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Introduction

Cognitive inflexibility is a primary neuropsychological feature of
Parkinson’s disease (PD) [1,2]. Neuropsychological tests of ‘frontal
lobe’ function, such as the Wisconsin Card Sorting Test (WCST),
the Intra-Dimensional/Extra-Dimensional (ID/ED) set-shifting
paradigm, the Odd-Man-Out task and variants of these tests,
have been used to measure cognitive flexibility [3,4,5,6]. In these
tasks, subjects are shown a successive series of visual stimuli that
have multiple perceptual dimensions, and they are asked to
flexibly switch their behavioral responses from one particular
perceptual dimension to another dimension on the basis of a pre-
learned rule. The focus of interest in these tasks lies in the cognitive
process involved in ‘set-shifting’, which is the process of shifting or
switching between stimulus-response sets [7]. A major problem in
interpreting the results of studies that use these tasks is the
confounding effect of cognitive abilities other than set-shifting that
are required for task performance [7,8]. For example, perfor-
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mance on the WCST depends on inference and concept formation
abilities, and rule-learning abilities and working memory function
are major contributing factors to performance efficiency on the
ID/ED paradigms and the Odd-Man-Out task. More recent
studies have made substantial efforts to isolate set-shifting from
these confounding factors. For instance, Cools and colleagues
devised a task in which they used letters and digits instead of the
abstract geometric figures that were used in the antecedent tasks
[8]. Both letter and digit identification are governed by well-
established stimulus-response rules, require no new learning and
require little working memory, whereas the manipulation of
multidimensional geometric figures demands rather high capac-
ities for both learning and working memory. Another problem in
investigating set-shifting is that there are two critical components
of any given cognitive set: the stimulus set and the response set
[7,9]. Set-shifting that requires reconfiguring both the stimulus
and response sets is called ‘task-set switching’, whereas set-shifting
that only requires reconfiguration of the stimulus set is called
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‘attentional set-shifting’. There may be differences in the
mechanisms and neural bases for these distinct set-shifting
processes. In the aforementioned study by Cools and colleagues,
patients with PD only showed attentional set-shifting deficits when
the target stimuli were presented in the company of competing
stimuli [8]. Similarly, Ravizza and colleagues demonstrated that
interference from competing stimuli, or stimulus ‘cross-talk,’
resulted in poorer attentional set-shifting performance on the
modified Odd-Man-Out task in PD patients [10]. In contrast, a
recent study by Kehagia and colleagues reported that the
performances of patients with very early stages of PD (Hoehn-
Yahr stages I and II) were equivalent to those of healthy control
participants on a newly developed paradigm that had been
designed to assess the impact of stimulus cross-talk on task-set
switching performance [9]. In summary, the current evidence
suggests that in situations in which competitive stimuli are present,
early stage PD patients have impaired attentional set-shifting
abilities, but not impaired task-set switching abilities [1].

Neurodegeneration in the meso-striatal dopaminergic system is
a primary neuropathological feature of PD. A consensus regarding
the relationship between the meso-striatal pathologies and the
motor deficits that are observed in PD has been reached [11].
Similarly, a classic hypothesis suggests that cognitive inflexibility in
PD arises from a disruption of meso-prefrontal and prefrontal-
striatal circuits that is associated with dopaminergic insufficiency
[1,12,13]; this hypothesis has been supported by several lines of
evidence. First, executive dysfunction, including cognitive inflex-
ibility, dominates the cognitive profiles of both PD patients and
patients with prefrontal damage [1,2,6]. Second, levodopa
administration improves WCST and other attentional set-shifting
task performance in PD patients [4,6,8,14,15]. Lastly, functional
magnetic resonance imaging (fMRI) studies have found evidence
of a relationship between prefrontal dysfunction and poor
performance on set-shifting tasks in PD patients [16,17,18,19].
However, the results of recent studies have challenged the classic
dopamine insufficiency hypothesis of cognitive inflexibility in PD
patients. First, the administration of levodopa has been shown to
have a task-specific cognitive benefit in PD patients: levodopa
administration results in improved performance on the WCGST,
but it has no impact on the ID/ED task performance, which
indicates that dopaminergic insufficiency may be associated with
cognitive deficits other than attentional set-shifting [1]. Second, a
recent study reported that patients with very early stages of PD, in
whom neurodegeneration appears to be relatively confined to the
dopaminergic systems, achieved performance scores on a task-set
switching task that were within the normal range [9]. In
agreement with these neuropsychological findings, which suggest
that non-dopaminergic, extra-striatal pathologies to the set-shifting
deficits that are observed in PD patients, recent structural
neuroimaging studies have demonstrated that a degenerative
process encroaches on the cerebral cortex and limbic structures in
the early stages of the disease [20,21,22].

Research in cognitive neuroscience has shown that the
prefrontal and the posterior parietal cortices work together in
subserving both attentional set-shifting and attentional control in
general [23,24,25,26,27]. Because these cortical regions can be
affected in the early stages of PD [20,21,22], there is a possibility
that parietal dysfunction plays a critical role in set-shifting deficits.
To address this possibility, we should carefully avoid using tasks
that require the involvement of ‘prefrontal-biased’ cognitive
processes other than set-shifting, such as learning and working
memory. In addition, current neuroimaging evidence for the
neural correlates of set-shifting deficits in PD is primarily derived
from activation studies: several fMRI studies have shown that PD
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patients have decreased levels of activation in the dorsolateral
prefrontal cortex, the striatum and the parietal cortex when
performing variants of the WCGST [16,18,19]. Although {MRI has
the advantage of enabling scientists to observe phasic brain activity
while a subject performs a task, the brain regions in which phasic
neural activity is decreased during task performance may differ
from the brain regions in which at-rest neural activity is decreased
[28]. Studies that investigate the correlation between lesions or at-
rest-dysfunction and behavioral deficits are expected to provide
supplementary evidence of the neural correlates of set-shifting
deficits in PD. In this study, we used an 18F-fluoro-deoxy-glucose
positron emission tomography (FDG-PET) technique and a
compound letter paradigm to investigate the neural correlates of
set-shifting deficits in PD patients. Compound letter paradigms
have been used previously in neuroimaging studies of attentional
control and attentional set-shifting [29,30,31,32,33] and in
neuropsychological studies of PD [34,35,36]. As with other
attentional set-shifting paradigms, such as the ID/ED task and
the aforementioned paradigm that was used by Cools and
colleagues, a compound letter paradigm has two distinct
competing stimulus dimensions: the letter identity dimension
(“?” or “?” in our task) and the global/local element dimension,
between which cross-talk is present. The utility of this paradigm in
the functional assessment of the fronto-parietal attentional network
has been validated by several functional imaging studies
[27,29,30,31].

Methods

All of the procedures that were used in this study were
conducted in accordance with the guidelines of the Declaration of
Helsinki and were approved by the Ethical Committee of the
Tohoku University Graduate School of Medicine. All of the
participants provided written informed consent after receiving a
detailed explanation of the study.

Subjects

Potential participants were identified at the movement disorder
clinic at Tohoku University Hospital and were selected for
participation on the basis of meeting all of the following criteria: (1)
fulfillment of the diagnostic criteria for PD that were established by
the UK PD Society Brain Bank [37]; (2) no history of other
neurological or psychiatric diseases; (3) being between 55 and 75
years of age at the time of the study; (4) having an age of PD onset
of more than 40 years old; (5) a Hoehn and Yahr stage of 1-3, (6)
no magnetic resonance imaging (MRI) evidence of focal brain
lesions, such as infarcts or tumors; (7) the absence of dementia as
defined by the Diagnostic and Statistical Manual of Mental Disorders,
Third Edition, Revised (DSM-IIIR), a Clinical Dementia Rating
(CDR) stage of 0 or 0.5 [38] and a Mini-Mental State
Examination (MMSE) [39] score =24; (8) no history of ocular
disease and having a best-corrected Snellen visual acuity of 20/50
or better; and (9) the absence of diabetes mellitus. We provided
detailed explanations of the study to all of the potential
participants and/or their caregivers, and a total of 60 patients
who provided written informed consent were enrolled in the study.
Advertisements in the local community were used to recruit 30
healthy controls. Subjects with any history of neurological or
psychiatric diseases, any cognitive impairment that was revealed
during an interview and/or by an MMSE score of <24, or
impaired visual acuity (a best-corrected Snellen acuity that was
poorer than 20/50) were excluded from participation.

There were no significant differences between the PD (n=60)
and control (n = 30) groups in terms of age (66.2£5.8 vs. 66.0%5.3
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years), sex (26 women/34 men vs. 17 women/13 men) or
education (12.1%+2.3 vs. 11.41.8 years) (Table 1). PD patients
had significantly better visual acuity than the control participants
(the median visual acuities of the two groups were 25/25 vs. 20/
25, respectively). There was a trend toward having lower MMSE
scores in the PD group compared with the control group
(27.8%£2.1 vs. 28.5£1.6). Of the 60 PD patients, 18 patients were
not taking any dopaminergic agents, 10 were taking levodopa
alone, and 32 were taking both levodopa and dopamine receptor
agonists. Seven patients received anticholinergic medication, and
two patients received selective serotonin reuptake inhibitors. The
mean levodopa equivalent dose [40] of the patients was
658.83825.5 mg/day. These and other demographic data are
shown in Table 1.

Psychophysical Tasks
Three different compound letter decision tasks were adminis-
tered: the Global, Local, and Mixed tasks (Figure 1). Each subject
completed five training trials and 24 test trials for each of the three
tasks. The orders of the Global and Local tasks were counterbal-
anced between subjects. Visual stimuli were presented in the
center of either a 17- or 15-inch liquid crystal display that was
located at a distance of 70 cm from the subject. Two different
compound letter stimuli were used throughout the tasks; one was a
global “x” that consisted of local “7”’s, and the other was a global
” that consisted of local “s (“=” and “F” are both Japanese
Kana (phonographic characters). In each of the compound letter
stimuli, a global letter (8.0 cmx8.0 cm, which subtended 6.5
degrees of visual angle) was composed of 11 small local letters
(1.0 cmx1.0 cm, which subtended 0.8 degrees of visual angle).
Subjects were instructed to read either the global letter or the local
letter that was embedded in a compound letter stimulus aloud in
accordance with the identity of a preceding cue as quickly as
possible. Their oral responses were digitally recorded, and the
reaction time (RT) of each trial was measured as the time between
the onset of the visual stimulus and the onset of the oral response.
(a) Global and local tasks. In the Global task, compound
letter stimuli appeared after a visual cue indicating that the target
was a global letter (“?”, a Kanji (logogram) character meaning
“large”) had been presented for 2 seconds (Figure 1). The
subjects were then required to read the global letter in each

Attentional Set-Shifting Deficit in PD

compound letter stimulus aloud as quickly as possible. Compound
letter stimuli remained visible on the screen until the subject
responded. All of the procedures for the Local task were identical
to those used in the Global task except that the initial visual cue
indicated that the target was a local letter (*?”, meaning “small”),
and the subjects were required to respond to the local letters. No
task shifting occurred within either the Global task or the Local
task, and the subjects focused their attention on the same
component of the compound letter stimuli throughout each task.

(b) Mixed task. Prior to the presentation of each compound
letter stimulus, a visual cue indicating “global” or “local” was
presented for 2 seconds in a pseudorandom order. Thus, subjects
had to switch their attention between the global and local
components of the compound letter stimuli on the basis of the cue.
The other procedures that were used were identical to those that
were used in the Global and Local tasks.

(c) Large and Small tasks. We employed two additional
tasks, the Large and Small tasks, to rule out the possibility that any
observed psychophysical differences in global and local processing
were confounded by differences in stimulus size. In the Large task,
subjects were asked to read aloud large letters that subtended 6.5
degrees of visual angle (8.0 cmx8.0 cm) and that were presented
after a 2-second presentation of a fixation cross. The procedure for
the Small task was the same as the procedure that was used for the
Large task except that the letter stimuli were small in size and
subtended 0.8 degrees of visual angle (1.0 cmx1.0 cm).

(d) Shift cost. We used shift cost as a measure of attentional
set-shifting ability. The shift cost was calculated according to the
following formula: Skift cost = (mean RT on the Mixed task) — {(mean
RT on the Global task) + (mean RT on the Local task)}/2.

(e) Statistics. The mean RTs and error rates in the
psychophysical tasks were analyzed using two-way repeated-
measures analyses of variance (ANOVAs) in which the group
(PD or control) was used as a between-subjects factor and the task
(Global, Local, and Mix) was used as a within-subjects factor. The
Greenhouse-Geisser correction was applied when the data violated
the assumption of sphericity. Details of the post hoc analyses are
described in the Results section. A two-sample t-test was used to
make a between-group comparison of the shift cost.

To identify the confounding factors in the regression analyses
for the psychophysical measures and positron emission tomogra-

Table 1. Demographic and clinical characteristics of patients with PD and control participants.

MMSE score
CDR stage (0/0. 5)

NPI depress;on score (frequency X SEVerlty)Jf‘:: .
UPDRS-III '

Motor subtype (tremor/akm: ic-rigi

Dominant side of motor symptoms (L/R B)

Dlsease duratlon (years)

Levodopa equivalent dose (mg/day)

PD (n=60) Controls (n=30) p-values
Age (years) ’ o : ’ e ’ ’ :"'\66.'2&5,8 e - 660153 T k — ,  f:o.884
Sex (females/males) 26/34 17/13 0.232
Level of education (years) e e s e o
Visual acuity (mednan) 20/25 0.027

658.83+825.5

Rating Scale-motor score; L, left; R, right; B, bilateral.
doi:10.1371/journal.pone.0038498.t001
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PD, Parkinson’s disease; MMSE, Mini Mental State Examination; CDR, Clinical Dementia Rating; NPI, Neuropsychiatric Inventory; UPDRS-II, Unified Parkinson’s Disease
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Figure 1. Schematic illustrations of the psychophysical tasks. In both the Global and Local tasks, compound letter stimuli appeared after a 2-
second presentation of a visual cue that indicated whether the target was a global or local letter. The subjects were instructed to respond orally to
the target component of each compound letter stimulus as quickly as possible. In these tasks, the subjects maintained their attention on a single
component of the compound letters (either the local or global component of the stimuli), and they were not required to reorient their attention.
However, in the Mixed task, the cue that indicated the target component of the compound letter changed from trial to trial in a pseudorandom
manner. The task required that the subjects switch their attention on the basis of the cue that was presented to them on each trial.

doi:10.1371/journal.pone.0038498.g001

phy (PET) data (brain-behavior analyses), we conducted analyses
that sought to identify correlations between psychophysical task
performance and other clinical data (i.e., MMSE, Neuropsychi-
atric Inventory (NPI) depression score [41], Unified Parkinson’s
Disease Rating Scale-motor part (UPDRS-III) [42], and levodopa
equivalent dose) in the PD group.

@ PLoS ONE | www.plosone.org

Positron Emission Tomography (PET)

Each of the 60 PD patients underwent a PET scan within the 2
weeks that preceded or followed the clinical assessments. Prior to
undergoing the PET scan, the patients had fasted, and their use of
any dopaminergic medication(s) had been discontinued for at least
5 hours. Each patient received an injection of 185-218 MBq
FDG, and scans were performed using a Siemens Biograph DUO
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scanner in 3D mode. After a l-hour FDG-uptake period, each
patient underwent a 20-minute scan during which the patient was
awake, resting and wearing an eye mask. The in-plane and axial
resolutions of the scan were 3.38 mm x3.38 mm, respectively. The
data that were obtained were reconstructed to yield a 256 %256
matrix with a pixel size of 1.33x1.33 mm and a slice thickness of
2.0 mm. The resultant images were analyzed using SPM5 (http://
www filion.ucl.ac.uk/spm/software/spm5/). All of the images
were normalized to the standard FDG template and were
smoothed with a 10-mm full-width at half-maximum. Global
normalization was performed using the “proportional scaling” and
the relative threshold masking was set at 80% of the mean global
value.

To identify the brain regions in which reductions in regional
cerebral glucose metabolism (CMRglc) were associated with
defective psychophysical performance, we conducted whole-brain
voxel-based multiple regression analyses. The mean RT on each
task or the shift cost was entered into each regression model as a
variable of interest. We also included the age, sex, and clinical
variables that were significantly correlated with psychophysical
performance as nuisance variables. The height and extent
thresholds were set at p<<0.001 uncorrected and 100 voxels,
respectively.

Subsequently, we performed region of interest (ROI)-based
stepwise multiple regression analyses with the aim of exploring the
relative contributions of the brain regions that had been identified
in the whole-brain voxel-based analyses. Each regression model
included the mean CMRglc values that were obtained within each
of the ROIs as explanatory variables and either the mean RT on
one of the psychophysical tasks or the shift cost as a dependent
variable. The variables that were included in the regression models
were selected on the basis of probabilities of F of =0.05 for
inclusion and of =0.1 for removal. The ROIs were determined
according to the following procedure: (1) the t-map images from
the whole-brain voxel-based regression analyses for the Global,
Local, and Mixed tasks (uncorrected p threshold <0.001 and size
of 100 voxels or more) were transformed into binary images, after
which (2) the overlapping areas from the three task conditions
were extracted as ROlIs.

Because we hypothesized that the psychophysical task perfor-
mance impairments that we observed in PD patients resulted from
brain dysfunction, we needed to verify that the brain regions that
were identified in the regression analyses were hypometabolic in
PD patients. To accomplish this, we compared the group CMRglc
values from the 60 PD patients who participated in our study with
the CMRglc values from another group of 14 healthy controls
(age, 64.0£4.2 years; 7 men and 7 women; education level,
12.3#+2.5 years; MMSE score, 29.1%1.3) who had not partici-
pated in the psychophysical tasks. The ages, sexes, and educational
levels of these control subjects were comparable to those of the PD
patients (age, p=0.112; sex, p=0.651; education, p=0.753), and
the same PET acquisition procedures that had been used for the
PD patients were used to acquire metabolic data. Because of the
referential purpose of the analysis, we employed a lenient height
threshold (an uncorrected p threshold of <0.05), and we did not
include any nuisance variables in the model (t-test).

Results

Psychophysical Tasks

1. The effect of stimulus size. A two-way repeated-
measures ANOVA in which task (Large and Small) was used as
a within-subjects factor and group (PD and control) was used as a
between-subjects factor revealed a trend toward a group effect
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(F=3.82, p=0.054). Neither the effect of task (F=0.01, p=0.929)
nor the interaction between the two factors (F=0.19, p=10.662)
was significant. These results suggest that the size of the stimulus
had a negligible effect on performance in the compound letter
tasks.

2. The compound letter tasks. A two-way repeated-
measures ANOVA that used task (Global, Local, and Mixed)
and group (PD and control) as factors revealed significant effects of
both group (F=7.06, p=0.016) and task (F=43.33, p=0.001)
and a significant interaction between the two factors (F=5.00,
p=0.001) (Figure 2). The post hoc group comparisons for the
three individual tasks (significance level p<<0.05/3) showed that
compared to the controls, the PD patients had significantly longer
mean RTs in both the Global and Mixed tasks (Global, p =0.004;
Mixed, p=0.001). There was also a trend toward longer mean
RTs in the Local task in the PD group compared to the control
group (p = 0.093). The between-task comparisons for each group
(at a significance level of p<<0.05/3) revealed that the mean RTs
were significantly longer for the Mixed task than for either the
Global or the Local task in both the PD and control groups
(Global vs. Mixed, p=0.001; Local vs. Mixed, p=0.001 in both
groups). No significant differences between the Global and Local
tasks were identified in either group (p=10.118 in the PD group,
p =0.260 in the control group). In addition, we found a significant
interaction (significance level p<<0.05/3) between the Mixed and
Global tasks (F=5.99, p=0.016) and a trend between the Mixed
and Local tasks (F=15.63, p=0.020). There was no significant
interaction between the Global and Local tasks (F=5.63,
p=0.209). In summary, the RTs for the Mixed task were
disproportionately longer than for either the Global task or the
Local task in the PD patients compared to control participants
(Figure 2).

We found one outdier PD patient whose mean RT on the Global
task was longer than the mean RT of all of the PD patients +3
SDs. The results of the analysis were unchanged after we removed
this patient; a two-way ANOVA that used group (PD vs. controls)
as a between-subjects factor and task as a within-subjects factor
yielded significant effects of both group and task and a significant
interaction between the two factors (task, F(1,129)=55.02,
p=0.001; group, F(7,87)=7.65, p=0.007; interaction,
F(1,129)=5.03, p=0.015).

3. Shift cost. The shift cost in the PD group was significantly
greater than in the control group (0.57%0.59 in PD; 0.28%0.34 in
controls; t=2.51, p=0.014).
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Figure 2. Mean RTs and error rates in the psychophysical tasks.
Comparisons that were significantly different are indicated with a
* (p<<0.05/3). There was a significant simple interaction between group
and the Global/Mixed task factor (F=5.99, p=0.016), and there was a
trend toward an interaction between the group and the Local/Mixed
task factor (F=5.63, p=0.020). PD, Parkinson’s disease.
doi:10.1371/journal.pone.0038498.g002
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4. Error rates. DBecause of the very low error rates on the
psychophysical tasks (the error rates for the Global, Local, and
Mixed tasks were 2.43%£4.68, 1.11%3.42, and 6.32%8.35%,
respectively, in the PD group and 1.11%2.43, 0.56%1.44, and
2.92%3.12%, respectively, in the control group), we used angular-
transformed data in the statistical analyses. We performed a two-
way repeated-measures ANOVA in which task (Global, Local, and
Mixed task) and group (PD and controls) were factors, and we
identified a significant main effect of task (F =8.75, p=0.001). We
did not detect a significant effect of group (F=2.33, p=0.13), nor
did we find a significant interaction between group and task
(F=0.57, p=0.511). Post hoc comparisons revealed that the error
rates for the Mixed task were greater than the error rates for the
Local task in both PD patients and controls (p=0.002 in PD,
p=0.006 in controls).

5. Correlation between task performance and other
clinical variables. We found that both the Mixed task RT
and the shift costs were significantly correlated with the MMSE
scores (r=—0.40, p=0.001; r=—0.41, p=0.001, respectively)
and their UPDRS-III scores in the PD patients (r=0.34,
p=0.007; r=0.36, p=0.005). A significant correlation between
the Global task RT and the NPI depression score was also
identified (r=0.29, P=0.023). There was no significant correla-
tion between psychophysical task performance and levodopa
equivalent dose.

Positron Emission Tomography

The results of the whole-brain voxel-based multiple regression
analyses in which age, sex, MMSE score, and UPDRS-IIT were
included as nuisance variables are shown in Table 2 and
Figure 3. For reference purposes, images that depict maps of sites
at which there were reductions in CMRglc in the 60 PD patients
relative to the 14 healthy controls are presented in Figure 3 and
in Supplementary Figure S1. Although the NPI depression
scores were only correlated with the Mixed task RTs, previous
studies have suggested that depression has a significant impact on
cognitive function. We performed supplementary analyses in
which the NPI depression score was included as a nuisance
variable. The results of these analyses are shown in Supplemen-
tary Figure S2.

The CMRglc values in the bilateral frontal cortices were
negatively correlated with the mean RTs when performing the
Global task (Table 2 and Figure 3). There were also significant
negative correlations between the participants’ mean RTs when
performing the Local task and their resting CMRglc values in the
right frontal cortex, the bilateral temporo-parieto-occipital junc-
tions (TPOs), the left posterior inferior temporal cortex, and the
bilateral medial parietal cortices. In the Mixed task, the CMRglc
values in the bilateral frontal cortices, bilateral TPOs, and left
medial parietal cortex were negatively correlated with the mean
RT. In addition, the shift cost was negatively correlated with the
CMRglc values that were obtained from the bilateral frontal
cortices. These results were generally unchanged when the NPI
depression score was added to the regression model as a nuisance
variable (Supplementary Figure S2).

Subsequent stepwise multiple regression analyses were conduct-
ed using 7 ROIs; namely, the right and left dorsolateral prefrontal
cortices (DLPFGCs), the left ventrolateral prefrontal cortex
(VLPFC), the left posterior inferior temporal cortex (posterior
IT), the right and left TPOs, and the left medial parietal cortex.
Reductions in CMRglc in the left VLPFC and left posterior IT
were predictive of longer RTs on the Global task, whereas
reductions in CMRglc in the right DLPFC and right TPO
predicted longer RTs on the Local task. Hypometabolism in the
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right DLPFC and left posterior IT regions predicted longer RTs
when performing the Mixed task. The shift cost was best predicted
by hypometabolism in the right DLPFC (Table 3 and Figure 4).
When the NPI depression score was added to the regression
model, reduced CMRglc values in the right DLPFC and the left
posterior IT cortex predicted a larger shift cost (Supplementary
Table S1). The results of the regression analysis in which the NPI
depression score was added to the model were otherwise the same
as those of the analyses in which the NPI depression score was not
included in the model.

Discussion

Attentional Set-shifting Deficit in PD

PD patients often have impaired performance on classic
neuropsychological tests of ‘frontal-lobe’ functioning, such as the
WCST and the ID/ED paradigms, which has led to the
hypothesis that the set-shifting deficit that has been observed in
PD patients arises from a disruption of the meso-prefrontal and
prefrontal-striatal circuits [3,4,6]. However, the degree to which
cognitive processes that are not involved in set-shifting, such as
rule learning, concept formation and working memory, affect
performance on these tasks is not clear [8]. Recent studies have
made efforts to eliminate these confounding factors by using tasks
that isolate set-shifting from other cognitive processes. For
instance, in a series of studies by Cools, Kehagia and colleagues,
subjects learned the associations of character types and back-
ground color cue or stimulus positions immediately before the test
sessions [8,9]. The subjects were then instructed to respond to
either a digit or a letter that were presented side-by-side in
accordance with the cues. Although their paradigm greatly
reduces the working memory and concept formation loads in
comparison to the WCGST and the ID/ED task, the effects of
cognitive processes other than set-shifting can be further reduced.
The simultaneous presentation of cues and target stimuli in their
task demands dual-task processing, and the maintenance of newly
learned associations between cues (colors or positions) and targets
(characters) requires working memory [29,43]. We reduced the
dual-task demands in our task by presenting the cues prior to the
target stimuli, and the semantically explicit associations between
the cues and the targets diminished the working memory load. A
2-second delay between cue onset and stimulus onset allowed the
subjects to select a behavioral response prior to stimulus
presentation. Consequently, the increase in shift cost that was
observed in this study can be interpreted as a deficit in the post-
selection attentional orienting mechanism in the presence of
competing stimuli [1,7,8].

Before we can conclude that PD patients have attentional set-
shifting deficits from the results of this study, we should address
the possible confounding effects of bradykinesia and psychomotor
slowing (bradyphrenia). Although an oral response was used in
place of a button press to reduce the effect of motor deficits, the
RTs of the PD patients were longer than the RTs of the controls
on all of the psychophysical tasks. In addition to any residual
motor deficit effects, psychomotor slowing may be associated
with the general prolongation of RTs. However, neither the
interactions between the Mixed task and the Global/Local tasks
nor the increased shift cost in PD patients relative to control
subjects are explicable in terms of such general effects, which
indicates that there is an attentional set-shifting deficit in PD.
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Table 2. Brain regions in which regional cerebral glucose metabolism was negatively correlated with psychophysical task
response time.

Task Regions BA MNI coordinates Voxel-level Cluster-level

Global L inferior frontal gyrus 48 —-46 22 22 4.79 <0.001 1308 <0.001

0.521

L inferiér tefnpofal"gyrus ‘
Shift Cost ~ Rmiddle frontal gyrus ¢ 4 0 0101
- ' R middle fféntal erué 9 42 ’24' 5‘0 3.9 '
54 4.24 0179 B
'44 ’3.63

doi:10.1371/journal.pone.0038498.t002
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PD < control

Global

Figure 3. Results of the whole-brain voxel-based analyses. First row: The brain regions that exhibited regional cerebral glucose metabolic
reductions in the 60 PD patients relative to 14 normal volunteers (p<<0.05 uncorrected, extent threshold of 100 voxels). Second row and below: The
brain regions in which the resting CMRgic was correlated with the RTs in the various psychophysical tasks (Global: second row, Local: third row,
Mixed: fourth row) and the shift cost (fifth row) (p<<0.001 uncorrected, extent threshold of 100 voxels). PD, Parkinson’s disease; R, right; L, left.

doi:10.1371/journal.pone.0038498.g003

Neural Correlates of an Attentional Set-shifting Deficit in
PD

Recent evidence from cognitive neuroscience suggests that the
prefrontal and parietal cortices cooperate in attentional set-shifting
and, more broadly, attentional control [23,24,25,26,27]. It has
been suggested that the prefrontal cortices are involved in task-
specific (i.e., top-down) attentive processes, whereas the parietal
cortices are considered to be engaged in stimulus-driven (i.e.,

@ PLoS ONE | www.plosone.org

bottom-up) attention [24,44]. The long-standing hypothesis that
the set-shifting deficit in PD arises from prefrontal dysfunction that
is secondary to dopaminergic lesions in the midbrain has led to a
relative neglect to consider the roles of the parietal cortices.
Because neurodegeneration during the early stages of PD
encroaches on not only the meso-striatal and meso-prefrontal
dopaminergic systems but also on extensive cortical regions
[20,21,22], we should consider the contributions of the parietal
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Table 3. Results of the ROI-based multiple regression analyses.

Attentional Set-Shifting Deficit in PD

Task Regions

Beta Error

t-value for beta
weight

Left posterior inferior temporal cortex

doi:10.1371/journal.pone.0038498.t003

lesion along with the contribution of the meso-prefrontal and
prefrontal-striatal lesions to the deficit. There have been several
fMRI studies that directly addressed the neural correlates of the
set-shifting deficit in PD. These fMRI studies demonstrated that
the activation levels of the prefrontal cortices, striata, and parietal
cortices of PD patients differed from those of normal subjects when
performing the WCST [16,18]. However, the use of the WCST
precludes a straightforward interpretation of the results of these
studies; the altered brain activation observed in these studies may
reflect deficits in cognitive processes other than set-shifting, such as
concept formation or working memory. We noted the same
problem in a study by Marie and colleagues that investigated the
correlation between at-rest striatal dopamine status, which was
measured using 11C-S-Nomifensine PET, and an object alterna-
tion task [45]. Another line of evidence for the involvement of the
meso-prefrontal and prefrontal-striatal pathologies in PD-associ-
ated set-shifting deficits has arisen from psychopharmacological
studies. Several studies have demonstrated that dopaminergic
drugs have ameliorating effects on the performances of PD
patients on a variety of set-shifting tasks [3,4,14,15]. The results of
these studies have been interpreted as evidence in favor of the
hypothesis that the disruption of prefrontal-striatal neural circuits
plays a pivotal role in the attentional set-shifting deficits that are
associated with PD. However, the dopaminergic modulation of
cognition is not exclusively mediated by prefrontal-striatal circuits;
the modulation of cognition is also mediated by direct action on
dopamine receptors in the cerebral cortex. Similarly, a recent
fMRI study revealed that levodopa administration in of PD
patients who are performing the WCST results in changes in the
activation of the motor circuits of the premotor cortex and
putamen but does not alter the activation of the cognitive circuits
of the prefrontal cortex, caudate and parietal cortex [46]. In this
study, we used two methods to investigate the neural correlates of
the attentional set-shifting deficit that has been observed in PD
patients: a compound letter paradigm in which the reliance upon
non-set-shifting cognitive processes, which are confounding factors
in many studies, is greatly reduced; and FDG-PET, a neuroim-
aging method that is sensitive to at-rest neural dysfunction. Our
results provide clear evidence for a relationship between prefrontal
dysfunction and an attentional set-shifting deficit in PD; evidence
of a similar relationship between parietal dysfunction and the
attentional set-shifting deficit was not observed. These results are
supported by a recent psychophysical study that demonstrated that
PD patients have attenuated top-down attentional control and
enhanced stimulus-driven attentional processing; the former
depends primarily on prefrontal function, and the latter depends
primarily on the parietal cortices [47].

@ PLoS ONE | www.plosone.org

The metabolic changes that were observed in the posterior IT
cortex and the VLPFC were correlated with the patients’
performances on the Global task. The posterior IT, which is
situated in the ventral visual pathway, is a cortical region that is
devoted to the processing of complex visual forms, such as objects,
faces, and letters [48,49]. Because the Global task requires the
assembly of local parts into a single global form, the visual form-
processing deficit that is associated with dysfunction in this brain
region may have resulted in impaired performances of the PD
patients on the Global task. A previous study also found evidence
of a relationship between the visual form-processing deficit and
posterior IT hypometabolism in early PD [50]. The VLPFC is
anatomically interconnected with the temporal cortices via the
uncinate fasciculus. This region reportedly participates in the
encoding, retrieval, and selection of the information that is
represented in the ventral visual pathway [51,52]. In addition to
having roles in memory, previous studies have suggested that the
VLPFC contributes to executive attentional control. In an fMRI
study by Hampshire and Owen, an association between VLPFC
activation and the extradimensional shifting that was required in a
modified ID/ED task was observed [53]. However, the role of the
VLPFC in attentional set-shifting itself was obscured because their
task used overlapping pictures of faces and houses in place of the
abstract geometric figures that were used in the original ID/ED
task. Thus, the VLPFC activation that they observed may have
been related to semantic categorical shifting or, more broadly, to
the manipulation of semantic categorical information, such as
identifying faces and houses. In addition, the right VLPFC has
been in implicated in response inhibition in a number of human
and animal studies [7,54]. In this study, diminished Global task
performance was more clearly associated with a reduction in
CMRglc in the left VLPFC than in the right VLPFC. This left
hemispheric dominance may be attributable to the demand for
language processing in the compound letter task. The rapid
matching of the relatively ambiguous forms of the global letters to
letter forms that are stored in the long-term memory may be
related to the involvement of the left VLPFC.

Hypometabolism in the right DLPFC predicted both a longer
RT on both the Local and Mixed tasks and an increased shift cost.
This region of the DLPFC includes the intersection of the superior
frontal and precentral sulci, which is called the putative human
frontal eye field (FEF) [55]. The human FEF and the inferior
parietal cortex form the dorsal fronto-parietal network, which is
involved in the top-down control of attention that is driven by
cognitive factors, including a current goal, prior knowledge, or
expectation [24,44]. The results of the Mixed task and shift cost
were unsurprising because the task was explicitly designed to
measure attentional control. However, we did not expect to
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Figure 4. The results of the ROl-based stepwise multiple regression analyses. 7 ROIs are shown in different colors: right DLPFC = red, left
DLPFC = cyan, left VLPFC = yellow, right TPO = purple, left TPO = green, medial parietal cortex = white, and left posterior IT = blue. The
scatterplots illustrate the relationship between the psychophysical task performance scores and the FDG-uptake values in the ROIs. DLPFC,
dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; TPO, temporo-parieto-occipital junction; posterior IT, posterior inferior temporal
cortex; FDG, "®F-fluorodeoxyglucose.

doi:10.1371/journal.pone.0038498.9004

observe a correlation between hypometabolism in this region and fronto-parietal network, the TPO, suggests that the Local task
a prolonged mean RT in the Local task. Coupled with the longer demanded attentional control abilities [24,29]. Successful perfor-
mean RT that was observed in the Local task relative to the mance in the Local task may require the recruitment of the dorsal

Global task, the involvement of another component of the dorsal
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fronto-parietal network to reorient attention and to focus it on
small, local areas of continuously changing visual stimuli.

Limitations

This investigation did not address the question of whether the
attentional set-shifting deficit that was observed in PD patients is
associated with lesions in either the cerebral cortex or subcortical
structures, such as the striatum and the dopaminergic nuclei of the
midbrain. The hypometabolism in the DLPFC that was observed
in our study can arise from either prefrontal lesions or the
disruption of prefrontal-subcortical circuits [56,57]. Multiple
neuroimaging techniques, such - as dopaminergic PET and
volumetric MRI, must be used to differentiate between the
contributions of cortical and subcortical pathologies to cognitive
dysfunction in patients with early stages of PD.

Previous studies have demonstrated that dopaminergic medi-
cation status has a significant impact on brain glucose metabolism.
In particular, the CMRglc values in subcortical structures such as
the striatum and the thalamus were increased by the administra-
tion of dopaminergic medication [58,59]. Although we withheld
dopaminergic medication for the 5 hours that immediately
preceded the PET scan of each patient, this wash-out time is
shorter in duration than the wash-out time that has been used in
previous studies. It is possible that we failed to detect striatal
metabolic abnormalities as a result of the effects of residual
dopaminergic agents.

Compound letter paradigms have been used to investigate
global and local processing in object perception [29,30,33,43].
Although a number of previous studies have demonstrated a
preference for global processing, the RTs for the Local task tended
to be shorter than those for the Global task in our study. This
discrepancy may be due to differences between our study and
others in terms of the sizes of the stimuli, the number of local
components that constitute a global object and the salience of the
visual stimuli [32]. Unfortunately, our study did not address these
issues. In addition, it has been reported that the laterality of brain
pathology has an impact on compound letter task performance.
For example, Schenden and colleagues reported that PD patients
with left-dominant motor symptoms (which are indicative of right-
dominant brain pathology) had more substantial impairments in
global processing, whereas patients with right-dominant motor
symptoms had more substantial impairments in local processing
[60]. Although we failed to reproduce their findings in our
supplementary analysis (see Supplementary Experiments S1;
Supplementary Tables 82 and S3; and Supplementary
Figure $3), this inconsistency may also arise from differences
between their experiment and ours in both the subject populations
and the physical features of the visual stimuli that were used.
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Abstract

Background: Although donepezil, an acetylcholinesterase
inhibitor, has been proved to be effective in ameliorating
cognitive impairment in Parkinson’s disease with dementia
(PDD), the responsiveness of patients to donepezil therapy
varies. [5-'"C-methoxyldonepezil, the radiolabeled form of
donepezil, is a ligand for positron emission tomography
(PET), which can be exploited for the quantitative analysis of
donepezil binding to acetylcholinesterase and for choliner-
gic imaging. Objectives: To investigate the deficits of the
cholinergic system in the brain in PDD and its association
with response to donepezil therapy. Methods: Twelve pa-
tients with PDD and 13 normal control subjects underwent
[5-"'C-methoxy]donepezil-PET imaging. For patients with
PDD, daily administration of donepezil was started after
[5-""C-methoxyldonepezil-PET imaging and continued for 3

months. Results: In the PDD group, the mean total distribu-
tion volume of the cerebral cortices was 22.7% lower than
that of the normal control group. The mean total distribution
volume of the patients with PDD was significantly correlated
with improvement of visuoperceptual function after 3
months of donepezil therapy. Conclusion: The results sug-
gest that donepezil therapy is more effective in patients with
less decrease in acetylcholinesterase, a binding site of done-
pezil, at least in the specific cognitive domain.

Copyright © 2012 S. Karger AG, Basel

Introduction

Patients with Parkinson’s disease (PD) often show cog-
nitive deficits, including in the domains of memory, ex-
ecutive, visuoperceptual, and visuospatial functions,
even early in the course of the disease [1]. Dementia is
common among patients with PD, with a prevalence of
40% in cross-sectional studies [2] and a cumulative prev-
alence approaching 80% [3].
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The cholinergic system is involved in the manifesta-
tion of cognitive impairment. The activities of choline
acetyltransferase, the enzyme that synthesizes acetylcho-
line, and acetylcholinesterase, the enzyme that degrades
acetylcholine, are decreased in the neocortex and hippo-
campus in PD with dementia (PDD) [4]. A significant loss
of cholinergic neurons in the nucleus basalis of Meynert
is noted in PDD [5]. Based on these findings, several ace-
tylcholinesterase inhibitors, which potentiate cholinergic
neurotransmission, are widely used to treat dementia.

[5-1'C-methoxy]donepezil ([''C]donepezil), the radio-
labeled form of the acetylcholinesterase inhibitor done-
pezil, is aligand for positron emission tomography (PET),
which measures donepezil binding to acetylcholinester-
ase to examine cholinergic function [6, 7]. A study involv-
ing [1'C]donepezil-PET that was carried out on patients
with Alzheimer’s disease (AD) showed significant reduc-
tion of donepezil binding in the brain in AD, compared
with the normal elderly subjects [8].

Although donepezil has been proved to be effective in
ameliorating cognitive impairment in PDD [9], the re-
sponsiveness of patients to donepezil therapy varies, for
reasons that have not been clarified. We hypothesized
that responsiveness to donepezil therapy has an associa-
tion with the degree of cholinergic deficit in the brain. In
this study, we investigated the deficits of the cholinergic
system in PDD by quantifying acetylcholinesterase dis-
tribution, and the relationship between the deficits of the
cholinergic system and clinical response to donepezil
therapy.

Materials and Methods

Subjects

Twelve patients with PDD and 13 healthy control subjects
matched for age, sex, and education were enrolled in this study.
The patients were selected from amongst those attending PD
clinics at Miyagi National Hospital and Tohoku University Hos-
pital. Board-certified neurologists made the diagnosis of PD ac-
cording to the diagnostic criteria of the UK PD Society Brain
Bank, based on clinical, laboratory, and radiological findings [10].
To select subjects with dementia, patients with a score of 1 or
above in at least one of the sub-items of the Clinical Dementia
Rating (CDR) [11] (even if overall CDR was 0.5) were included in
this study. The exclusion criteria were a history of other neuro-
logical or psychiatric diseases, focal brain lesions, such as tumors
and infarctions on magnetic resonance (MR) imaging, treatment
with acetylcholinesterase inhibitors, anticholinergic drugs, or
cholinergic drugs, and diagnostic criteria of dementia with Lewy
bodies [12], i.e. development of the first signs of dementia before
or within 1 year after the onset of motor symptoms.
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Table 1. Demographic and clinical data of subjects studied with
1C-donepezil PET

PDD Control p value

n 12 13
Sex (M:F) 9:3 10:3 NS§?
Age, years 69.8+64 69.5+67 NSb
Education, years 12+32 13.8%27 NS
MMSE (max. 30) 21.8+42 29.8+04 <0.000001°
UPDRS part Il (max. 108)  23.1+9.6
Symptom duration, years

Parkinsonism 11.3£7.2

Dementia 2%1.6
Antiparkinson medication =~ Number of Dose range

treated patients mg

Levodopa 12 300-700
Pramipexole 6 0.5-3
Cabergoline 3 2.0
Amantadine 2 150-200
Pergolide 3 0.5-0.75
Droxidopa 4 300-900
Entacapone 3 300-800
Selegiline 7 2.5-10
Risperidone 1 4.0
Quetiapine 4 25-150

Values are expressed as mean * 1 SD.
%2 test. ® Two-tailed t test.
NS = Not significant (p > 0.05).

The healthy control subjects were recruited from the local
community through advertisements. Subjects with a history of
neurological or psychiatric disease, a history suggestive of cogni-
tive impairment, abnormal findings on neurological examina-
tion, < 28 points on the Mini Mental-State Examination (MMSE)
[13], abnormal findings on MR imaging, or medication with cen-
tral nervous action were excluded.

Demographic data for the subjects are shown in table 1. The
two groups did not show significant difference in terms of sex,
age, and educational attainment. Mean score on the MMSE was
significantly lower in the PDD group than in the control group.
All patients received antiparkinsonian drugs. Four patients with
PDD had been receiving antipsychotic drugs. Patients were clini-
cally evaluated and scanned ‘on’ medication.

The Ethics Committee of Tohoku University School of Medi-
cine approved the study protocol, and written informed consent
was obtained from all healthy subjects and from patients with
PDD or their family members when necessary.

Clinical Assessments and Donepezil Therapy
In the PDD patients, cognitive function and clinical symp-
toms were assessed by means of various cognitive tests in advance
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of [!Cldonepezil-PET imaging. The MMSE was used to assess
general cognitive function. The Digit Span task in the Wechsler
Adult Intelligence Scale-Revised (WAIS-R) [14] was used to eval-
uate attention. The Verbal Fluency task [15] and the Trail-Making
Test-A (TMT-A) [15] were used to assess frontal lobe functions.
Memory function was assessed by the Recalland Recognition task
in the Japanese version of the Alzheimer's Disease Assessment
Scale (ADAS) [16]. Visuoperceptual function was assessed by
complex visual tasks, including object-size discrimination, form
discrimination, overlapping figure identification, and visual
counting tasks [17]. Neuropsychiatric symptoms were assessed by
the modified version of the Neuropsychiatric Inventory (NPI)
[18]. Motor dysfunction was assessed by the Unified Parkinson’s
Disease Rating Scale Part III (UPDRS Part III) [19].

After [''C]donepezil-PET imaging, donepezil therapy was ini-
tiated for all patients. Initially, patients were given donepezil 3
mg/day for 2 weeks and then the dose was increased to 5 mg/day,
which is the standard dose given for AD in Japan, and continued
for the next 3 months. Any drugs that the patients were already
taking, such as antiparkinson drugs, were not changed during the
3 months of donepezil therapy, and they were not given any other
additional drugs during the period. After the 3 months of done-
pezil therapy, the same evaluations were repeated.

Radiosynthesis of [!C]Donepezil and PET Procedures

Radiosynthesis of ['!C]donepezil and PET procedures have
been described previously [6, 7]. Briefly, tetrabutylammonium
hydroxide was added to 5’-O-desmethylprecursor (M2) dissolved
in methylethylketone. [!C]methyliodide was produced from [''C]
CO, and then converted to ['C]methyl-triflate ([*'C]MeOTf).
[!!C]donepezil was produced on the loop from [''C]MeOTf and
purified in preparative high-performance liquid chromatography
(HPLC). The obtained radioactivity of [''C]donepezil was 319.2
+ 149.0 MBq (mean * SD), and the radiochemical yield was es-
timated to be 25-30% based on [M'C]MeOTf after decay-correc-
tion. The specific activity of [!C]donepezil at the end of synthesis
was 332.9 £ 115.0 GBg/pmol. Radiochemical purity was higher
than 99%. The injected doses were 200 + 118 MBq (5.4 £ 1.6
mCi). The PET scanner SET-2400W (Shimadzu Co., Kyoto, Japan)
was used. The scanner acquires 63 image slices at a center-to-
center interval of 3.125 mm and has a transaxial resolution of 3.9
mm full width at half maximum (FWHM), and an axial resolu-
tion of 4.5 FWHM at center of field of view [20]. Initially, 7-min
transmission data were acquired with a rotating [*3Ge]/[**Ga] line
source for correcting attenuation. Then, after intravenous injec-
tion of [!!C]donepezil, a 60-min dynamic scan in three-dimen-
sional (3D) mode (30 s X 5 frames, 60 s X 5 frames, 150s X 5
frames, 300 s X 8 frames) was performed. Subjects were scanned
under standard resting conditions. During the scan, arterial
blood samples (2.5 ml each) were collected from each patient’s
radial artery at 10-second intervals for the first 2 min, and subse-
quently at intervals increasing progressively from I to 10 min un-
til 60 min after the injection of [!!C]donepezil. 8 ml of additional
blood was obtained at 5, 15 and 30 min for analysis of labeled me-
tabolites. The plasma obtained by centrifugation was weighed and
the radioactivity was measured. The metabolites of ['!C]donepe-
zil in the extra plasma samples were analyzed by HPLC. Briefly,
sampled plasma (4 ml) was treated with 1 M HClIO4:MeCN (7:3)
and centrifugated at 3,000 g for 3 min. The extracted supernatant
solution was injected into a semipreparative HPLC column (YMC
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ODS A-324, YMC Co. Ltd., Kyoto, Japan; 10 mm ID X 30 cm
long)withasolventsystemof0.1 Mammoniumformate:acetonitrile
(60:40) at a flow rate of 5.0 ml/min. The eluates were collected at
30-sec intervals, and radioactivity was counted with a y-counter.
Metabolite correction was performed on pI'AC using a previously
described method [7]. Briefly, the empirical function for express-
ing the fraction of untransformed tracer remaining at time t,
1/(1+(at)?)B, was fitted with a Nelder-Meads simplex algorithm
[21] using a least-squares method with initial guesses of 0.1 for
both o and B. The acquired PET and metabolite-corrected blood
data were analyzed using software PMOD (PMOD Technologies
Ltd., Adliswil, Switzerland), which calculates quantitative param-
eters based on kinetic modeling. Parametric 3D maps of total dis-
tribution volume (tDV) in the brain were generated using the clas-
sical Logan plot [22] as implemented in PMOD software.

PET Image Analysis

Images were analysed using software SPM8 (Wellcome De-
partment of Cognitive Neurology, London, UK [http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/]) and Image] 1.42q (National
Institutes of Health, Bethesda, Md., USA [http://rsb.info.nih.
gov/ij/]), based on built-in functions.

Region of Interest Analysis

The tDVs of the total cerebral cortices were calculated using a
semi-automatic method. Axial, three-dimensional spoiled gradi-
ent echo images or magnetization-prepared rapid gradient echo
images were obtained from a 1.5-T MRI unit (Signa Horizon LX
CV/i; GE Healthcare, Milwaukee, Wisc., USA, or Magnetom
Symphony; Siemens, Tokyo, Japan) for anatomical reference,
which were segmented into gray and white matter using the SPM8
prior probability templates. The intensity nonuniformity bias,
which is caused by a smooth, spatially varying artifact induced by
the scanner, was corrected to aid segmentation. The total cerebral
cortices in the probability maps of the gray matter were extracted
by tracing with a manually driven mouse cursor on ImageJ with
threshold of the probability maps set at 0.5. They were co-regis-
tered to the tDV images of each subject. The co-registered images
were used as mask images of the cerebral cortices, and were pro-
jected to tDV images of each subject to extract the cerebral corti-
ces on the tDV images. Finally, the mean tDV value of the cerebral
cortices was calculated using the histogram function of Image].

The two-tailed t test was used for group comparison. Spear-
man’s simple correlation and then partial correlations covarying
out the effects of sex, age and education were used for correlation
analysis between mean tDVs of the cerebral cortices and the re-
sults of the cognitive tests at baseline and the cognitive improve-
ments after 3 months of donepezil therapy. The software SPSS 17.0
(SPSS1Inc., Chicago, I, USA) was used for the statistical analysis.
The statistical significance level was set at p < 0.05. The signifi-
cance level for multiple comparisons was not corrected because of
the explorative nature of this study.

Statistical Parametric Mapping (SPM) Analysis

The template image of tDV was created using the 3D gradient-
echo MR images in the 13 healthy control subjects. Using SPMS,
the MR images were coregistered to tDV image, and both MR and
tDV images were spatially normalized to a standard anatomic ori-
entation (Montreal Neurological Institute space) by obtaining pa-
rameters from MR images. Then, the template tDV image was
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Table 2. Results of clinical assessments before and after 3 months
of oral administration of donepezil in patients with Parkinson’s
disease dementia (n = 12)

- Score - Pre- Post- p
range ° treatment ' treatment - value*

MMSE 0-30 21.8+42 23.0*34 0.187
Digit span (WAIS-R) 0-28 8.1%3.1 7.8£3.0 0.536
Fluency

Phonetic - 11.6x43 13.0*63 0402

Animals - 83%33 89%34 0.457
TMT-A - 162.8+£81.8 166.7+110.7 0.896
Recall test (ADAS) 0-10 56x1.7 5614 1.000
Recognition test

(ADAS) 0-12 33%26 39%33 0.549
Visuoperceptual test 0-90  76.6%+23.5 834%58 0.320
NPI 0-144 132*x119 73x7.7 0.058
UPDRS part III 0-108 23.1x9.6 227x12.1 0.798

Values are expressed as mean * 1 SD.
* Paired t test.
NS = Not significant (p > 0.05).

generated by averaging these 13 normalized images and smooth-
ing the averaged images using an 8-mm Gaussian kernel, as 8-mm
smoothing is used for the estimation of normalization parameters
in SPM8. Parametric tDV images were normalized using the tDV
template and written using bilinear interpolation. Finally, a
Gaussian kernel of 8 mm was used in smoothing of the paramet-
ric images. As tDV is an absolute value, SPM analysis was per-
formed without global normalization. The between-group com-
parison that examines the difference in tDV values at voxel level
was performed using analysis of covariance (ANCOVA) with sex,
age, and education as covariates as an explorative analysis cover-
ing the whole brain without any a-priori hypothesis.

Correlation analyses between tDV and cognitive assessments
at baseline, and between tDV and cognitive improvements after 3
months of donepezil therapy in PDD patients were also performed
for each voxel with and without covarying out the effects of sex,
age, and education and using the general linear approach. Statisti-
cal significance level was set at p < 0.005 without correction for
multiple comparison and cluster extent threshold was 100 voxels.

Results

The results of cognitive and clinical assessments at
baseline and after 3 months of donepezil therapy for pa-
tients with PDD are shown in table 2. The MMSE, verbal
fluency, complex visual tasks, and NPI showed an im-
provement; however, the changes did not reach statistical
significance. The mean tDVs of the cerebral cortices in

140 Eur Neurol 2012;68:137-143

Fig. 1. Regions with significant ["'C]donepezil tDV decrease in the
group of PDD as compared with the normal control group. Coro-
nal (upper row) and sagittal (lower row) views in projection onto
a standard MRI as 3D surface projection (SPMS, Puncorrected <
0.005, cluster extent threshold 100 voxels).

the PDD group (7.9 % 2.2 ml/ml) were significantly low-
er than those of the control group (10.2 £ 2.7 ml/ml) in
the mean decrease rate of 22.7% (p = 0.028). In the SPM
analysis, the PDD group exhibited a widespread tDV re-
duction as compared with the control group, comprising
nearly the entire brain (fig. 1).

In the Spearman’s simple correlation analysis, mean
tDVs of the cerebral cortices did not show significant cor-
relation with cognitive improvements after 3 months of
donepezil therapy. In the partial correlation analyses (ta-
ble 3), the improvement of the visuoperceptual test score
showed significant positive correlation with tDVs of the
cerebral cortices (correlation coefficient = 0.837, p =
0.005). SPM correlation analysis without covarying out
the effects of sex, age and education did not show signifi-
cant correlation between tDVs and the cognitive improve-
ments after 3 months of donepezil therapy. SPM correla-
tion analysis with covarying out the effects of sex, age and
education did not show a localized correlated region in the
brain, but showed diffuse positive correlation between
tDVs and change in visuoperceptual test after 3 months of
donepezil therapy. Neither region of interest analysis (ta-
ble 3) nor SPM analysis showed significant correlation be-
tween the cognitive assessments at baseline and tDV.
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