose normal
bronchial epithelial cells as a control for these studies. Clustering
analysis based on the total methylation peaks of SCLC cell lines
showed that all cell lines cluster tightly together (Supplementary
Figure 1). Further analysis of these methylated peaks for tumor cell
line-specific peaks revealed 1223 unique tumor-specific peaks
found in 4 out of 5 SCLC cell lines (>80% of SCLC cell lines)

© 2012 Macmillan Publishers Limited
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Figure 1. Mapping of tumor-specific methylation peaks in primary SCLC and SCLC cell lines. (a) Localization of the methylation peaks in
primary SCLC (6 or more out of 18 tumors methylated; that is, peaks that meet the minimum 80% quantile criterion in 6 of 18 tumors) relative
to gene position. (b) Localization of the methylation peaks in primary SCLC (14 or more out of 18 tumors methylated) relative to gene position.
(¢) Localization of the methylation peaks in SCLC cell lines (4 or more out of 5 cell lines methylated) relative to gene position. (d) Overlap of
methylation peaks between SCLC primary tumors (6 or more out of 18 tumors methylated) and SCLC cell lines (4 or more out of 5 cell lines
methylated). () Overlap of methylation peaks between SCLC primary tumors (14 or more out of 18 tumors methylated) and SCLC cell lines
(4 or more out of 5 cell lines methylated). (f) Cluster analysis of methylation peaks. Methylation peaks found in at least 33% of tumor samples
but not in normal samples were identified. Then the data were subjected to hierarchical clustering with Euclidean distance and average linkage
method using Cluster v3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and visualized in Java TreeView (http:/jtreeview.

sourceforge.net). Red, methylated state; green, unmethylated state.

compared with methylated peaks form normal bronchial epithelial
cells (Supplementary Table 5). These peaks represented 676
ensembl gene IDs mapped to promoter regions, 323 ensembl
gene IDs corresponding to methylated regions in the gene body
and 93 ensembl gene IDs where the hypermethylated regions
could be located downstream of genes (Figure 1¢). Individual cell
lines contained between 2779 and 4485 cell line-specific
methylation peaks (Supplementary Table 3), numbers that were
greater than those found in primary SCLCs. We compared SCLC
tumor-specific methylated regions with SCLC cell line-specific
methylated regions. There was a relatively small group (< 20%) of
SCLC cell line-specific genes found to be commonly (>6 of 18)
methylated in primary SCLC tumors and vice versa (that is,
~21% of SCLC primary tumor peaks matched with those of
frequent SCLC cell line methylation; Figure 1d). When we
determined the overlap between peaks methylated in 14/18

© 2012 Macmillan Publishers Limited

tumors and 4 of 5 cell lines, the number of overlapped genes
was 27 (Figure 1e). We mapped the location of tumor-specific
methylation peaks relative to promoters, gene bodies and
locations downstream of genes (Figures 1a-c). The distribution
patterns were similar for peaks found in >6/18 tumors and in cell
lines, but for the most frequently methylated genes (> 14/18) the
peaks tended to be more commonly localized in gene bodies and
downstream (Figure 1b). Cluster analysis of methylation peaks in
normal and tumor samples is shown in Figure 1f.

Validation of gene-specific methylation in SCLC samples

We further validated tumor-specific methylation peaks discovered
by microarray analysis for several of the targets by the COBRA
assay. In this assay, bisulfite-converted DNA is PCR-amplified using
gene-specific primers and is then digested with a restriction
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Table 2. Gene targets methylated in 77% or more of primary SCLCs

Chromosome  Start peak End peak hgnc_symbol  Description

6 27647872 27648246

1 91189238 91189687 BARHL2 BarH-like homeobox 2 [Source:HGNC Symbol;Acc:954]

10 124901911 124902685  HMX2 H6 family homeobox 2 [Source:HGNC Symbol;Acc:5018]

15 53087134 53087683 ONECUT1 One cut homeobox 1 [Source:HGNC Symbol;Acc:8138]

9 100611180 100611554  FOXE1 Forkhead box E1 (thyroid transcription factor 2) [Source:HGNC Symbol;Acc:3806]

17 59529794 59530268 TBX4 T-box 4 [Source:HGNC Symbol;Acc:11603]

1 214153078 214153777  PROX1 Prospero homeobox 1 [Source:HGNC Symbol;Acc:9459]

14 95239173 95240547 GSC Goosecoid homeobox [Source:HGNC Symbol;Acc:4612]

21 38068981 38069055 SIM2 Single-minded homolog 2 (Drosophila) [Source:HGNC Symbol;Acc:10883]

6 117584283 117584857 VGLL2 Vestigial-like 2 (Drosophila) [Source:HGNC Symbol;Acc:20232]

14 37124350 37124799 PAX9 Paired box 9 [Source:HGNC Symbol;Acc:8623]

2 177004205 177004604

14 36991675 36992549 NKX2-1 NK2 homeobox 1 [Source:HGNC Symbol;Acc:11825]

1 197879403 197880252  LHX9 LIM homeobox 9 [Source:HGNC Symbol;Acc:14222]

11 32455050 32455624 WT1-AS WT1 antisense RNA (non-protein coding) [Source:HGNC Symbol;Acc:18135]

13 112719925 112720174  SOX1 SRY (sex-determining region Y)-box 1 [Source:HGNC Symbol;Acc:11189]

21 38069706 38069780 SIM2 Single-minded homolog 2 (Drosophila) [Source:HGNC Symbol;Acc:10883]

2 176956605 176956754 HOXD13 Homeobox D13 [Source:HGNC Symbol;Acc:5136)

9 129566330 129566704  ZBTB43 Zinc finger and BTB domain containing 43 [Source:HGNC Symbol;Acc:17908]

3 172167182 172167256  GHSR Growth hormone secretagogue receptor [Source:HGNC Symbol;Acc:4267]

1 230777303 230777452 COG2 Component of oligomeric golgi complex 2 [Source:HGNC Symbol;Acc:6546]

3 27765097 27765996 EOMES Eomesodermin [Source:HGNC Symbol;Acc:3372]

20 30639265 30639939 HCK Hemopoietic cell kinase [Source:HGNC Symbol;Acc:4840]

3 183274057 183274331  KLHL6 Kelch-like 6 (Drosophila) [Source:HGNC Symbol;Acc:18653]

12 114846668 114847217  TBX5 T-box 5 [Source:HGNC Symbol;Acc:11604]

4 122685401 122685475 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:EZENT1]

2 182547581 182547655

20 44880344 44880693 CDH22 Cadherin 22, type 2 [Source:HGNC Symbol;Acc:13251]

9 21402751 21403100 IFNA12P Interferon, alpha 12, pseudogene [Source:HGNC Symbol;Acc:5443]

7 97360940 97362189 TACT Tachykinin, precursor 1 [Source:HGNC Symbol;Acc:11517]

2 223162732 223163206 CCDC140 Coiled-coil domain containing 140 [Source:HGNC Symbol;Acc:26514]

7 129422815 129423514

2 192711381 192711755

6 27107272 27107346 HIST1H4I Histone cluster 1, H4i [Source:HGNC Symbol;Acc:4793]

2 176969205 176970504 HOXD11 Homeobox D11 [Source:HGNC Symbol;Acc:5134]

19 9608951 9609250 ZNF560 Zinc finger protein 560 [Source:HGNC Symbol;Acc:26484]

7 27282651 27282900 EVX1 Even-skipped homeobox 1 [Source:HGNC Symbol;Acc:3506]

2 223163332 223163406  PAX3 Paired box 3 [Source:HGNC Symbol;Acc:8617]

7 27282951 27283025 EVX1 Even-skipped homeobox 1 [Source:HGNC Symbol;Acc:3506]

7 8474326 8475225 NXPH1 Neurexophilin 1 [Source:HGNC Symbol;Acc:20693]

4 174452351 174452925 Nbla00301 (NBLA00301), non-coding RNA [Source:RefSeq DNA;Acc:NR_003679]

4 13545178 13545427 NKX3-2 NK3 homeobox 2 [Source:HGNC Symbol;Acc:951]

X 111325120 111325194  TRPC5 Transient receptor potential cation channel, subfamily C, member 5 [Source:HGNC
Symbol;Acc:12337]

6 100911555 100911904  SIM1 Single-minded homolog 1 (Drosophila) [Source:HGNC Symbol;Acc:10882]

14 29243250 29243899 Cl4orf23 Chromosome 14 open-reading frame 23 [Source:HGNC Symbol;Acc:19828]

5 172660770 172660844  NKX2-5 NK2 transcription factor related, locus 5 (Drosophila) [Source:HGNC
Symbol;Acc:2488]

2 220196257 220197006  RESP18 Regulated endocrine-specific protein 18 homolog (rat) [Source:HGNC
Symbol;Acc:33762]

9 126776030 126776479  LHX2 LIM homeobox 2 [Source:HGNC Symbol;Acc:6594]

1 165323302 165323951 LMX1A LIM homeobox transcription factor 1, alpha [Source:HGNC Symbol;Acc:6653]

2 119603031 119603180  EN1 Engrailed homeobox 1 [Source:HGNC Symbol;Acc:3342]

12 63543634 63544008 AVPR1A Arginine vasopressin receptor 1A [Source:HGNC Symbol;Acc:895]

8 97170050 97170499 GDF6 Growth differentiation factor 6 [Source:HGNC Symbol;Acc:4221]

1 47694839 47695213 TALY T-cell acute lymphocytic leukemia 1 [Source:HGNC Symbol;Acc:11556]

13 84453425 84453824 SLITRK1 SLIT and NTRK-like family, member 1 [Source:HGNC Symbol;Acc:20297]

4 174448251 174448725 HAND2 Heart and neural crest derivatives expressed 2 [Source:HGNC Symbol;Acc:4808]

2 176977280 176977729  HOXD10 Homeobox D10 [Source:HGNC Symbol;Acc:5133]

5 37835994 37836168 GDNF Glial cell-derived neurotrophic factor [Source:HGNC Symbol;Acc:4232]

9 37029751 37030525 PAX5 Paired box 5 [Source:HGNC Symbol;Acc:8619]

14 29247325 29247499 C14orf23 Chromosome 14 open reading frame 23 [Source:HGNC Symbol;Acc:19828]

7 8483051 8483825 NXPH1 Neurexophilin 1 [Source:HGNC Symbol;Acc:20693]

6 154360508 154360857 OPRM1 Opioid receptor, mu 1 [Source:HGNC Symbol;Acc:8156]

20 58569381 58569455 CDH26 Cadherin 26 [Source:HGNC Symbol;Acc:15902]

9 21968201 21968875 C9orf53 Chromosome 9 open reading frame 53 [Source:HGNC Symbol;Acc:23831]

16 49311725 49312274 CBLN1 Cerebellin 1 precursor [Source:HGNC Symbol;Acc:1543]

8 9756191 9756540 MIR124-1 MicroRNA 124-1 [Source:HGNC Symbol;Acc:31502]

5 170741921 170741995  TLX3 T-cell leukemia homeobox 3 [Source:HGNC Symbol;Acc:1353]

20 21488326 21488925 NKX2-2 NK2 homeobox 2 [Source:HGNC Symbol;Acc:7835]

5 170743496 170744170  TLX3 T-cell leukemia homeobox 3 [Source:HGNC Symbol;Acc:13532]
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Table 2 (Continued)

Chromosome  Start peak End peak hgnc_symbol  Description

5 172672295 172672844 Y RNA [Source:RFAM;Acc:RF00019]

2 177027180 177027529 HOXD4 Homeobox D4 [Source:HGNC Symbol;Acc:5138]

4 85402627 85403376 NKX6-1 NK6& homeobox 1 [Source:HGNC Symbol;Acc:7839]

15 96911497 96912071 MIR1469 MicroRNA 1469 [Source:HGNC Symbol;Acc:35378]

15 89949372 89949871 MIR9-3 MicroRNA 9-3 [Source:HGNC Symbol;Acc:31646]

3 50377447 50378846 RASSF1A () Ras association (RalGDS/AF-6) domain family member 1 [Source:HGNC

Symbol;Acc:9882]

“Indicates a previously validated gene with a lower threshold for normal tissues than used for the other regions.

endonuclease, either BstUl or Tagl, which recognize the sequences
5'-CGCG-3' or 5'TCGA-3, respectively. The cytosines in unmethylated
restriction sites are converted by sodium bisulfite, amplified by
PCR and resist digestion, whereas methylated sites remain unchanged
and are cleaved by these enzymes. The digested fragments visualized
on agarose gels are thus indicative of methylated restriction sites
in the region analyzed. We performed extensive validation analysis
by COBRA to confirm the tumor-specific methylated regions
(Supplementary Figure 4). Representative examples of COBRA
results are shown for the genes DMRTAZ2, MIR-129-2 and GALNTL]T.
In total, we inspected the methylation status of 11 genes
(GALNTL1, MIR-10A, MIR-129-2, MIR-196A2, MIR-615, MIR-9-3, AMBRAT,
HOXD10, PROX1, ZNF672 and DMRTA2) based on the various degrees
of methylation obtained from the list of differentially methylated
targets. Results for all the targets are presented in Supplementary
Table 6. The COBRA analysis revealed that our microarray analysis
is highly reliable with over 93% accuracy and only ~4% false
negative and ~ 3% false positive hits.

To further confirm the COBRA results of the methylated
genes GALNTLT and DMRAT2, we sequenced bisulfite-converted
DNA from SCLC tumor and matched normal lung samples
(Supplementary Figure 4). Normal control lung DNA samples
showed either no or very low levels of methylation across the CpG
dinucleotides tested in contrast to SCLC tumor DNA samples,
which were heavily methylated.

Gene expression and methylation status

For the SCLC cell lines SW1271, H1836 and H1688, and HBECs,
Affymetrix gene expression analysis was performed and hyper-
methylated regions in the SCLC cell lines were compared with
their associated probe expression changes. On a global level, we
could not detect a correlation between the tumor-specific
hypermethylated regions and downregulation of associated
genes. This phenomenon has been observed in other tumor
methylation studies. Some of the reasons for this lack of
correlation are that (1) genes that become methylated in tumors
frequently are already expressed at very low levels in correspond-
ing normal tissues, 232 (2) methylation-independent mechanisms
(such as chromatin modifications) are responsible for expression
changes®® and (3) methylation of alternative promoters obscures
such correlations.”’?* Unlike the methylation patterns, the
expression signals of the individual tumor cell lines were not
highly correlated to each other when compared with the control
cell line (as seen by principal component analysis; data not
shown).

Functional pathway analysis of methylated genes

For the two stringencies that were defined (=6 out of 18 tumors
specifically hypermethylated and >14 out of 18 tumors specifi-
cally hypermethylated), we performed a functional annotation
clustering, for promoter proximal tumor-specifically methylated
regions and gene body-associated tumor-specifically methylated

© 2012 Macmillan Publishers Limited

regions. For =6 out of 18 tumor-specific promoter proximal
methylated regions, two main annotation clusters could be
identified, one for homeobox genes (P-value 1.6E — 26, Bonferroni
corrected) and one for transcription factors in general (1.0E — 09;
Figure 2a; Supplementary Table 7). More specifically, clusters for
neuronal fate commitment (1.3E—5), neuronal differentiation
(3.5E — 9) and pattern specification processes (2.3E — 11) showed
the strongest enrichment. In comparison, hypermethylated
regions in gene bodies showed similar functional enrichment
clusters for homeobox genes (6.2E — 26) and pattern specification
processes (3.8E—11), but significantly less enrichment for
neuronal fate commitment (7.0E — 1) and for neuronal differentia-
tion (1.2E — 4; Supplementary Table 8), suggesting that the latter
functional categories are more related to promoter-specific
methylation (Figure 2a).

Concerning functional enrichment for tumor-specifically hyper-
methylated regions for the majority of tumors (=14 out of 18
tumors), clusters with significantly less enrichment compared with
their less significant counterpart (>6 out of 18) could only be
obtained for homeobox genes (7.5E — 7 for promoter regions and
2.3E— 8 for gene bodies) and transcription factors (2.8E — 4 for
promoter regions and 3.6E —2 for gene bodies), which can be
partly explained by the lower number of genes in this category
(Supplementary Tables 9 and 10). Lung development was another
significantly enriched category for promoter methylation
(Supplementary Table 9).

With regard to the cell lines, genes associated with hyper-
methylated regions in the five SCLC cell lines compared with the
control cell line, homeobox-related functional terms and tran-
scription factor-related terms were significantly enriched only for
gene body-associated tumor peaks (4.8E-8 for homeobox genes
and 3.0E — 3 for transcription factors, Bonferroni corrected) but the
strong enrichment for these categories observed for promoter
regions in the tumor tissues was not present for the cell line
models (Supplementary Tables 11 and 12). This probably reflects
a greater number and higher diversity of methylation events
observed in the cell lines.

For targets methylated simultaneously in =14 out of 18 tumors
and in >4 out of 5 cell lines (Supplementary Table 13), we again
observed an enrichment in the same functional categories.
Notably, this group of genes contained a number of genes
involved in neuronal or neuroendocrine differentiation, such as
EOMES/TBR2, the gene TACI, which encodes the neuropeptide
substance P, and RESPI8, encoding a neuroendocrine-specific
protein.

Motif discovery

We next used the de novo motif discovery algorithm HOMER® to
search for sequence patterns that are associated with regions that
are specifically methylated in SCLC tumor samples for at least 33%
of the tumors and were able to identify a set of nonredundant
sequence motifs that were highly enriched in comparison with
all non-tumor-specifically methylated regions on the array.

Oncogene (2012), 1-10
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Figure 2. Functional annotation and motif finding analysis. (a) Shown

are DAVID functional analysis clusters that contained the highest

enrichment scores in all three categories: 33% or more of tumors, 77% or more of tumors and cell lines. For more details see Materials and
methods. (b) Motif finding analysis. Significantly enriched consensus motifs for REST, Roaz/ZNF423, Hand1 and NEUROD1 are shown.

Transcription factors, which were falling into this category, were
REST/NRSF (2.5E — 16), ZNF423 (3.0E — 13), HAND1 (1.44E—10)
and NEUROD1 (2.3E—10; Figure 2b). Examples of methylated
NEUROD1 targets are shown in Figure 3. The majority of the
sequence motifs identified in methylated regions were enriched
within the proximal promoter regions of known genes. The
highest enrichment was based on redundant sequence structures
and for those that were not, we demanded a stringent alignment
with matching transcription factor-binding sites and a low number
of occurrences in the background set, which contained all possible
methylation sites. REST, ZNF423, HAND1 and NEUROD1 contained
nonredundant sequences, a maximal mismatch of 2bp to the
identified de novo motif and were selectively enriched in the
target sequence set. As such, the identified motifs might not be
representative for the whole tumor-specific target set but shed
light on sub-regulatory networks with a possibly major impact on
the phenotype of SCLC. For example, NEUROD1- and HAND1-
binding sites were found in methylated targets representing
genes involved in neuronal cell fate commitment such as GDNF,
NKX2-2, NKX6-1, EVX1 and SIM2 (Supplementary Tables 2 and 14).
Methylation of these binding sites suggests a model in which
these transacting factors were lost during tumorigenesis render-
ing their target sites susceptible to methylation. To analyze
this scenario further, we focused on the NEUROD1 transcription
factor. Indeed, expression of NEUROD1 proved to be undetectable
by a sensitive reverse transcription-PCR assay (Supplementary
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Figure 5) in the four SCLC cell lines tested and it was expressed
at very low levels in human bronchial epithelial cells. In SCLC cell
lines and, importantly, also in primary SCLC tumors, the promoter
of NEUROD1 was heavily methylated (Supplementary Figures 6A
and B) consistent with a possible lack of expression. In addition,
we found increased methylation at the promoters of HAND1 and
REST in SCLC cell lines and in primary tumors (Supplementary
Figure 6).

DISCUSSION

To identify frequently methylated genes in SCLC tumor patients
and SCLC cell lines, we have combined the use of a sensitive
method for identifying methylation in CpG-rich regions, the MIRA
assay’®?’ with genome-wide CpG island and promoter array
analysis. Global profiling of 18 SCLC tumor samples compared
with normal lung samples resulted in 698 and 73 tumor-
specifically methylated and ensembl-annotated gene targets for
33% or more (=6 of 18) of tumors, representing a substantial
subgroup of patients, and in 77% or more of SCLC tumors
(methylation in at least 14 of 18 samples), representing the
majority of all patients, respectively. The 73 gene targets
methylated in such a large fraction of the patient population
may be of particular value for designing DNA methylation-based
biomarkers for early detection of SCLC, for example, in serum or
sputum, and for disease management.
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Examples of tumor-specific methylation of NEUROD1 target genes in SCLC. The top of the figure indicates the chromosomal

NKX2-2

coordinates according to the UCSC Genome browser hg19. Gene names and direction of transcription are shown at the bottom of the figure.
The Nimblegen array data (methylated fraction versus input) are shown for three normal lung tissues (red) and five primary SCLC tumors
(blue). The methylation signal is shown plotted along the chromosome as a P-value score. Therefore, the minimum number on the y axis is 0
(when P=1). The P-value score was obtained by the NimbleScan software and is derived from the Kolmogorov-Smirnov test comparing the
log2 ratios (MIRA versus input) within a 750-bp window centered at each probe and the rest of the data on the array. The asterisks indicate the

location of the NEUROD1 target sites.

We randomly selected and validated 11 methylated genomic
regions, which were predicted by the array analysis, by using
bisulfite-based COBRA assays. The validated targets fell into various
major functional categories, including transcription factors and
noncoding RNAs such as GALNTL1, MIR-10A, MIR-129-2, MIR-196A2,
MIR-615, MIR-9-3, AMBRA1, HOXD10, PROX1, ZNF672 and DMRTA2.
Validation of this set of samples revealed the specificity of the
analysis. Some of the validated genes are epigenetically altered
in various other cancers (MIR-10A, MIR-129-2, MIR-196A2, HOXD10
and PROXT) but other genes have not yet been identified as
methylated in any cancer type (GALNTLI, MIR-615 AMBRAI,
ZNF672 and DMRTA2). DMRTA2 methylation was found in 94%
of the SCLC tumor patients. The only fact that is known about
DMRTA2 is that there is crosstalk of expression with the
transcription factor NFIA3® Interestingly, there is evidence that
NFIA is a key factor for the differentiation of neuronal progenitor
cells by downregulating the activity of the Notch signaling
pathway via repression of the key Notch effector Hes1.3” Given the
strong enrichment for neuronal differentiation pathways in tumor-
specific methylated regions in SCLC (Figure 2) it is tempting to
speculate that there is a contribution of DMRTA2 methylation to
impaired homeostasis between DMRTA2 and NFIA. There is no
functional evidence yet for GALNTL1. These two targets, as well
as the many other very frequently methylated genes (Table 2),
have the potential to be used as biomarkers for this cancer type.

© 2012 Macmillan Publishers Limited

Gene annotation analysis of tumor-specific promoter methy-
lated targets revealed a substantial subgroup of genes that are
specific for neuronal fate commitment, neuronal differentiation
and pattern specification processes, along with homeobox and
other transcription factors. In comparison, hypermethylated
regions in gene bodies showed similar functional enrichment
clusters for homeobox genes and pattern specification processes,
but significant less enrichment for neuronal fate commitment and
for neuronal differentiation, suggesting that the latter functional
categories are more specific for promoter-specific methylation.
This striking tendency for methylation of neuronal-specific genes
may suggest an essential role of this event in SCLC tumor
initiation.

Methylation of surrounding proximal promoters is often tightly
associated with transcriptional silencing, whereas gene body
methylation seems to be associated with transcriptional activa-
tion.’8 Loss of expression of genes, which are methylated in
their proximal promoters, could lead to SCLC tumor initiation.
Further studies in this direction will be required to establish
experimental evidence. What we do not know at present is
whether these genes are unmethylated and expressed in
pulmonary neuroendocrine cells and their precursors, the likely
cells of origin for SCLC. This specific cell type is currently not
available for analysis. This issue does indeed apply to almost all
DNA methylation studies done in human cancer to date. The exact
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