control than in Dicer-CKO (Fig. 3B) mice. Because the Dicer-CKO retina was thinner than the control retina (data not shown), the percentage of Brn3-positive cells in total retinal cells was much larger in Dicer-CKO than in control. At the P1 stage, Pax6 and PKC were weakly expressed in the whole retinal area (Fig. 4A). GS was not expressed in either control or Dicer-CKO retina, and some PNR-positive cells were ob-

served in the Dicer-CKO retina although no signal was observed in the control retina (Figs. 4A, 4B). At P5, Hu, calbindin, and Pax6 signals were making lines near IPL in the control retina (Fig. 4B). However, in Dicer-CKO, no layer structure was observed even at this stage, but Hu, calbindin, Pax6, and Brn3B expression was observed in the whole retinal area (Fig. 4B).

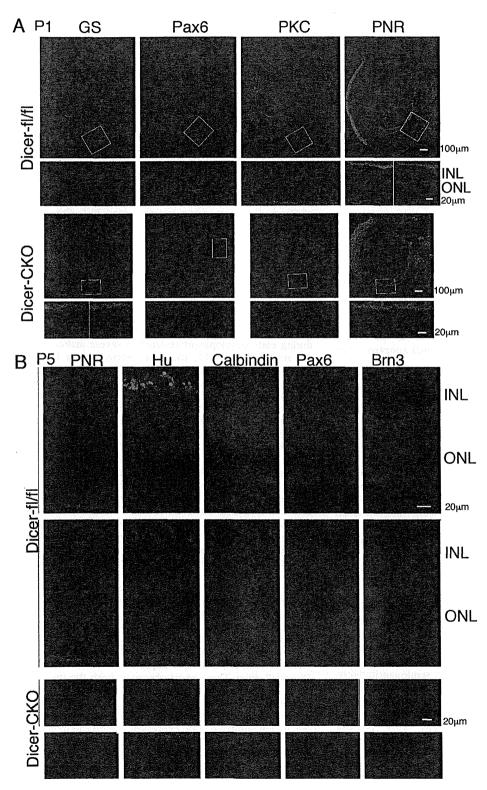


FIGURE 4. Disturbed expression of retinal marker proteins of Dicer-CKO mice after birth. (A, B) Retinas from dicer-CKO or littermate control mice at P1 (A) or P5 (B) were frozen sectioned. Immunostaining using indicated antibodies was performed, and nuclei were visualized by staining of DAPI. (A) Lower panels are enlarged images of the white squared regions in the upper panels. (B) DAPI-stained images. Scale bars are as indicated.

Next, we analyzed cell proliferation by examining antiphospho-Histone H3, which is a marker of cells at the M phase of the cell cycle. As expected, signals were observed in the most apical edge in both control and Dicer-CKO retinas at E17 (Figs. 5A, 5B). In control samples at E18 and E19, patterns of staining were similar to those at E17 (Fig. 5A). In Dicer-CKO retina, positive signals were observed at the apical-most side, but in some regions, signals were also observed throughout the retinal region (Fig. 5B), suggesting that the layer structure was perturbed in the Dicer-CKO retina. In the P1 control retina, signals had disappeared from some portions of the central region but remained at the periphery (Fig. 5A, P1, inset). In the Dicer-CKO retina, strong signals were still observed in the central region. At P5, signals had completely disappeared from the central region (Fig. 5A, P5, upper panel) but remained in the peripheral region (Fig. 5A, P5, lower panel). In contrast, signals were still observed in both central and peripheral regions in the Dicer-CKO retina (Fig. 5B, P5). Semiquantitative counting of positive cells showed that until P19, the total number of phospho-Histone H3-positive cells was comparable between control and Dicer-CKO retinas (Fig. 5E). At P5, although no signal was observed in the central region of the control retina (Fig. 5A), the total number of phospho-Histone H3 in the control retina was larger than in the Dicer-CKO retina (Fig. 5E), probably because of the small size of the Dicer-CKO retina; this is supported by the finding that the population (%) of phospho-Histone H3-positive cells was bigger in Dicer-CKO than in controls in all examined stages (Fig. 5F). Then we examined cell apoptosis using anti-active caspase3 antibody, which was rarely expressed in any of the examined developmental stages in controls (Fig. 5C, E17~P5) but was strongly expressed in Dicer-CKO retinas at all stages (Fig. 5D, E17~P5), suggesting that abnormal apoptosis was induced in the Dicer-CKO retinas.

Apoptosis Induced by the Deletion of Dicer Is an Autonomous Cell Phenomenon

We examined whether the apoptosis observed in the Dicer-CKO retina was cell autonomous using reaggregation cultures, which are a good model for evaluating the intrinsic characteristics of proliferation and differentiation of donor cells in a defined environment.^{23,27} To prepare reaggregation cultures, dissociated retinal cells from Dicer^{flox/flox}:GFP ^{+/GFP}:Dkk3 ^{+/cre} (Dicer-CKO/GFP) or GFP mice at E16.5 were mixed with an excess number of dissociated host retinal cells from wildtype mice at E16.5. After 5 or 8 days of culture, samples were harvested, frozen-sectioned, and immunostained with anti-GFP antibody. We found that although we used the same number of GFP-positive control or Dicer-CKO/GFPderived cells in the aggregate cultures, the Dicer-CKO/GFP cells, but not the control GFP cells, decreased quickly during culture. After 8 days of culture, there were fewer than 50 Dicer-CKO cells but a large number of GFP-positive control cells (Fig. 6A). To quantify the results after culturing, we dissociated reaggregations, immunostained the dissociated cells, and counted immunopositive cells semiquantitatively. It was revealed that approximately 25% of Dicer-CKO/GFP cells were active caspase3-positive after 5 and 8 days of culture, whereas fewer than 2% (5 days) or 0% (8 days) of control GFP-positive or -negative cells were positive (Fig. 6B). We also examined the expression of rhodopsin and Pax6; no significant difference in expressing cell populations was observed (Figs. 6C, 6D).

Forced Expression of Cre around Birth Induced Apoptosis and Affected the Expression of Differentiation Markers

To examine the effect of deleting Dicer at a later stage of retinal development, the Cre gene was introduced into retinas isolated from Dicer-fl/fl or control mice at P1 using in vitro electroporation. First, we examined the expression of Cre protein by immunostaining frozen sections after 12 days of culture. Strong anti-Cre signals were observed, and most of the signals overlapped GFP signals (Fig. 7A). Apoptosis was also induced by Cre expression in the Dicer-fl/fl retina, but only a very small number of apoptotic cells appeared in the control retina (Fig. 7B). However, we cannot rule out the possibility that the electroporation procedure has a stronger apoptotic effect on Dicer-CKO retinas than on controls. Then we examined the expression of PNR and GS by immunostaining because rod photoreceptors and Müller glia differentiate at a relatively later stage of retinal development. Nearly 90% of the GFP-positive cells were PNR-positive in both control and Dicer-fl/fl retinas (Figs. 7C-E). There were slightly fewer GS-positive cells in control than in Dicer-fl/fl retinas (Figs. 7F, 7I). These results suggest that the differentiation of retinal cells into rod photoreceptors and Müller glia may not be perturbed by the deletion of Dicer. However, when we examined PKC (bipolar) and Islet1 (ganglion and amacrine) markers, we were not able to observe any PKC/EGFP double-positive cells in the Dicer-fl/fl retina (Fig. 7G, 7J). In addition, the number of islet1/EGFPpositive cells in the Dicer/fl/fl retina was significantly lower than in the control retina (Fig. 7H, 7K).

DISCUSSION

We found that the deletion of Dicer in retinal progenitor cells during early development resulted in severe malformation of the retina; before P14, the Dicer-deleted retina had totally degenerated. In the Dicer-CKO retina, caspase was activated at all the examined developmental stages, suggesting that apoptosis was induced by the expression of Cre. Our finding is consistent with a previous study of aPax6-enhancer-dependent Dicer-CKO retinas, 18 reporting increased apoptosis by the deletion of Dicer in retinal progenitor cells. In addition, when we expressed Cre at a later stage (P1), the active caspase signal was observed to be at a significantly higher level than control, suggesting that Dicer is also essential for the survival of retinal cells after birth. This notion is supported by the finding that although some cells expressed differentiation markers and then survived after birth, all the cells ultimately disappeared, and the retina had completely degenerated before P14.

In contrast, retinal differentiation was less affected by the deletion of Dicer. Although localization was perturbed, retinal subtype marker-positive cells were present in the Dicer-CKO retina. In addition, in terms of marker expression, the forced expression of Cre in the later phase of development by electroporation supported the concept of the nonessential role of Dicer in differentiation. However, the detailed examination of marker expression patterns revealed that the effects of deletion of Dicer for each marker are different. The most striking is the upregulation of Brn3. Georgi and Reh¹⁸ also observed a similar phenomenon: the enhanced expression of Brn3 in αPax6-Cre/ Dicer-fl/fl mice. They report observing both the upregulation of early neuronal types (such as horizontal cells) and the downregulation of late progenitor cell markers. 18 We examined horizontal cell differentiation by the expression of calbindin, which appeared to be expressed around E19 in the control retina. We did not observe either ectopic expression before E19 or enhanced expression of calbindin in Dicer-CKO retina. In our mice, there was a possibility that the delayed onset of

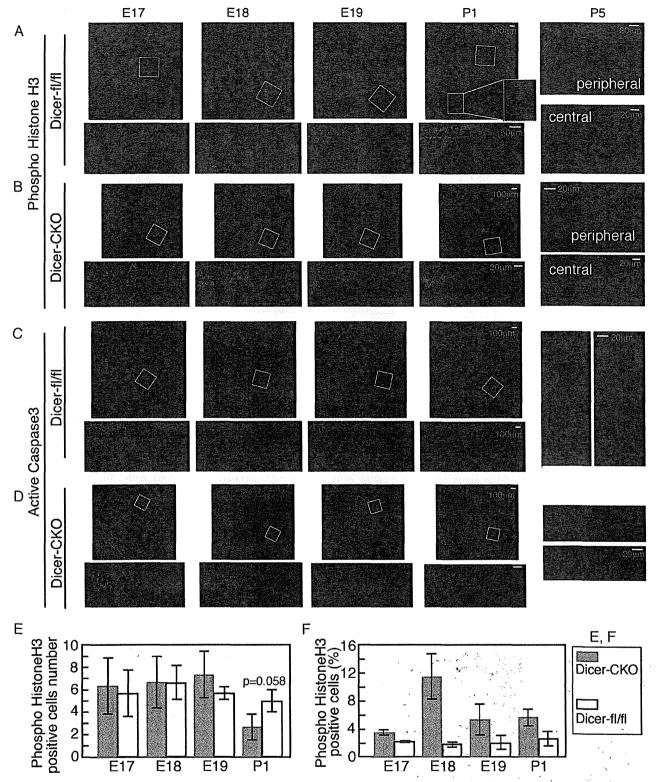


FIGURE 5. Proliferation was slightly suppressed, but massive cell death occurred in Dicer-CKO retinas. Retinas of Dicer-CKO or control Dicer-fl/fl mice at indicated developmental stages were frozen sectioned, and immunostaining was performed using anti-phospho-Histone H3 (A, B) or anti-active Caspase3 (C, D) antibodies. Nuclei were visualized by staining with DAPI. (A-D) E17 to P1. Lower panels are enlarged images of the white squared regions in the upper panels. Lower right panels are without DAPI signals. (A, B) P5. Upper panels show peripheral retinas, and lower panels show central retinas. (C, D) P5. Images of the central region of retinas are shown. Right panels are without DAPI. (E, F) Phospho-Histone 3-positive cells in the central region of retina (100-µm wide) were counted at each stage, and the cell number (E) and positive cell population in percentages (F) are shown. The average of three independent retinas with SD is shown. Scale bars are as indicated.

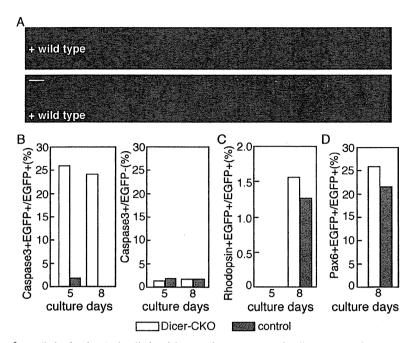


FIGURE 6. Cell death of retinal cells by deletion of Dicer occurred cell autonomously. Re-aggregation culture of retinal cells from Dicer-CKO/GFP or control was performed. Retinal cells at E16.5 were dissociated, mixed with excessively large numbers of host normal cells, and cultured for 12 days. Then re-aggregation cultures were harvested, frozen sectioned, and examined for proliferation and differentiation by immunostaining. (A) Sections were immunostained with anti-GFP antibody, and nuclei were visualized by staining of DAPI. Scale bar, $100~\mu m$. (B-D) Apoptotic cells (B), rhodopsin (C)-, and Pax6 (D)-positive cells were examined by immunostaining using anti active-caspase3, rhodopsin, and Pax6 antibody, respectively. Double staining with GFP antibody was performed, and marker and EGFP double-positive populations (%) in total EGFP-positive cells are shown. (B, right) Caspase 3-positive cells in the EGFP-negative population. The same set of experiments was conducted three times, and essentially the same results were obtained.

induction of Cre expression in some retinal progenitor cells might have resulted in their survival, allowing them to differentiate. In the experiments involving Cre expression at the P1 stage, we found a lack of expression of PKC, which is a marker for bipolar cells, and a lower level of Islet1, which is a marker of ganglion and amacrine cells. Taking all our results together, the effects of the deletion of Dicer in retinal progenitor cells might not have been simply a shift of competency of retinal progenitor cells to retinal cells born early. The explanation may be more complex and may depend on the stage of retinal cells. However, given that the lamination of retinal cells had not use information about the subretinal localization of cells to determine whether the expression marker represented fully differentiated retinal cells.

In fact, we observed that the Dicer-CKO retina failed to form laminated retinal structures, and it is difficult to identify which marker-positive cells are equivalent to those in control retinas. Georgi and Reh¹⁸ reported that the formation of GCL and INL was absent. However, Sox2 and Pax6-both retinal progenitor markers-showed relatively normal lamination in the embryonic retina of Dicer-CKO. We observed-at least from E16—no segregation of postmitotic cells or proliferating cells in the Dicer-CKO retina. Among all examinations of immunostaining, only normal positioning of cells was observed in those cells at the M phase that were marked by anti-phospho-Histone H3 antibody. In addition, we observed no layer structure in Dicer mice. In Dicer-CKO mice, the IPL was not clearly observed, suggesting that miRNA regulates the formation process of retinal cells. This suggests that Dicer is less critical for determining the fate of the retina but is critical for the migration and maturation of retinal cells. Taken together, these results show that Dicer is essential to retinal progenitor cell proliferation and survival in the retina during its early development, as in other organs. In addition, even after differentiation, Dicer is essential to cell survival and the final differentiation of retinal cells.

The initial report of retina-specific inactivation of Dicer by Chx10-Cre showed that morphologic defects at P16 progressed to more general cellular disorganization and widespread degeneration of retinal cell types as the animals aged. 17 In this study, the authors stated that the crucial role of Dicer is long-term regulation or retinal cell lamination, survival, and function, with no visible impact on early postnatal retinal structure or function. In our Dicer-CKO mice, at P16, we could not detect any retina-like structure; although some cells remained around the lens, these cells were active caspase3-positive. In contrast, Georgi and Reh¹⁸ and we observed massive cell death at an early stage of retinal development. Because the same Dicer flox mice¹⁴ were used in the studies, this might have been due to differences in the Cre mice. Damiani et al. 28 used Chx10-Cre mice, made by using a Chx10-BAC construct. Chx10-BAC reporter analysis showed that the Chx10 enhancer drives downstream genes beginning from at least E11.5. However, mosaic expression of target genes in the retina was observed.²⁸ Mosaic expression of Cre was also observed in Chx10-Cre/Dicer-flox mice.¹⁷ Based on the lack of a severe phenotype, it was surmised that either miRNAs in the retina are extremely stable or that an additional protein can compensate for Dicer function during early postnatal life. 17 Georgi and Reh¹⁸ discussed the possibility of non--cell-autonomous rescue of the phenotype of the Chx10-Cre/Dicer-deficient retina and

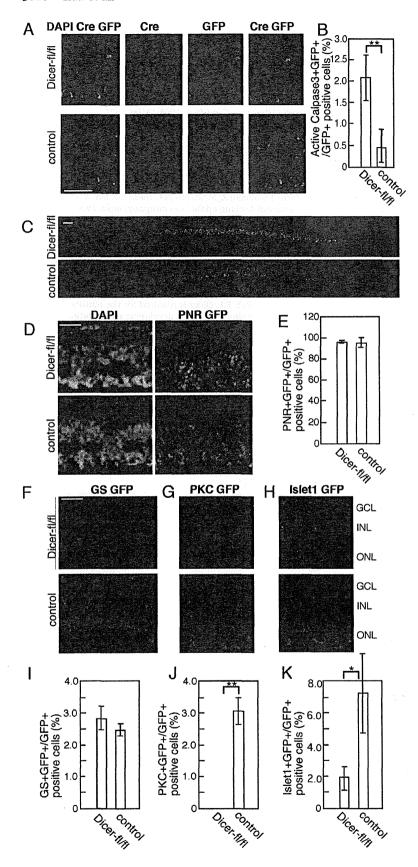


FIGURE 7. Expression of Cre at P1 Dicer-CKO retina resulted in enhanced apoptosis and perturbation of differentiation. (A) pCAG-Cre-IRES-EGFP was introduced into the retina at P1 of wild-type mice by electroporation. After 12 days of culture, expression of Cre and EGFP was examined by anti-Cre and -EGFP antibodies, respectively, by immunostaining of frozen sections. Similar results were obtained when we used retinas from Dicer-fl/fl mice. Scale bar, 50 μ m. (B-G) pCAG-Cre-IRES-EGFP was introduced into retinas at P1 of control (wild-type) or Dicer-CKO and was cultured for 12 days. Apoptosis was examined by anti-active Caspase 3 antibody, and positive cells in the central retinal region (100 µm wide) were counted semiquantitatively in EGFP-positive cells (B). Differentiation of cells into photoreceptor (C-E), Müller glia (F, I), bipolar (G, J), or ganglion/amacrine (H, K) was examined by immunostaining with anti-PNR, GS, PKC, or Islet1 antibodies, respectively. Populations of PNR (E)-, GS (I)-, PKC (J)-, or Islet1 (K)-positive cells in total EGFPpositive cells were calculated semiquantitatively in the central retinal region (100 μm wide). The average of three independent retinas with SD is shown. **P < 0.01 and *P < 0.05were calculated by Student's t-test. Nuclei were visualized by staining of DAPI. Scale bars: 100 μ m (B), 50 μ m (C), 100 μ m (E), and 50 (F) μ m.

the difference of onset of Cre in these mice. However, our observation of reaggregation culture suggested that the effects of deletion of Dicer are cell autonomous. The electroporation of Cre-expressing plasmid suggested that the severe effects of Cre deletion may be unrelated to the timing of expression, at least until the neonatal stage. Therefore, we postulated that mosaic expression of Cre is a less likely explanation of the phenotype. Furthermore, it seems unlikely that stable miRNA and other Dicer-like proteins are present in Chx10-Cre/Dicerdeficient retina. One possible reason is that the numbers of retinal progenitor cells expressing Cre may be too small in Chx10-Cre/Dicer-flox mice during early developmental stages and that the elimination of these cells was negligible in comparison with healthy cells or did not affect the gross morphology of the retina during development. Consequently, Chx10-Cre may turn on after birth in bipolar cells and cause the later

The ubiquitous expression of Cre in retinal progenitor cells afforded by use of the Dkk3-promoter has enabled clarification of the essential role played by Dicer in retinal development.

Acknowledgments

The authors thank Takahisa Furukawa for providing Dkk3-Cre mice; Robert Whittier, Itsuki Ajioka, Shuji Takada, and Yoko Tabata for discussions and technical advice; Yumiko Ishii and the FACS core laboratory for technical support with sorting; and Dovie Wylie for excellent language assistance.

References

- 1. Marquardt T, Gruss P. Generating neuronal diversity in the retina: one for nearly all. *Trends Neurosci.* 2002;25:32–38.
- 2. Cepko CL. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. *Curr Opin Neurorbiol.* 1999;9:37–46.
- Harris WA. Cellular diversification in vertebrate retina. Curr Opin Genet Dev. 1997;7:651-658.
- Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252-263.
- Li X, Jin P. Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci. 2010;11:329-338.
- Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. *Dev Biol.* 2010;344:16-25.
- Decembrini S, Bressan D, Vignali R, et al. MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci USA. 2009;106:21179-21184.
- 8. Conte I, Carrella S, Avellino R, et al. miR-201 is required for lens and retinal development via Meis2 targeting. *Proc Natl Acad Sci USA*. 2010;107:15491-15496.
- Krol J, Busskamp V, Markiewicz I, et al. Characterizing lightregulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell. 2010;141:618-631.

- Gregory RI, Chendrimada TP, Schiekhattar R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol. 2006;342:23-47.
- Wang JY, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. *Nat Genet*. 2007;39:380-385.
- Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Gene Dev. 2005;19:489-501.
- Bernstein E, Kim D-KSY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet. 2003;35.
- Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. *Proc natl Acad Sci USA*. 2005; 102:10898-10903.
- 15. Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X. Dicer function is essential for lung epithelium morphogenesis. *Proc Natl Acad Sci USA*. 2006;2208-2213.
- Davis TH, Cuellar TL, Koch SM, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28:4322-4330.
- Damiani D, Alexander JJ, O'Rourke JR, et al. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci. 2008;28:4878 - 4887.
- 18. Georgi SA, Reh TA. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. *J Neurosci.* 2010;30:4048-4061.
- Sato S, Inoue T, Terada K, et al. Dkk3-cre bac transgenic mouse line: a tool for highly efficient gene deletion in retinal progenitor cells. Genests. 2007;45:502-507.
- Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997;407:313-319.
- 21. Ikawa M, Yamada S, Nakanishi T, Okabe M. Green fluorescent protein (GFP) as a vital marker in mammals. *Curr Top Dev Biol.* 1999;44:1-20.
- Tabata Y, Ouchi Y, Kamiya H, Manabe T, Arai K, Watanabe S. Retinal fate specification of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene. *Mol Cell Biol.* 2004; 24:4513-4521.
- Koso H, Ouchi Y, Tabata Y, et al. SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells. *Dev Biol.* 2006;292:265–276.
- Lin Y, Ouchi Y, Satoh S, Watanabe S. The HMG-transcription factor Sox2 is sufficient for the induction of amacrine cells in mouse retina. *Invest Ophthalmol Vis Sci.* 2008;50:68-74.
- 25. Muto A, Iida A, Satoh S, Watanabe S. The group E Sox8 and Sox9 are regulated by Notch signaling and are required for Muller glial cell development in mouse retina. Exp Eye Res. 2009;89:549-558.
- Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA. 2004; 101:16-22.
- 27. Belliveau MJ, Cepko CL. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. *Development*. 1999;126:555-566.
- Rowan S, Cepko CL. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. *Dev Biol.* 2004;271:388-402.

長崎大学 宮崎 泰司 業績リスト

長崎大字	呂崎	泰可	莱績リス	<u> </u>				
発表者名	論文タイト	ル名			発表誌名	巻号	ページ	出版年
Tominaga-Sato S, Tsushima H, Ando K, Itonaga H, Imaizumi Y, Imanichi D, Iwanaga M, Taguchi J, Fukushima T, Yoshida S, Hata T, Moriuchi Y, Kuriyama K, Mano H, Tomonaga M, Miyazaki Y	mutations in patients with CEBPA mut	n AML h normal k tations ed with hig vity	aryotype: do	uble	Int J Hematol	94	81-89	2011
H, Kobayashi Y, Sakura T,	in intensive combination or refractory adult acute Japan Adult	n chemotho y myeloid le tudy Grou	zumab ozogai erapy for rela ukemia (AM p (JALSG)-	psed	Cancer Sci	102	1358-1365	2011
Miyawaki S, Ohtake S, Fujisawa S, Kiyoi H, Shinagawa K, Usui N, Sakura T, Miyamura K, Nakaseko C, Miyazaki Y, Fujieda A, Nagai T, Yamane T, Taniwaki M, Takahashi M, Yagasaki F, Kimura Y, Asou N, Sakamaki H, Handa H, Honda S, Ohnishi K, Naoe T, Ohno R	standard-do versus 3 cou alone in pos	se multiag arses of hig stremission kemia in a	ison of 4 cou ent chemothe gh-dose cytar therapy for a dults: the JA	erapy abine acute	blood	117	2366-2372	2011
Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N, Okumura H, Miyamura K, Nakaseko C, Miyazaki Y, Fujieda A, Nagai T, Yamane T, Taniwaki M, Takahashi M, Yagasaki F, Kimura Y, Asou N, Sakamaki H, Handa H, Honda S, Ohnishi K, Naoe T, Ohno R	comparing s high-dose d with previous leukemia: th	standard-de aunorubica usly untrea	induction the ose idarubici in in adult pa ted acute my AML201 Stu	n with tients reloid	blood	117	2358-2365	2011
Kako S, Morita S, Sakamaki H, Ogawa H, Fukuda T, Takahashi S, Kanamori H, Onizuka M, Iwato K, Suzuki R, Atsuta Y, Kyo T, Sakura T, Jinnai I, Takeuchi J, Miyazaki Y, Miyawaki S, Ohnishi K, Naoe T, Kaneda Y	adult patien chromosom lymphoblas	tic stem ce ts with Phi e-negative tic leukem	ell transplanta iladelphia	ntion in nission	Leukemia	25	259-265	2011
Ando K, Miyazaki Y, Sawayama Y, Tominaga S, Matsuo E, Yamasaki R, Inoue Y, Iwanaga M, Imanishi D, Tsushima H, Fukushima T, Imaizumi Y, Taguchi J, Yoshida S, Hata T, Tomonaga M	receptor rel	ates to the	-kDa laminir proliferation creases expre	of	Experimental Hematology	39	179-186	2011

	Risk of Myelodysplastic Syndromes in	JOURNAL OF	29	428-434	2011
Takasaki Y, Tawara M, Joh T,	People Exposed to	CLINICAL			
Amenomori T, Yamamura M,	Ionizing Radiation: A Retrospective	ONCOLOGY			
Yoshida Y, Koba T, Miyazaki	Cohort Study of				
Y, Matsuo T, Preston D L,	Nagasaki Atomic Bomb Survivors	· ·			
Suyama A, Kodama	1				
K,Tomonaga M					
Mizuta S, Matsuo K,	Pre-transplant imatinib-based therapy	Leukemia	25	41-47	2011
Yagasaki F, Yujiri T, Hatta Y,	improves the outcome of allogeneic		Ì		
Kimura Y, Ueda Y, Kanamori	hematopoietic stem cell transplantation				
H, Usui N, Akiyama H,	for BCR-ABL-positive acute				
Miyazaki Y, Ohtake S, Atsuta	lymphoblastic				
Y, Sakamaki H, Kawa K,	leukemia				
MorishimaY, Ohnishi K, Naoe					
T, Ohno R		1		l	1

ORIGINAL ARTICLE

Expression of myeloperoxidase and gene mutations in AML patients with normal karyotype: double *CEBPA* mutations are associated with high percentage of MPO positivity in leukemic blasts

Shinya Tominaga-Sato · Hideki Tsushima · Koji Ando · Hidehiro Itonaga · Yoshitaka Imaizumi · Daisuke Imanishi · Masako Iwanaga · Jun Taguchi · Takuya Fukushima · Shinichiro Yoshida · Tomoko Hata · Yukiyoshi Moriuchi · Kazutaka Kuriyama · Hiroyuki Mano · Masao Tomonaga · Yasushi Miyazaki

Received: 22 March 2011/Revised: 23 May 2011/Accepted: 23 May 2011/Published online: 16 June 2011 © The Japanese Society of Hematology 2011

Abstract The percentage of myeloperoxidase (MPO)positive blast cells is a simple and highly significant prognostic factor in AML patients. It has been reported that the high MPO group (MPO-H), in which >50% of blasts are MPO activity positive, is associated with favorable karyotypes, while the low MPO group (≤50% of blasts are MPO activity positive, MPO-L) is associated with adverse karyotypes. The MPO-H group shows better survival even when restricted to patients belonging to the intermediate chromosomal risk group or those with a normal karyotype. It has recently been shown that genotypes defined by the mutational status of NPM1, FLT3, and CEBPA are associated with treatment outcome in patients with cytogenetically normal AML. In this study, we aimed to evaluate the relationship between MPO positivity and gene mutations found in normal karyotypes. Sixty AML patients with normal karyotypes were included in this study. Blast cell MPO positivity was assessed in bone marrow smears stained for MPO. Associated genetic lesions (the NPM1, FLT3-ITD, and CEBPA mutations) were studied using nucleotide sequencing. Thirty-two patients were in the MPO-L group, and 28 patients in the MPO-H group. FLT3-ITD was found in 11 patients (18.3%), NPM1 mutations were found in 19 patients (31.7%), and CEBPA mutations were found in 11 patients (18.3%). In patients with CEBPA mutations, the carrying two simultaneous mutations (CEBPA double-mut) was associated with high MPO expression, while the mutant NPM1 without FLT3-ITD genotype was not associated with MPO activity. Both higher MPO expression and the CEBPA double-mut genotype appeared to be associated with improved overall survival after intensive chemotherapy. Further studies are required to determine the importance of blast MPO activity as a prognostic factor, especially in CEBPA wild-type patients with a normal karyotype.

S. Tominaga-Sato · H. Itonaga · M. Iwanaga · J. Taguchi · Y. Miyazaki
Department of Hematology and Molecular Medicine Unit,
Atomic Bomb Disease Institute,
Nagasaki University Graduate School of Biomedical Sciences,
Nagasaki, Nagasaki, Japan

H. Tsushima (⋈) · Y. Imaizumi · D. Imanishi · T. Fukushima · T. Hata
Department of Hematology,
Nagasaki University Hospital,
1-7-1 Sakamoto, Nagasaki 852-8501, Japan
e-mail: tsushima@nagasaki-u.ac.jp

K. Ando · S. Yoshida
 Department of Internal Medicine,
 Nagasaki National Medical Center,
 Ohmura, Nagasaki, Japan

Y. Moriuchi Division of Hematology, Sasebo City General Hospital, Sasebo, Nagasaki, Japan

K. Kuriyama School of Health Sciences, University of the Ryukyus, Okinawa, Nishihara, Japan

H. Mano Division of Functional Genomics, Jichi Medical University, Shimotsuke, Tochigi, Japan

M. Tomonaga Department of Hematology, Japanese Red-Cross Nagasaki Atomic Bomb Hospital, Nagasaki, Nagasaki, Japan

Keywords Acute myeloid leukemia · Normal karyotype · Myeloperoxidase · *CEBPA* mutations

1 Introduction

The AML87, -89, and -92 studies conducted by Japan Adult Leukemia Study Group (JALSG) revealed that patient age, ECOG performance status, leukocyte count, FAB subclass, the number of induction courses required to achieve complete remission (CR), the presence of good prognostic chromosomal abnormalities [t(8;21) or inv(16)], and percentage of myeloperoxidase (MPO)-stained positive blast cells at diagnosis were significant risk factors for overall survival (OS) of patients with acute myeloid leukemia (AML) [1]. In more recent AML201 study, it was shown that significant unfavorable prognostic features for OS were adverse cytogenetic risk group [2], age of more than 50 years, WBC more than 20×10^9 /L, FAB classification of either M0, M6, or M7, and MPO-positive blasts less than 50% [3]. These observations imply that the percentage of MPO-positive blast cells is one of the important prognostic markers along with cytogenetics and molecular genetic information.

MPO, a microbicidal protein, is considered to be a golden marker for the diagnosis of AML in the French-American-British (FAB) and WHO classifications [4, 5]. In our previous reports [6-8], AML patients with a high percentage of MPO-positive blasts (>50% of blasts are MPO activity positive, MPO-H) had a significantly better complete remission (CR) rate, disease-free survival, and overall survival compared with the low MPO activity positive blast group (≤50% of blasts are MPO activity positive, MPO-L). Most patients with a favorable chromosomal risk profile were in the MPO-H group, and most of the patients with an adverse chromosomal risk profile were in the MPO-L group. The difference in OS between the low and high MPO groups was still observed in a cohort of patients with normal karyotypes, suggesting that MPO is highly expressed in the leukemic blasts of AML patients with a favorable prognosis. To fully understand this phenomenon, it would be important to analyze genetic factors associated with MPO expression, especially in patients with a normal karyotype.

In the WHO classification, mutations of *FLT3*, *NPM1* and *CEBPA* have been emphasized to have prognostic significance in AML patients with normal karyotype. The nucleophosmin 1 gene (*NPM1*) has been shown to be mutated in 45–64% of AML cases with a normal karyotype [9, 10], and *NPM1* mutations are associated with a favorable prognosis in the absence of the internal tandem duplication (ITD) type of fms-related tyrosine kinase-3 gene (*FLT3*) mutation, a known adverse prognostic factor

[11]. The CCAAT/enhancer binding protein-alpha gene (CEBPA) is another gene that has been shown to be mutated in AML patients with a normal karyotype [12, 13]. Mutations in the CEBPA gene are found in 5–14% of all AML cases and are associated with a relatively favorable outcome, and hence, have gained interest as a prognostic marker [14]. Recently, it has been shown that most AML patients with CEBPA mutations carry 2 simultaneous mutations (CEBPA^{double-mut}), whereas single mutations (CEBPA^{double-mut}) are less common. In addition it was found that the CEBPA^{double-mut} genotype is associated with a favorable overall and event-free survival [15, 16]. It is still unclear why CEBPA^{double-mut} AML patients have better outcomes than those with a single heterozygous mutation.

In this study, we retrospectively examined 60 de novo adult AML patients with normal karyotypes in order to obtain a better insight into the relationships between MPO positivity and other prognostic factors (NPM1, FLT3, and CEBPA mutations). In line with previous reports, both high MPO positivity in AML blasts and the CEBPA double-mut genotype appeared to be associated with a favorable outcome, and it appeared that it was the CEBPA double-mut genotype that associated with high blast MPO activity.

2 Materials and methods

2.1 Patients and treatments

The study population included 60 patients with newly diagnosed de novo AML that had been treated at the Department of Internal Medicine, Nagasaki National Medical Center, between 1990 and 2010. All patients had normal karyotype AML. AML was diagnosed according to the FAB classification. Two members independently assessed the percentage of MPO-positive blast cells in MPO-stained bone marrow smears. The main biological and clinical features of the patients are shown in Table 1. Excluding the 25 patients who did not receive conventional induction chemotherapy, all patients were treated according to the Japan Adult Leukemia Study Group (JALSG) protocols (AML89, -92, -95, -97, and -201 studies) [3, 17-19]. CR was determined as when blasts accounted for less than 5% of the cells in normocellular bone marrow with normal peripheral neutrophil and platelet counts. This study was approved by the Ethical Committees of the participating hospitals.

2.2 Analysis of the FLT3, NPM1, and CEBPA genes

High molecular weight genomic DNA was extracted from bone marrow and peripheral blood samples after Ficoll

Table 1 Characteristics of de novo AML patients with a normal karyotype

	All patients $(n = 60)$	Patients who received intensive chemotherapy $(n = 36)$
Median age (range) (year)	59.5 (15–81)	49 (15–67)
Male/female	32/28	18/18
FAB type		
M0	5	3
M1	10	5
M2	21	14
M4	18	11
M5	3	1
M6	3	2
M7	0	0
WBC ($\times 10^9$ /L), median (range)	14.9 (0.7–556)	13.0 (0.7–246)
Performance status		
0–2	55	34
3–4	5	2
LDH (IU/L), median (range)	296 (120–5,325)	291 (140–2,606)
MPO		
Low (≤50%)	32	20
High (>50%)	28	16

FAB French-American-British, WBC white blood cells, LDH lactate dehydrogenase, MPO myeloperoxidase

separation of mononucleated cells (35 and 4 patients, respectively) using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). In addition, we isolated genomic DNA from the BM smears of the AML patients (21 samples) using the QIAamp DNA blood Mini Kit (Qiagen, Hilden, Germany).

Mutations in the FLT3, NPM1, and CEBPA genes were detected by genomic DNA PCR and direct sequencing. Exons 14 and 15 and the intervening intron of the FLT3 gene were amplified from DNA using the previously described primers FLT3-11F and FLT3-12R [20]. PCR for NPM1 exon 12 was performed with genomic DNA, the same reagent, and the published primer molecules NPM1-F and NPM1-R [21]. PCR for CEBPA was performed using 2 overlapping primer pairs: CEBPA-CT3F (5'-TGCCGGGTATAAAA-GCT GGG-3') and CT3R (5'-CTCGTTGCTGTTCTTGTCCA -3'), CEBPA-PP2F (5'-TGCCGGGT-ATAAAAGCTGG G-3') and PP2R (5'-CACGGTCTGGGCAAGCCTCG AGAT-3'). The PCR reactions were run in a final volume of 50 μL containing 10 ng DNA, 5× buffer, 0.2 mmol/L of each deoxynucleotide triphosphate, primers (0.3 µmol/L of each), nucleotides (0.2 mmol/L of each), and 1 U of KOD-Plus-Neo polymerase (TOYOBO, Osaka, Japan). The

mixture was initially heated at 94°C for 2 min, before being subjected to 35 cycles of denaturation at 94°C for 10 s and annealing and extension at 68°C for 1 min. The amplified products were cut out from a 1.2% agarose gel and purified with the MinElute Gel extraction kit (QIAGEN, Germany). To screen for mutations, the PCR products were sequenced in both directions with the following primers: FLT3-11F, FLT3-12R, NPM1-F, NPM-R, CEBPA-CT1F, CEBPA-1R, CEBPA-PP2F, CEBPA-PP2R, CEBPA-2F (5'-GCTG GGCGGCATCTGCG-A-3'), and CEBPA-1R (5'-TGT-GC TGGAACAGGTCGGCCA-3') using a BigDye Terminator v3.1 Cycle Sequencing Kit and the ABI Prism 3100 ×1 Genetic Analyzer (Applied Biosystems, CA, USA). In the case of NPM1 and CEBPA genes, when heterozygous data were identified by sequence screening, mutations were confirmed by cloning with the StrataClone Blunt PCR Cloning Kit (Stratagene, CA, USA) according to the manufacturer's recommendations. Four to ten recombinant colonies were chosen and cultured in LB medium. Plasmid DNA was prepared using a QIAprep spin plasmid miniprep kit (Qiagen, Hilden, Germany), and both strands were sequenced using the T3 and T7 primers and the CEBPA-2F and CEBPA-1R primers.

2.3 Statistical methods

To evaluate the relationship between the frequency of mutations status and clinical characteristics, the following variables were included in the analysis: age, FAB classification, peripheral WBC count, MPO-positivity rate, JALSG score [1], and CR achievement. A comparison of frequencies was performed using Fisher's exact test. Differences in percentage of MPO-positive blasts among patients with different mutational status of genes were compared using the non-parametric Kruskal-Wallis test and followed by Dunn's multiple comparison post-test. Overall survival (OS) was calculated using the Kaplan-Meier method [22], and the group differences were compared using the log-rank test. Thirteen patients who underwent allogeneic or autologous hematopoietic stem cell transplantation were not censored at the time of transplantation. For all analyses, statistical significance was considered at the level of two-tailed 0.05.

3 Results

3.1 Patients' characteristics

As shown in Table 1, the series included 60 patients. Their median age was 59.5 (15–81 years), and there were 32 males (53.3%) and 28 females (46.7%). All patients had normal cytogenetics. Using the percentage of MPO-positive leukemic blasts, as judged from bone marrow slides, the cases

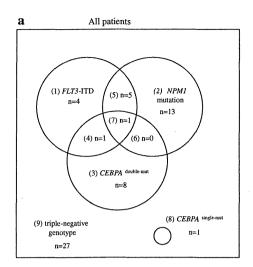
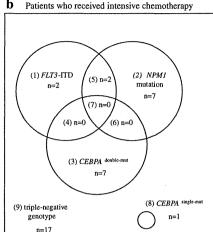


Fig. 1 Frequency and overlapping patterns of AML patients with a normal karyotype. Data are shown for all patients (a) and for patients who received intensive chemotherapy (b). a (1) FLT3-ITD + wt NPM1 + wt CEBPA (n=4, 6.7%), (2) wt FLT3 + NPM1 mutation + wt CEBPA (n=13, 21.7%), (3) wt FLT3 + wt NPM1 + CEBPA double-mut (n=8, 13.3%), (4) FLT3-ITD + wt NPM1 + CEBPA double-mut (n=1, 1.7%), (5) FLT3-ITD + NPM1 mutation + wt CEBPA (n=5, 8.3%), (6) wt FLT3 + NPM1 mutation + CEBPA double-mut (n=0, 0%), (7) FLT3-ITD + NPM1 mutation + CEBPA double-mut (n=0, 0%), (7) FLT3-ITD + NPM1 mutation + CEBPA double-mut (n=1, 1.7%), (8) wt FLT3 + wt

were divided into the High group (MPO-positive blasts > 50%) and Low group (MPO-positive blasts $\le 50\%$). Thirty-two patients were classified into the Low group, and 28 patients were classified into the High group.


3.2 Mutational analysis

FLT3-ITD was found in 11 patients (18.3%), NPM1 mutations were found in 19 patients (31.7%), and CEBPA mutations were found in 11 patients (18.3%). Frequency and an overlapping pattern of mutations are shown in Fig. 1. Among the patients with CEBPA mutations, approximately 90% (10 of 11 patients) of the patients had two CEBPA mutations (CEBPA double-mut), whereas 10% (1 of 11 patients) had a single mutation. As previously reported, the mutations in the CEBPA double-mut patients were clustered in the N- and C-terminal hotspots (Table 2; Fig. 2). FLT3-ITD mutation was associated with a higher WBC at the time of diagnosis, as reported previously. Neither NPM1 nor CEBPA mutation status displayed a significant association with age, PS, WBC, FAB subtype, JALSG score, or CR achievement (Table 3).

3.3 Clinical outcome

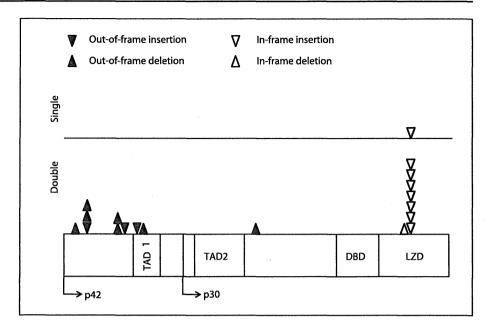
OS was analyzed only in patients who received intensive chemotherapy (n = 36). They received chemotherapy

NPMI + CEBPA single-mut (n=1,1.7%), (9) triple-negative genotype (n=27,45%). **b** (I) FLT3-ITD + wt NPMI + wt CEBPA (n=2,5.6%), (2) wt FLT3 + NPMI mutation + wt CEBPA (n=7,19.4%), (3) wt FLT3 + wt NPMI + CEBPA double-mut (n=7,19.4%), (4) FLT3-ITD + wt NPMI + CEBPA double-mut (n=0,0%), (5) FLT3-ITD + NPMI mutation + wt CEBPA (n=2,5.6%), (6) wt FLT3 + NPMI mutation + CEBPA double-mut (n=0,0%), (7) FLT3-ITD + NPMI mutation + CEBPA double-mut (n=0,0%), (8) wt FLT3 + wt NPMI + CEBPA single-mut (n=0,0%), (8) wt FLT3 + wt NPMI + CEBPA single-mut (n=0,0%), (9) triple-negative genotype (n=17,47.2%). wt wild-type

based on the treatment protocol described in the JALSG AML89, -92, -95, -97, and -201 studies. As reported previously [6], we observed an association between the percentage of MPO-positive blasts and the survival rate in the normal karyotype patients treated with intensive chemotherapy, although the significance in this cohort was rather low (P = 0.10) (Fig. 3). Figure 4 shows Kaplan-Meier curves according to genotype. 'Other genotypes' included the FLT3-ITD genotype, the CEBPA single-mut genotype, and the triple-negative genotype consisting of the wild-type NPM1 and CEBPA genotypes without FLT3-ITD. In line with previous reports [14], the patients with the CEBPA double-mut genotype tended to show higher survival rate compared with patients displaying other genotypes (P = 0.07). In this study, the mutant *NPM1* without *FLT3*-ITD genotype was not significantly associated with treatment outcome, possibly due to the small number of patients.

3.4 Difference of MPO-positivity rate by gene mutation status

Figure 5 shows the level of the percentage of MPO-positive blasts by gene mutational status of the *CEBPA*, *FLT3*-ITD, and *NPM1*. The MPO-positivity rate was very high, over 50% (median 96, range 71–100), in all *CEBPA* double-mut cases, but it was 20% in one case displaying the


Table 2 Genetic findings of the patients with CEBPA mutations

Patient	Category	Nucleotide changes	Amino acid changes	Comments
4	Double	218_219insC	P23fsX107	Produces N-terminal stop codon
		1129_1130insATGTGGAGACGCAGCAGAAGGTGCTGGAGCTG ACCAGTGACAATGACCGCCTGCGCAAGC	K326_327insHVETQQKVLELTSDNDRLRKR	In-frame insertion in bZIP
6	Double	200_218delinsCT	S16fsX101	Produces N-terminal stop codon
		1087_1089dup	K313dup	In-frame duplication in bZIP
7	Double	368_369insA	A72fsX107	Produces N-terminal stop codon
		1080_1082del	T310_Q311del	In-frame deletion in bZIP
13	Double	303_316del	P50fsX102	Produces N-terminal stop codon
		1062_1063insTTG	K304_Q305insV	In-frame insertion in bZIP
19	Double	215_225del	P21fsX103	Produces N-terminal stop codon
		1101_1102insCAGCGCAACGTGGAGACGCAGCAGA AGGTGCTGGAGCTG	L317_T318insQRNVETQQKVLEL	In-frame insertion in bZIP
22	Double	213del	P22fsX159	Produces N-terminal stop codon
		1064_1129dup	K304_Q305insQRNVETQQKVLELTSDNDRLRKR	In-frame insertion in bZIP
27	Double	324_328dup	E59fsX161	Produces N-terminal stop codon
		1062_1063insTTG	K304_Q305insV	In-frame insertion in bZIP
39	Double	213del	P22fsX159	Produces N-terminal stop codon
		1081_1086dup	Q311_Q312dup	In-frame duplication in bZIP
47	Double	397del	F82fsX159	Produces N-terminal stop codon
		1101_1102insCAGCGCAACGTGGAGACGCAGCA GAAGGTGCTGGAGCTG	L317_T318insQRNVETQQKVLEL	In-frame insertion in bZIP
49	Double	297_304del	A48fsX104	Produces N-terminal stop codon
		758del	A202fsX317	Frameshift between TAD2 and bZIP; produces stop codon in bZIP
35	Single	1087_1089dup	K313dup	In-frame duplication in bZIP

Nucleotide numbering was performed according to NCBI Entrez accession no. XM_009180.3, in which the major translational start codon starts at nucleotide position 151. The locations of functional domains are derived from Mueller and Pabst.1

bZIP basic leucine zipper region, TAD2 second transactivation domain

Fig. 2 Location of mutations detected in the CEBPA single-mut and CEBPA double-mut patients. Transactivation domain (TAD) 1, amino acids (AA) 70–97; p30 ATG, AA120; TAD2, AA 126–200; DNA-binding domain (DBD), AA 278–306; leucine zipper domain (LZD), AA 307–358

CEBPA^{single-mut} genotype (data not shown). The MPO-positivity rate was widely distributed in patients who had mutant *NPM1* without *FLT3*-ITD genotype (median 26, range 0–100) and other genotypes (median 31, range 0–100). Kruskal–Wallis test showed that a significant difference of the MPO-positivity rate among three groups (P = 0.005). When comparing the individual groups by Dunn's Multiple Comparisons post hoc test for each group, there was a significant difference only for patients with *CEBPA* double-mut versus patients with other genotypes.

4 Discussion

While cytogenetic group is considered to be the primary prognostic indicator in AML, the percentage of MPOpositive blast cells could be used to predict the prognosis of patients with normal karyotypes [6]. In this study, we found that CEBPA gene mutational status has impact on the frequency of MPO expression: the patients with the CEBPA mutation genotype displayed a significantly higher percentage of cells expressing MPO than those with other genotypes (P < 0.01). The association was even more significant when analyzed without the CEBPA single-mut carrying patient, suggesting that high blast MPO activity is related to double CEBPA mutations. Although the mutant NPM1 without FLT3-ITD genotype has been reported to be associated with a favorable prognosis in AML patients, there was no relationship between this type of mutation and the percentage of blasts showing MPO expression.

It is not clear how the CEBPA double-mut genotype enhances MPO activity in AML blasts. It has been shown

that the MPO enhancer contains a CEBPA site contributing to its functional activity [23, 24], suggesting that the MPO gene is a major target of C/EBPa. Since it has been shown that both N-terminal frame-shift mutant and C-terminal mutant do not show transcriptional activity [25], we first speculated that mutations of the CEBPA gene might lead to decreased MPO activity, which turned out to be wrong. AML1 is another gene that has been reported to participate in up-regulation of MPO gene [26]. An AML1 site was identified in upstream enhancer of the human MPO gene, which appears to be necessary for maximal stimulation of MPO promoter activity. In patients with AML with t(8;21), the translocation results in an in-frame fusion between 5 exons of the AM1 gene and essentially all of the ETO gene producing a chimeric protein [27]. This protein, AML1-ETO, acts as a negative dominant inhibitor of wild-type AML1 [28], which theoretically could lead to down-regulation of AML1 target genes, such as MPO gene. However, blasts with t(8;21) have been shown to display higher levels of MPO expression both in clinical samples and in vitro experiments [29, 30], suggesting that the transcriptional alterations caused by these mutations are complex. The upregulation of blast MPO activity seen in CEBP/ $\alpha^{double-mut}$ cases may be due to alterations in the gene expression profile, rather than a simple dominant negative effect of mutated CEBP/α. Further experiments including investigation of transactivation potential of CEBP/a mutants on MPO promoter is necessary to clarify this mechanism.

CEBPA mutations are associated with a relatively favorable outcome, and it was recently shown in a multivariable analysis including cytogenetic risk and the

Table 3 Frequency of FLT3-ITD, NPM1, and CEBPA mutations by clinical characteristics in de novo AML cases with a normal karyotype

	FLT3		P NPM1		P		CEBPA		P
	$ \overline{\text{ITD}} \\ (n = 11) $	Other type $(n = 49)$		Mutation without $FLT3$ -ITD $(n = 13)$	Other type $(n = 47)$		Double mutation without $FLT3$ -ITD $(n = 8)$	Other type $(n = 52)$	
Age			0.08			0.74			0.10
≤50	1	19		5	15		5	15	
>50	10	30		8	32		3	37	
PS			1.00			0.20			0.52
0–2	10	45		11	45		7	48	
3-4	1	4		2	2		1	4	
WBC			0.02			1.00			1.00
≤20,000	2	30		7	25		4	28	
>20,000	9	19		6	22		4	24	
FAB subtype			0.33			0.18			0.58
M1, M2, M4, M5	11	41		13	39		8	44	
M0, M6, M7	0	8		0	8		0	8	
JALSG score ^a			0.79			0.72			0.09
Favorable	0	5		0	5		2	3	
Intermediate	2	18		5	15		5	15	
Adverse	2	9		2	9		0	11	
CR ^a			1.00			0.56			0.56
Achievement	4	27		7	24		7	24	
Failure	0	5		0	5		0	5	

^a Analysis was carried in 36 patients with intensive chemotherapy

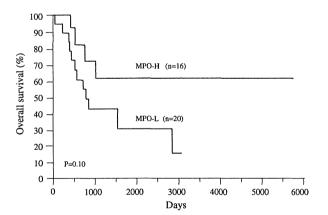


Fig. 3 Kaplan-Meier estimates of the probability of overall survival in 36 patients who received intensive chemotherapy, according to the percentage of myeloperoxidase-positive blasts. MPO-H (MPO-positive blasts: >50%) tended to have a positive effect on overall survival compared with MPO-L (MPO-positive blasts: ≤50%), although the difference was not statistically significant. The statistical significance of differences was evaluated with the log-rank test

FLT3-ITD and NPM1 mutations that the CEBPA^{double-mut} genotype is associated with favorable overall and event-free survival [15, 16]. In a cohort of 60 cases of adult de novo AML, we identified 1 CEBPA^{single-mut} case and 10 CEBPA^{double-mut} cases, and in line with previous reports,

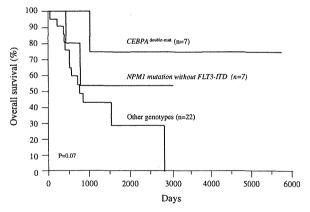
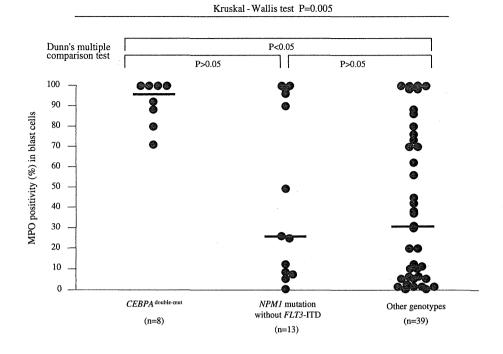



Fig. 4 Overall survival according to genotype in patients administered intensive chemotherapy. 'Other genotypes' was defined as the *FLT3-ITD* genotype, the *CEBPA* single-mut genotype, and the triplenegative genotype consisting of the wild-type *NPM1* and *CEBPA* genotypes without *FLT3-ITD*. The patients with the *CEBPA* double-mut genotype tended to show higher overall survival compared with the patients with 'other genotypes' (P = 0.07)

our study tended to show better overall survival in CEBPA double-mut cases compared to cases with wild-type CEBPA in patients treated with intensive chemotherapy. We failed to find a prognostic effect in relation to the CEBPA double-mut in patients treated with low dose

Fig. 5 MPO-positivity rate in blast according to genetic abnormalities in de novo AML patients with a normal karyotype. 'Other genotypes' was defined as the FLT3-ITD genotype, the CEBPA singl genotype, and the triplenegative genotype consisting of the wild-type NPM1 and CEBPA genotypes without FLT3-ITD. The median MPOpositivity rate (horizontal line) was significantly different between the CEBPA double-mut genotype and 'other genotypes' (Kruskal-Wallis test followed by Dunn's multiple comparisons test: P < 0.05)

chemotherapy (data not shown), suggesting that the standard chemotherapy dose is necessary to improve the outcome of *CEBPA* double-mut cases.

It is unclear why CEBPA^{double-mut} AML patients have a better outcome than those with CEBPA wild-type AML. One explanation is that high MPO expression leads to increased sensitivity to chemotherapeutic agents, such as to Ara-C [8]. To test this hypothesis, we also examined the association between blast MPO positivity and overall survival in CEBPA wild-type cases. Unexpectedly, when the patients were treated with intensive chemotherapy, the percentage of MPO-positive blasts was not significantly associated with overall survival in this group (data not shown), suggesting that the level of MPO expression itself is not responsible for the improvement in overall survival. However, as this analysis only involved 28 cases, we need to increase the number of cases in order to draw a definitive conclusion.

In summary, the data presented here suggested that the CEBPA double-mut genotype was associated with high MPO blast activity in patients with a normal karyotype. Although the results were obtained from a single institution, the presence of CEBPA double-mut genotype in high MPO group could explain, at least in part, why high MPO blast activity is associated with better overall survival. Further studies in a larger cohort of patients are necessary to assess blast MPO activity as a prognostic factor, especially in CEBPA wild-type patients with a normal karyotype.

Acknowledgments We would like to thank Dr. T Matsuo for his support, also Ms. N. Shirahama and Ms. M. Yamaguchi for their

assistance. This work was supported in part by grant from the Ministry of Health, Labor and Welfare and Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest All authors have no conflict of interest to report.

References

- 1. Miyawaki S, Sakamaki H, Ohtake S, Emi N, Yagasaki F, Mitani K, et al. A randomized, postremission comparison of four courses of standard-dose consolidation therapy without maintenance therapy versus three courses of standard-dose consolidation with maintenance therapy in adults with acute myeloid leukemia. Cancer. 2005;104:2726–34.
- David G, Helen W, Fiona O, Keith W, Christine H, Georgina H, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1, 612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322-33.
- Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N, et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: JALSG AML201 Study. Blood. 2011;117:2358-65.
- Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103:620-5.
- World Health Organization. Classification of tumors. In: Jaffe ES, Harris NL, Stein H, Vardimann JW, editors. Pathology and genetics of tumors of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 79-80.
- Matsuo T, Kuriyama K, Miyazaki Y, Yoshida S, Tomonaga M, Emi N, et al. The percentage of myeloperoxidase-positive blast

2 Springer

- cells is a strong independent prognostic factor in acute myeloid leukemia, even in the patients with normal karyotype. Leukemia. 2003;17:1538–43.
- Taguchi J, Miyazaki Y, Tsutsumi C, Sawayama Y, Ando K, Tsushima H, et al. Expression of the myeloperoxidase gene in AC133 positive leukemia cells relates to the prognosis of acute myeloid leukemia. Leuk Res. 2006;30:1105-12.
- Sawayama Y, Miyazaki Y, Ando K, Horio K, Tsutsumi C, Tsushima H, et al. Expression of myeloperoxidase enhances the chemosensitivity of leukemia cells through the generation of reactive oxygen species and the nitration of protein. Leukemia. 2008;22:956-64.
- Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733-9.
- Boissel N, Renneville A, Biggio V, Philippe N, Thomas X, Cayuela JM, et al. Prevalence clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood. 2005; 106:3618-20.
- Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a metaanalysis. Leukemia. 2005;19:1345-9.
- Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100:2717-23.
- Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH, et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood. 2002;99: 1332-40.
- Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1909-18.
- 15. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113: 3088-91.
- 16. Dufour A, Schneider F, Metzeler KH, Hoster E, Schneider S, Zellmeier E, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol. 2010;28:570-7.
- 17. Miyawaki S, Kobayashi T, Tanimoto M, Kuriyama K, Murakami H, Yoshida M, et al. Comparison of leucopenia between

- cytarabine and behenoyl cytarabine in JALSG AML-89 consolidation therapy. The Japan Adult Leukemia Study Group. Int J Hematol. 1999;70:56–7.
- 18. Miyawaki S, Tanimoto M, Kobayashi T, Minami S, Tamura J, Omoto E, Kuriyama K, et al. No beneficial effect from addition of etoposide to daunorubicin, cytarabine, and 6-mercaptopurine in individualized induction therapy of adult acute myeloid leukemia; the JALSG-AML92 study. Japan Adult Leukemia Study Group. Int J Hematol. 1999;70:97-104.
- Ohtake S, Miyawaki S, Kiyoi H, Miyazaki Y, Okumura H, Matsuda S, Nagai T, et al. Randomized trial of response-oriented individualized versus fixed-schedule induction chemotherapy with idarubicin and cytarabine in adult acute myeloid leukemia: the JALSG AML95 study. Int J Hematol. 2010;91:276-83.
- Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–80.
- Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254–66.
- 22. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457-62.
- Yao C, Qin Z, Works KN, Austin GE, Young AN. CEBP and C-Myb sites are important for the functional activity of the human myeloperoxidase upstream enhancer. Biochem Biophys Res Commun. 2008;371:309-14.
- Reckzeh K, Cammenga J. Molecular mechanisms underlying deregulation of C/EBPα in acute myeloid leukemia. Int J Hematol. 2010;91:557–68.
- Kato N, Kitamura J, Doki N, et al. Two types of C/EBPα mutations play distincted but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood. 2011;117:221-33.
- Austin GE, Zhao WG, Regmi A, Lu JP, Braun J. Identification of an upstream enhancer containing an AML1 site in the human myeloperoxidase (MPO) gene. Leuk Res. 1998;22:1037–48.
- 27. Erickson PF, Robinson M, Owens G, Drabkin HA. The ETO portion of acute myeloid leukemia t(8;21) fusion transcript encodes a highly evolutionarily conserved, putative transcription factor. Cancer Res. 1994;54:1782-6.
- Meyers S, Lenny N, Hiebert SW. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol. 1995;15:1974-82.
- Khoury H, Dalal BI, Nantel SH, Horsman DE, Lavoie JC, Shepherd JD, et al. Correlation between karyotype and quantitative immunophenotype in acute myelogenous leukemia with t(8;21). Modern Pathol. 2004;17:1211-6.
- 30. Shimada H, Ichikawa H, Ohki M. Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia. 2002;16:874-85.

Phase I trial of gemtuzumab ozogamicin in intensive combination chemotherapy for relapsed or refractory adult acute myeloid leukemia (AML): Japan Adult Leukemia Study Group (JALSG)-AML206 study

Noriko Usui,^{1,11} Akihiro Takeshita,² Chiaki Nakaseko,³ Nobuaki Dobashi,¹ Hiroyuki Fujita,⁴ Hitoshi Kiyoi,⁵ Yukio Kobayashi,⁶ Toru Sakura,⁷ Yuichi Yahagi,¹ Kazuyuki Shigeno,² Chikako Ohwada,³ Yasushi Miyazaki,⁸ Shigeki Ohtake,⁹ Shuichi Miyawaki,¹⁰ Tomoki Naoe⁵ and Kazunori Ohnishi² for the Japan Adult Leukemia Study Group

¹Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo; ²Department of Internal Medicine III, Oncology Center, Hamamatsu University School of Medicine, Hamamatsu; ³Department of Hematology, Chiba University Hospital, Chiba; ⁴Department of Hematology, Yokohama City University Medical Center, Yokohama; ⁵Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya; ⁶Division of Hematology, National Cancer Center Hospital, Tokyo; ⁷Department of Hematology, Saiseikai Maebashi Hospital, Gunma; ⁸Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; ⁹Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Kanazawa; ¹⁰Hematology Division, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan

(Received February 15, 2011/Revised March 28, 2011/Accepted April 5, 2011/Accepted manuscript online April 16, 2011/Article first published online May 18, 2011)

In order to investigate better molecular-target therapy for acute myeloid leukemia (AML), we conducted a phase I trial of a combination of gemtuzumab ozogamicin (GO) with conventional chemotherapy. Between January 2007 and December 2009, a total of 19 adult Japanese patients with relapsed or refractory CD33positive AML (excluding acute promyelocytic leukemia) were enrolled. All registered patients received a standard dose of cytarabine (Ara-C) (100 mg/m² × 7 days), combined with either idarubicin (IDR) (10-12 mg/m² × 3 days) or daunorubicin (DNR) (50 mg/ $m^2 \times 3-5$ days), and then GO (3-5 mg/m²), which was administered 1 day after the last infusion of IDR (IAG regimen) or DNR (DAG regimen). While doses of both GO and IDR and the administration period of only DNR were increased, the dose-limiting toxicity (DLT) was assessed. Among 19 patients (nine in the IAG regimen, 10 in the DAG regimen), the median age was 59 years (range 33-64), and the relapsed/refractory ratio was 13/6. In the therapy using 3 mg/m² GO in the IAG or DAG regimen, grade 3/4 leukopenia and neutropenia were observed in all patients, but none had grade 3/4 non-hematological toxicities, except febrile neutropenia. Three patients in the IAG regimen who were administered 5 mg/m² GO showed DLT. No patients had veno-occlusive disease or sinusoidal obstructive syndrome. In conclusion, 3 mg/ m² GO combined with Ara-C and IDR or DNR can be safely administered, and phase II trials should be conducted to investigate the clinical efficacy of the combination therapy. (Cancer Sci 2011; 102: 1358-1365)

urrent standard induction treatment for acute myeloid leukemia (AML) involves drug regimens with two or more agents that include an anthracycline or anthraquinone and cytarabine (Ara-C). A recent clinical trial of the Japan Adult Leukemia Study Group (JALSG) for younger adult patients (16-64 years of age) with newly diagnosed AML showed a 77.9% complete remission (CR) rate. (4) Remission rates achieved by us and others range approximately 55-90% in adult patients, depending on the composition of the population treated. (1-6) However, these high CR rates did not always translate into improved outcomes for patients, mainly because approximately 40-50% eventually relapsed. Although there are various clinical trials for patients with relapsed or refractory AML, the probabil-

ity of a second CR is approximately 50% in younger patients, but the duration of CR is nearly always much shorter than the first CR. No standard chemotherapy regimen provides a high rate and durable CR for patients with relapsed/refractory AML, and all such patients should be considered eligible for clinical trials if available. (7)

Among newer antileukemia agents being examined for the treatment of AML, an antibody to CD33 antigen is one of the most promising drugs. The CD33 antigen is expressed on 80-90% of AML blasts and acts as a target for antibody-mediated destruction. Gemtuzumab ozogamicin (GO) is a recombinant humanized anti-CD33 monoclonal antibody conjugated to calicheamicin (a cytotoxin), which is 1000 times as potent as doxorubicin. (8,9) This conjugated antibody is rapidly internalized and causes subsequent apoptosis. (10) GO was shown to be effective in patients with relapsed AML in nonrandomized studies and gained regulatory approval in the United States (the US Food and Drug Administration [FDA]) for relapsed older patients (older than 60) with AML. (11,12) GO was also approved by the Japanese government in 2005 for use in patients with relapsed/refractory AML, but only for monotherapy based on a phase L/II study for Japanese patients. (13) GO does not cause alopecia or mucositis, even though it causes myelosuppression, an infusional syndrome, and liver damage such as hyperbilirubinemia and/or hepatic transaminitis (or elevation of transaminase). Several studies have indicated that GO combined with conventional chemotherapy would provide a more potent anti-leukemia effect than GO monotherapy. (14-19) We considered that addition of GO to conventional chemotherapy in induction therapy would improve the clinical outcome of AML patients of all ages. To find the optimal usage of GO in combination with conventional chemotherapy for relapsed or refractory AML, we conducted a phase I study. Here we report the results of this JALSG-AML206 trial in adult patients with relapsed or refractory AML, younger than age 65, in which the dosage of GO, combined with our two types of standard remission induction therapy for de novo AML, were tested. (4)

¹¹To whom correspondence should be addressed. E-mail: usuin@jikei.ac.jp This study was registered at UMIN Clinical Trials Registry (http://www.umin.ac.jp/ctr/index-j.htm) as UMIN000001141 and UMIN000001142.

Materials and Methods

Patient eligibility. Between January 2007 and December 2009, 19 eligible patients with relapsed and refractory AML were enrolled in the present study. The inclusion criteria were as follows: (i) diagnosed as CD33⁺AML (excluding acute promyelocytic leukemia); (ii) relapsed ≥6 months after the first CR (CR1) or were refractory to initial standard induction therapy; (iii) age: 20–64 years old; (iv) 0–2 by the Eastern Cooperative Oncology Group (ECOG) performance status; (v) no active double cancer; (vi) adequate cardiac, renal and hepatic function with left ventricular ejection fraction ≥50%, creatinine ≤2.0 mg/dL, bilirubin ≤1.5 mg/dL; (vii) no uncontrolled infection; and (viii) no human immunodeficiency virus (HIV) infection. Patients who received more than 500 mg/m² of daunorubicin (DNR) in a prior therapy were ineligible to DNR-including protocol. Cytogenetic abnormalities were grouped by standard criteria and classified according to the UK Medical Research Council (MRC) classification. (20)

Study design. The study was conducted by six designated institutions among JALSG members, and consisted of two parts: idarubicin (IDR), Ara-C plus GO (IAG regimen), and DNR, Ara-C plus GO (DAG regimen). The treatment schedules of both regimens are shown in Figure 1.

IAG regimen. The starting doses (level 1) consisted of IDR 10 mg/m² administered intravenously (d.i.v.) over 30 min daily for three consecutive days (days 1-3), Ara-C 100 mg/m² as a continuous intravenous infusion (c.i.v.) for seven consecutive days (days 1-7) and GO 3 mg/m² for 2 h d.i.v. on day 4. While the dose and schedule of Ara-C were fixed, doses of IDR and GO were increased in levels 2 and 3 as shown in Figure 1.

DAG regimen. The starting doses (level 1) consisted of DNR 50 mg/m² administered d.i.v. over 30 min daily for three

consecutive days (days 1–3), Ara-C $100~\text{mg/m}^2$ c.i.v. (days 1–7) and GO $3~\text{mg/m}^2$ for 2 h d.i.v. on day 4. While the dose and schedule of Ara-C were fixed, doses of DNR and GO were scheduled to increase in levels 2, 3 and 4 (Fig. 1).

All patients were hospitalized during therapy and received optimal supportive care. For prophylaxis of GO infusion reaction, antihistamines and corticosteroids were given 1 h before the infusion. Granulocytopenic patients were placed in single rooms with conventional isolation or in laminar airflow rooms. Broad-spectrum antibiotics were given for fever higher than 38°C in the presence of granulocytopenia, and were continued until defervescence and recovery of granulocyte counts above 0.5 × 10⁹/L. Random donor platelet concentrates were administered to maintain a platelet count above 20 × 10⁹/L. Packed red blood cell (RBC) transfusions were performed to maintain hemoglobin above 7.0 g/dL.

Response criteria. Responses were evaluated according to the recommendations of the International Working Group. (21) A CR was defined as disappearance of all clinical and/or radiological evidence of disease with ≤5% marrow blasts, neutrophil (ANC) count ≥1 × 10°/L and platelet (PLT) count ≥100 × 10°/L. A CR without PLT recovery (CRp) had identical marrow results and ANC recovery as for CR, but with PLT <100 × 10°/L and ≥20 × 10°/L. Partial remission consisted of a peripheral blood recovery as for CR, but with a decrease in marrow blasts of ≥50% compared with baseline before therapy, and not more than 6–25% blasts in the marrow. All other responses were considered failures. After the IAG or DAG treatment, patients received the most appropriate AML therapy determined by their individual physicians.

Adverse events/toxicities. During the entire period of induction, blood cell counts were performed daily and liver and renal

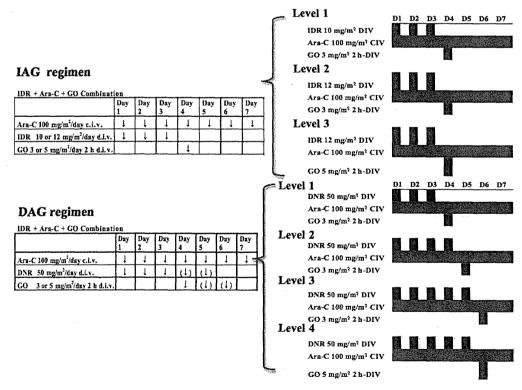


Fig. 1. Treatment schedule of the Japan Adult Leukemia Study Group (JALSG)-AML206 study. Ara-C, cytarabine; CIV and c.i.v., continuous intravenous infusion; DIV and d.i.v., drip intravenous infusion; DNR, daunorubicin; GO, gemtuzumab ozogamicin; IDR, idarubicin.

Usui et al.

Cancer Sci | July 2011 | vol. 102 | no. 7 | 1359 © 2011 Japanese Cancer Association

Table 1. Patient characteristics

	Overall (n = 19)	IAG regimen (n = 9)	DAG regimen (n = 10)
Male:Female	9:10	4:5	5:5
Age (years)†	59 (33-64)	61 (52-64)	58 (33-62)
≤60	10	3	7
>60	9	6	3
WBC (×10 ⁹ /L)†	3.0 (1.0-39.2)	3.7 (2.6-39.2)	2.05 (1.0-25.3)
Blast (%)†	42.8 (7.9-96.8)	56.4 (17.3-88.0)	29.9 (7.9-96.8)
CD33 positivity	89.4 (39.0-100	92.9 (62.8–100)	80.6 (39.0-96.9)
in blast (%)†			
Disease status			
Relapsed/Refractor	y 13/6	7/2	6/4
FAB type (no. patient	ts)		
M0	1		1
M1	3	2	1
M2	8	3	5
M4	6	3	3
M5	1	1	
Cytogenetic group (n	o. patients)		
Favorable	2	1	1
Intermediate	11	6 ·	5
Adverse	6	2	4
Performance status (r	no. patients)		
0	1	0	1
1	18	9	9

†Median value and range in parentheses. FAB, French-American-British Classification; WBC, white blood cells.

blood tests three times weekly. Electrocardiography (ECG) was also performed once a week.

Hematological and non-hematological toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) ver 3.0, National Institutes of Health.

Statistical analysis. The primary objective of the study was to determine the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of GO in combination with standard chemotherapy in Japanese patients. Dose escalation of anthracycline and GO in the IAG or DAG treatment followed a standard 3 + 3 phase I design in which cohorts of three patients at a time were treated at a dose and schedule level. If no DLT was observed, the next cohort was escalated to the next level. If one or two of

the first three patients experienced a DLT, up to a total of six patients were enrolled at the same dose level. The next cohort was escalated only if a total of less than two patients presented with a DLT. If three of the first three patients experienced a DLT, the dose-escalation was stopped and the prior dose level was considered the MTD.

All ≥grade 3 drug-related nonhematological toxicities that occurred after treatment were considered DLT, with the exception of nausea and vomiting (if manageable with supportive care), alopecia, drug-related fevers, asymptomatic abnormalities of lactate dehydrogenase, alkaline phosphatase, disturbances of electrolytes and febrile neutropenia (FN) as these are common events in patients with relapsed AML.

Myelosuppression was not considered a DLT except for prolonged bone marrow aplasia longer than 6 weeks (or 42 days). Secondary objectives were to evaluate the efficacy of these treatment regimens.

The study was approved by the Institutional Review Board at each participating institution. Written informed consent was obtained from all patients before registration in accordance with the Declaration of Helsinki. The study was registered at the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (http://www.umin.ac.jp/ctr/) as UMIN00001141 and UMIN000001142.

Results

Patient characteristics. A total of 19 patients with relapsed or refractory CD33⁺AML were enrolled and evaluated (Table 1). The median age of patients was 59 years (range 33–64), the male/female ratio was 9/10, and the relapsed/refractory ratio was 13/6. The median value of blasts in the bone marrow before treatment was 42.8% (range 7.9–96.8%), and the median expression of CD33 antigen was 89.4% (range 39–100%). Patient characteristics in the IAG and DAG groups were similar, with the exception of age. Patients older than 60 years were more frequently enrolled in the IAG regimen. Among adverse cytogenetic groups, four patients had complex karyotypes (two in each group), one had t(6:9) in the DAG group and one had inv(5)del(7) in the DAG group.

Safety. In the IAG regimen. Hematological toxicities were commonly observed as expected for re-induction therapy (Table 2). Levels of white blood cells (WBC) at the time of GO administration tended to be lower than $3.0 \times 10^9/L$ and those of ANC were $<1.5 \times 10^9/L$. Grade 4 leukopenia and neutropenia

Table 2. IAG regimen: hematological toxicities

	Level 1 ($n = 3$) (IPt-1/IPt-2/IPt-3)	Level 2 ($n = 3$) (IPt-4/IPt-5/IPt-6)	Level 3 (n = 3) (IPt-7/IPt-8/IPt-9)	
WBC (×10 ⁹ /L) at GO administration	2.4/1.1/5.4	1.3/0.4/2.3	0.8/1.2/3.0	
WBC (grade 3/4)	0/3	0/3	0/3	
Days to nadir after GO administration	4/6/13	10/5/10	6/5/7	
ANC (×10 ⁹ /L) at GO administration	1.7/1.5/4.4	0.5/0/1.0	0.3/0.2/0.4	
ANC (grade 3/4)	0/3	0/3	0/3	
Days to nadir after GO administration	11/6/10	7/5/7	6/13/7	
Days toward ANC recovery	31/35/26	24/34/35	42/38/24	
PLT (×10 ⁹ /L) at GO administration	62/64/146	24/51/159	87/23/44	
PLT (grade 3/4)	3/0	2/1	2/1	
Days to nadir after GO administration	8/8/14	10/10/14	11/5/14	
PLT transfusion (units)	90/130/100	130/130/50	70/220/70	
Days toward PLT recovery	31/NA/NA	NA/43/35	25/87/31	
Hemoglobin (grade 0/1/2/3/4)	0/1/2/0/0	0/1/2/0/0	1/1/1/0/0	
RBC transfusion (units)	4/4/12	4/6/2	8/16/4	

ANC, neutrophils; GO, gemtuzumab ozogamicin; NA, data was not available because the next treatment proceeded before platelet recovery due to disease progression; PLT, platelets; RBC, red blood cells; WBC, white blood cells.