102 Y. Morita et al. Fig. 3 Disease-/relapse-free survival. RFS was calculated from the date of achieving complete remission to the date of relapse, death or the most recent follow-up. These data were not censored at the time of HSCT. All randomized patients were not included this data in each group. Due to this reason, some patients were not known to be CR state or relapse, but known to be alive or not start of treatment) in Group A, suggesting that intensive treatment produced higher CR rate, and higher toxicity resulted in a similar survival rate with low-dose induction therapy at least during the early phase of treatment. There are several reasons that could explain why no difference in survival rate was observed regardless of the difference in CR rate. One could be the similar postremission therapy between Groups A and B, as demonstrated by the almost similar DFS curves among the two groups. Another reason could be the disease status at the time of transplantation for patients in the two groups. In Group A, 60% of the transplantation was performed during the period other than that covering the first CR; this was 79% in Group B. Allo-HSCT has been shown to have the strongest antileukemia effect, and this was also found in the current study in which 6 out of 15 long-term survivors received allo-HSCT in Groups A and B. From the viewpoint of transplantation, intensive treatment merely selected cases that were suitable for transplantation, as observed in the case of transplantation for relapsed AML patients [17]. There are arguments against remission induction therapy for MDS patients in that it does not affect posttransplant prognosis [6, 18]. In the results of JSHCT, the chemotherapy before undergoing allo-SCT is not necessary in patients with MDS [6]. A group from the Institute of Medical Science of Tokyo University performed umbilical cord blood stem cell transplantation without remission induction therapy in high-risk MDS patients aged not more than 55 years and obtained favorable results with reduced time from diagnosis to transplantation [19]. It is important to perform clinical studies based on the concept that HCST should be performed immediately after diagnosis without remission induction, and determine the types of patients who would benefit from remission induction therapy prior to transplantation in terms of prognosis. In the present study, although suspended because of the insufficient number of patients enrolled, it appears that remission induction therapy with IDR and Ara-C did not produce better survival than that with low-dose chemotherapy despite higher CR rate. Therefore, it is suggested that CR rate is not a suitable surrogate marker for the evaluation of the outcome of chemotherapy for high-risk MDS and MDS-AML. In the latest reports, induction chemotherapy for patients with high-risk MDS and MDS-AML also provide no survival advantage [20, 21]. Considering the low survival rate of patients in this category, it is clearly necessary to introduce new strategies for the treatment of high-risk MDS and MDS-AML, such as molecular targeting agents and allo-HSCT with reduced-intensity conditioning regimens. Acknowledgments We would like to thank the participating physicians in the Japan Adult Leukemia Study Group (JALSG) MDS200 study for their cooperation. This work was supported in part by grants-in-aid for Scientific Research from the Japanese Ministry of Education, Culture, Sport, Science, and Technology, and grants-in-aid for Cancer Research from the Japanese Ministry of Health, Labor, and Welfare. ## References - Mhawech P. Myelodysplastic syndrome: review of the cytogenetic and molecular data. Crit Rev Oncol/Hematol. 2001;40:229–38. - Hofmann W, Koeffler HP. Myelodysplastic syndrome. Ann Rev Med. 2005;56:1–16. - Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99. - Finke J, Nagler A. Viewpoint: what is the role of allogeneic haematopoietic cell transplantation in the era of reduced-intensity conditioning—is there still an upper age limit? A focus on myeloid neoplasia. Leukemia. 2007;21:1357–62. - Tricot GJ. Prognostic factors in myelodysplastic syndrome. Leuk Res. 1992;16:109–15. - Nakai K, Kanda Y, Fukuhara S, Sakamaki H, Okamoto S, Kodera Y, et al. Value of chemotherapy before allogeneic hematopoietic stem cell transplantation from an HLA-identical sibling donor for myelodysplastic syndrome. Leukemia. 2005;19:396–401. - De Witte T. Stem cell transplantation for patients with myelodysplastic syndrome and secondary leukemias. Int J Hematol. 2000;72:151-6. - 8. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndrome: delayed transplantation for low risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85. - Oran B, Giralt S, Saliba R, Hosing C, Popat U, Khouri I, et al. Allogeneic hematopoietic stem cell transplantation for the treatment of high-risk acute myelogenous leukemia and myelodysplastic syndrome using reduced-intensity conditioning with fludarabine and melphalan. Biol Blood Marrow Transplant. 2007;13:454–62. - Lekakis L, de Lima M. Reduced-intensity conditioning and allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia. Expert Rev Anticancer Ther. 2008;8:785–98. - Denzlinger C, Bowen D, Benz D, Gelly K, Brugger W, Kanz L. Low-dose melphalan induces favourable responses in elderly patients with high-risk myelodysplastic syndromes or secondary acute leukaemia. Br J Haematol. 2000;108:93–5. - Miller KB, Kim K, Morrison FS, Winter JN, Bennett JM, Neiman RS, et al. The evaluation of low-dose cytarabine in the treatment of myelodysplastic syndrome. Ann Hematol. 1992;65:162–8. - Okamoto T, Kanamaru A, Shimazaki C, Motoji T, Takemoto Y, Takahashi M, et al. Combination chemotherapy with risk - factor-adjusted dose attenuation for high-risk myelodysplastic syndrome and resulting leukemia in the multicenter study of the Japan Adult Leukemia Study Group (JALSG): results of an interim analysis. Int J Hematol. 2000;72:200–5. - Greenberg P, Cox C, LeBeau MM, Fenaux C, Morel P, Sanz G, et al. International scoring system for evaluating progenitors in myelodysplastic syndrome. Blood. 1997;89:2079–88. - Yamada K, Furusawa S, Saito K, Waga K, Koike T, Arimura H, et al. Concurrent use of granulocyte colony-stimulating factor with low-dose cytosine arabinoside and aclarubicin for previously treated acute myelogenous leukemia: a pilot study. Leukemia. 1995:9:10-4. - 16. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14. - 17. Alessandrino EP, Della Porta MG, Bacigalupo A, Van Lint MT, Falda M, Onida F, et al. WHO classification and WPSS predict post-transplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood. 2008;112:895–902. - Nachtkamp K, Kundgen A, Strupp C, Giagounidis A, Kobbe G, Gattermann N, et al. Impact on survival of different treatments for myelodysplastic syndromes (MDS). Leuk Res. 2009;33:1024–8. - Ooi J. The efficacy of unrelated cord blood transplantation for adult myelodysplastic syndrome. Leuk Lymphoma. 2006; 47:599–602. - Knipp S, Hildebrand B, Kundgen A, Giagounidis A, Kobbe G, Haas R, et al. Intensive chemotherapy is not recommended for patients aged >60 years who have myelodysplastic syndromes or acute myeloid leukemia with high-risk karyotypes. Cancer. 2007;110:345-51. - Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-rabell, phase III study. Lancet Oncol. 2009;10:223–32.