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Table 1. PCR primers and probes for PcG protein genes.

R 5-CCCAGAGTCACTTTCCAGTT-3'

| 5-FAM-TTGTCAGTCCATCTCTCTGGTGACTGATCT-TAMRA

YY1 (NM_003403) F  5-CAACAAGAAGTGGGAGCAG-3' 143
R 5.GAGGTGAGTTCTCTCCAATGAT:S

P 5-FAM-CTCGGTCACCATGTGGTCCTCAGATGA-TAMRA-3'

(RYBP(NM_012234)  F 5-CTGACATTCTGAAAGATCCTCC-3' 143

R 5-AGTTACTGCCAACTGCTGTG-3'
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RBBP4 (NM_05610) F  5-ATGCCCCAGAACCCTTGT-3' 132

P 5-FAM-CTCCTTCCAGTGATGTTCTTGTCTTTGACT-TAMRA-3'

R 5-AGAGAATGATCCATACCACAG-3'

EZH2 (NM_152998) F 5-GATGTGGATACTCCTCCAAG-3' 149

P 5-FAM-ACGGCTCCTCTAACCATGTTTACAACTATCA-TAMRA-3'

R 5-CCAGGATGATGGCACTGAACT-3'

F: forward primer, R: reverse primer, P: TagMan probe
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Figure legends

Figure 1. Microarray analysis of gene expression in primary ATL cells.
(A-D) Expression levels of PcG protein genes were compared among normal
CD4+ T cells (Control), chronic ATL cells (Chronic), and acute ATL cells
(Acute), and results of EZH2 (A), RYBP (B), BMI1 (C), and CBX7 (D) are
demonstrated in box plots. ATL cells showed significantly higher levels of EZH2
and RYBP transcripts than normal CD4+ T-cells (Mann-Whitney’s U test), with
a higher expression in the acute type than in the chronic type (Mann-Whitney’s
U test) (A, B). In contrast, there was no statistical difference in the level for
BMI1 or CBX7 among these groups (C, D). (E-H) Overall survival curves for
ATL patients separated into two groups consisting of those with high
expression (H, n=20) and low expression (L, n=20) for EZH2 (E), RYBP (F),
BMI1 (G), or CBX7 (H) are shown. Patients with high EZH2 or high RYBP
expression showed significantly shorter survival than those in corresponding
low expression groups (Log-rank test) (E, F). There was no difference in
survival for different BMIT or CBX7 expressions (G, H). H: high expression

group (bold line), L: low expression group (thin dotted line). *p<0.05, #%p<0.01

Figure 2. Quantitative real-time RT-PCR for PcG genes. (A-F, a-f)
Expressions of PcG protein genes EZH2 (A, a), RYBP (B, b), RBBP4 (C, c),
BMI1 (D, d), YY1 (E, e), and EED (F, f) were compared among healthy adults
(Control), HTLV-1 carriers (Carrier), ATL patients (Primary ATL), ATL cell lines,
and non-ATL T-cell lines. Capital letters (A-F) indicate absolute copy number
per 25 ng of total RNA, and small letters (a-f) indicate normalized expression.

ATL cells showed significantly higher levels of EZH2 and RYBP transcripts than
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the cells from healthy adults and HTLV-1 carriers, in terms of both absolute
copy number and normalized expression (A, a, B, b, Mann-Whitney’s U test).
RBBP4 transcript was significantly increased in ATL cells only in terms of
normalized expression (C, ¢, Mann-Whitney’s U test). There was no difference
in BMI1, YY1, and EED expression levels among these groups (D, d, E, e, F, f).

##0<0.01

Figure 3. EZH2 protein expression and histone methylation. (A) Western
blot analysis for EZH2 protein was performed on primary ATL cells, cells from
healthy adults, and ATL cell lines. Primary ATL cells showed a clear 98-kDa
band for EZH2 with the absence or presence of faint bands for phosphorylated
EZH2 (p-EZH2). Cells from healthy adults hardly showed these bands. ATL cell
lines ST1, S04, and KK1 showed intense bands for both EZH2 and p-EZH2,
but LM-Y1 and KOB cells showed intense bands for EZH2 with the absence of
a band for p-EZH2. (B) Western blot analysis for histone methylation status was
performed. Only primary ATL cells and LM-Y1 and KOB cell lines showed a
clear band for H3K27me3, but others hardly showed the band. Bands for
H3K27me2, H3K27me1, and histone H3 were observed in almost all samples

examined.

Figure 4. Immunostaining for EZH2 and H3K27me3 in lymph nodes.
Lymph nodes from patients with lymphoma-type ATL and follicular lymphoma
(FL) were stained for EZH2 and H3K27me3. Representative results of 3 ATL
lymph nodes and 1 FL lymph node are shown. ATL lymph nodes were all

strongly positive for both EZH2 and H3K27me3 without exception in their cell
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nuclear staining (brown color). In contrast, FL lymph nodes were sparsely
positive for EZH2 and mostly negative for H3K27me3. HE: hematoxylin-eosin
stain. EZH2 and H3K27me3: immunostaining, Nikon Eclipse 80i, magnification

x200.

Figure 5. Quantitative real-time RT-PCR for miRNAs. (A-C) Expressions of
miR-101 (A), miR-26a (B), and miR-128a (C) were compared between ATL
patients and HTLV-1 carriers. Primary ATL cells showed significantly lower
levels of miR-101 and miR-128a (Mann-Whitney’s U test) compared with the
cells from HTLV-1 carriers (A, C). There was no significant difference in
miR-26a expression between the two groups (B). (D, E, F) Correlation between
miRNA and EZH2 or BMI1 expression was examined. There were significant
inverse correlations between normalized EZHZ2 expression and miR-101
expression (D) or between normalized EZH2 expression and miR-128a
expression (E) (Spearman’s correlation coefficient). In contrast, there was no
correlation between normalized BMI1 expression and miR-128a expression (F).

#0p<0.05, *xp<0.01

Figure 6. Sensitivities of cell lines to DZNep and PS (LBH589). (A)
Sensitivities of cell lines to DZNep were examined after 72 hours of culture.
DZNep suppressed the proliferation of all cell lines examined at concentrations
above 0.5 uM but showed no effect on normal CD4" T cells (control 1-4, dotted
lines). (B, C) Effects of DZNep on EZH2 transcript (B) or EZH2 protein
expression (C) were examined in ATL and HTLV-1-infected cell lines. DZNep

was added at final concentrations of 0.5 and 5 nM. DZNep decreased EZH2
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transcriptin ST1, SO4, and KK1 but increased it in KOB (B), which results were
confirmed at protein level (C). (D, E) Effects of PS (LBH589) on EZH2 transcript
(D) or EZHZ2 protein expression (E) were examined. PS (LBH589) was added at
final concentrations of 50 nM and 100 nM for (D) and 20 nM and 100 nM for (E).
One hundred nM of PS (LBH589) decreased the expression of EZH2 at both
transcript (D) and protein levels (E) after 24 hours of culture. (F) Effects of
combined treatment with DZNep and PS (LBH589) on LM-Y1 and KOB cells
were analyzed. Cells were treated with DZNep (0.3-5.0 uM) and PS (LBH589)
(3-50 nM) for 48 hours. After evaluation of cell proliferation status by a MTS
assay (upper panel), the combination index (ClI) for each drug combination was
obtained using commercially available software Calcusyn (lower panel). Cl < 1

indicates synergism.
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Figure 2
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Figure 8
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Figure 3
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Figure 4
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