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Table i  Clinical characteristics
Variables Total (n = 138)  With SEC (n =21)  Without SEC (n = 117)  P-value
Age, years 63 + 10 66+ 9 63+ 11 0.16
Male, n (%) 99 (72) 14 (67) 85 (73) 031
Body mass index, kg/m? 23.5 + 3.0 243 +35 234+ 29 0.24
Heart rate, bpm 65+ 12 66 + 14 64 + 11 0.62
Atrial fibrillation period, years 30+35 26+ 28 31+ 36 0.53
Hypertension, n (%) 79 (57) 15 (71) 64 (55) 0.15
Diabetes mellitus, n (%) 22 (16) 5(24) 17 (15) 0.28
Heart failure, n (%) 20 (14) 7 (33) 13 (11) 0.008
History of thromboembolism, n (%) 8 (6) 3(14) 54 027
CHA2DS2-VASc score 21+14 30+ 16 19+13 0.001
Anticoagulation therapy, n (%) 72 (52) 11 (52) 61 (52) 0.92
Haematocrit, % 353 + 3.6 355+ 3.0 352437 0.78
International normalized ratio of prothrombin time® 19+ 05 20+ 04 19 + 0.5 0.70
Left atrial volume by computed tomography, cm® 74+ 19 87 +22 71418 0.0003
Left atrial volume index by computed tomography, cm®/m? 58 + 17 69 + 24 56 + 15 0.001
SEC, spontaneous echo contrast.
*International normalized ratio of prothrombin time was an average value in patients receiving warfarin.
Table 2 Echocardiographic parameters
Variables Total With SEC Without SEC P-value
(n =138) (n=121) (n=117)
Transthoracic echocardiography
Left ventricular ejection fraction, % 67 +9 65+ 12 67 + 8 026
Left ventricular mass index, g/m"’ 89 + 27 109 + 28 85 + 26 0.0005
Diastolic early transmitral flow velocity (E), cm/s 604 +19.5 644 + 318 59.6 + 165 0.31
Diastolic early mitral annular velocity (e’), cm/s 69+ 2.5 55+27 71+ 24 0.007
Diastolic late transmitral flow velocity (A), cm/s 64.5 + 183 63.3 + 142 64.8 + 19.0 0.75
Diastolic late mitral annular velocity (2), cm/s 81+24 59+19 85+22 <0.0001
Diastolic early transmitral flow velocity/late transmitral flow 099 + 042 090 + 0.32 1.00 + 043 0.32
velocity (E/A)
Diastolic early transmitral flow velocity/mitral annular velocity (E/e’)  10.7 + 4.9 13.5 + 8.5 102 + 3.8 0.004
Class of diastolic dysfunction®
Normal function, n (%) 23 (17) 2 (10) 21 (18) 0.53
Grade | (impaired relaxation), n (%) 27 (20) 5(24) 22 (19)
Grade Il (pseudo normal left ventricular filling), n (%) 53 (38) 6 (29) 47 (40) 0.34
Grade lll (restrictive filling), n (%) 35 (25) 8 (38) 27 (23)
Transoesophageal echocardiography
Left-atrial appendage flow velocity, cm/s 494+ 165 322+ 111 525+ 154 <0.0001

SEC, spontaneous echo contrast.

®Class of diastolic dysfunction recommended by the American Society of Echocardiography and the European Association of Echocardiography.

Association with a’ and surrogate makers
for LA thrombus

We divided the study patients into four groups based on the quar-
tile of @/, and compared the incidence of SEC and LA appendage
flow velocity among the quartiles. As demonstrated in Figure 1,

more patients in the lowest quartile of a' (<6.4 cm/s) had SEC
than those in the other quartiles (44 vs. 6%, P<0.0001).
Figure 2 shows that patients in the lowest quartile of a’ had signifi-
cantly lower LA appendage flow velocity than those in the other
quartiles (39 + 13 vs. 53 £ 16 cm/s, P << 0.0001). Furthermore,
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Figure | Incidence of spontaneous echo contrast in each quar-
tile (Q) of diastolic late mitral annular velocity (a'). Range of a’ in
each quartile is expressed in parentheses. More patients in the
lowest quartile of @' (Q1) had spontaneous echo contrast than
those in the other quartiles (Q2—-Q4, P < 0.0001).
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Figure 2 Left atrial appendage flow velocity (LAAV) in each
quartile (Q) of diastolic late mitral annular velocity (a’). Range
of a’ in each quartile is expressed in parentheses. Patients in
the lowest quartile of a' (Q1) had significantly lower LAAV
than those in the other quartiles (Q2-Q4, P <C0.0001).
Increased quartile of a’ was significantly associated with higher

LAAV (P < 0.0001 by analysis of variance).

increased quartile of a’ was significantly associated with higher LA
appendage flow velocity (P < 0.0001 by analysis of variance).

Receiver-operating characteristic curve analysis was performed
to determine the best cut-off value of a’ for the prediction of
SEC (area under the curve =0.82, 95% Cl=0.74-0.91) as
shown in Figure 3. The best cut-off value of a’ was 7.0 cm/s
with a sensitivity of 80%, specificity of 81%, and predictive accuracy
of 80%.
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Figure 3 Receiver-operating characteristics curve for the pre-
diction of spontaneous echo contrast. The area under the curve
was 0.82, and the 95% Cl was 0.74—-0.91. A red arrow indicates
the optimal cut-off point.

Transthoracic echocardiographic factors
associated with SEC

In order to determine the echocardiographic factors associated
with SEC, we performed univariate and multivariate logistic regres-
sion analyses (Table 3). In the univariate analysis, high CHA2DS2-
VASc score, large LA volume index by computed tomography,
increased LV mass index, increased E/e’, decreased a’ were the
associated factors. As a result of multivariate analysis, increased
CHA2S2-VASc score and decreased a’ were independently asso-
ciated with SEC.

The value of a’ and history

of thromboembolism ;

Of the 138 patients, eight (6%) patients had a history of thrombo-
embolism. The value of a’ was significantly lower in patients with
than without a history of thromboembolism (6.3 + 2.9 vs. 82 +
2.3 cm/s, P=0.03). In addition, the frequency of patients
with a history of thromboembolism tended to be higher in the

lowest quartile of a’ compared with the other quartiles
(12 vs. 4%, P = 0.10).

LA pump function and left ventricular
filling pressure: association with LA
volume

We investigated the relationship between a’ and E/e’ which repre-
sents left ventricular filling pressure. Seventeen of 138 (12%)
patients in our study had Efe’ > 15, which is thought to be
associated with elevated left ventricular filling pressure.”®
E/e’ showed a significant inverse correlation with a’ (r= —0.43,
P < 0.0001). Furthermore, patients with E/e’ > 15 had significantly
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Tabie 3 Univariate and multivariate models of factors associated with spontaneous echo contrast

Variables

Age

Male

Body mass index

CHA2DS2-VASc score

Left-atrial volume index by computed tomography

Left ventricular mass index

Left ventricular ejection fraction

Diastolic early transmitral flow velocity/mitral annular velocity (E/e’)
Diastolic late mitral annular velocity (a’), cm/s

Univariate Multtivariate

R e P SR e e
1.04 0.99-1.09 0.16 — — —
0.75 0.28-2.04 0.58 — — —
1.003 0.99-1.01 0.51 — e —
243 1.45-4.10 0.0008 2.32 1.06-4.97 0.03
1.10 1.03-1.19 0.007 1.08 0.98-1.15 0.12
1.04 1.02-1.06 0.002 1.01 0.98-1.03 0.75
097 0.93-1.02 026 — — —
112 1.02-1.21 0.01 0.92 0.77-1.09 0.26
0.61 0.49-0.77 <0.0001 0.61 0.42-0.84 0.0026

lower &’ than those with E/fe’ <15 (6.2 + 2.3 vs. 8.3 + 2.3 cm/s,
P =0.0004).

On the other hand, a’ negatively correlated with pre-atrial con-
traction LA volume and LA volume index (r= —0.41, P < 0.0001
and r = —0.37, P < 0.0001), and E/e’ positively correlated with LA
volume and LA volume index (r = 0.41, P < 0.0001 and r = 0.41,
P < 0.0001).

Discussion

The major findings of this study are as follows. Decreased a’ was
significantly associated with SEC and reduced LA appendage flow
velocity. Furthermore, multivariate analysis revealed that decreased
a’ was independently associated with SEC. The optimal cut-off
value of & for predicting SEC was 7.0 cm/s.

Recently, Tamura et al'® reported a different transthoracic
echocardiographic method to estimate the risk of ischaemic
stroke in patients with atrial fibrillation. They showed that
decreased LA appendage wall velocity measured by transthoracic
echocardiography was associated with increased risk of cerebro-
vascular events. The advantage of our method is that a’ would
be more easily measured than LA appendage wall velocity in
most cases. In 9.4% of patients, according to their report, LA ap-
pendage wall velocity could not be measured; while 2’ could not
be measured only in one of 180 (0.6%) patients in this study.

Previous studies reported that in patients with paroxysmal atrial
fibrillation, irrespective of cardiac rhythm during transoesophageal
echocardiography, SEC in the LA was significantly associated with
an increased risk of thromboembolic events.”* In addition, patients
with low LA appendage flow during atrial fibrillation were shown
to have increased risk of thrombus formation.* Handke et al®
demonstrated that, independent of cardiac rhythm, low LA
appendage flow was closely related to SEC and thrombus
formation.

A possible explanation for the relationship between decreased
a’ and LA blood stasis is as follows. The impairment of LA con-
tractile function during atrial fibrillation and atrial stunning would
be more severe in patients with advanced atrial remodelling.”*
Decreased a' was also reported to reflect advanced atrial
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remodelling in patients with paroxysmal atrial fibrillation.® There-
fore, decreased a’ could indicate LA low blood flow.

The contraction of atrial myocardium is proportional to its initial
length, according to the Frank—Starling mechanism. %! Therefore,
LA pump function should be enhanced in response to larger
pre-atrial contraction LA volume (preload) to some extent.
However, there was an inverse correlation between LA pump
function (a’) and pre-atrial contraction LA volume in the present
study. The Frank—Starling curve has been shown to have a des-
cending limb at very large atrial volumes, as demonstrated by
Anwar et al.*’ It is possible that patients in this study were operat-
ing on the descending limb of the Frank—Starling curve, and this
may explain the inverse correlation between LA pump function
and pre-atrial contraction LA volume. In addition, depressed LA
myocardial contractility due to further progression of LA structural
remodelling beyond the range of compensation could explain this
inverse correlation. A previous study showed that LA pump func-
tion was inversely correlated with LA volume (preload) in patients
with paroxysmal atrial fibrillation.®

Decreased a' could be used as a substitute for SEC and reduced
LA appendage flow velocity. Measurement of a’ using transthoracic
echocardiography is easy and may provide additional information
about the risk of LA thrombus formation. However, this study
included a selected and limited number of patients, and an associ-
ation between decreased a’ and thromboembolic events remains
uncertain. Further studies are required before this method is
used to manage patients in routine clinical practice.

This study has several limitations. First, we mainly investigated
the relationship between a’ and surrogate makers for LA thrombus
formation (SEC and appendage flow velocity), and could not dir-
ectly assess the relationship between a’ and LA thrombus,
because the number of patients with LA thrombus was too small
for adequate statistical analysis. However, the relationship
between SEC or LA appendage flow velocity during sinus
rhythm and stroke risk in patients with paroxysmal atrial fibrillation
has never been fully determined. Next, recent episodes of atrial
fibrillation might cause subsequent atrial stunning, and was possible
to influence echocardiographic data. To avoid this influence, we
excluded patients that had symptomatic episodes of atrial
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fibrillation within 2 days prior to echocardiography. However,
atrial stunning could last longer than 2 days, and we might fail to
recognize atrial fibrillation events without significant symptom.
Additionally, the grade of SEC was not evaluated in this study, al-
though the prevalence of LA thrombus in atrial fibrillation is asso-
ciated with a higher grade of SEC.” Furthermore, we used same
patients to determine the best cut-off value of a’ for the prediction
of SEC and to evaluate the diagnostic performance of the deter-
mined cut-off value, which is not necessarily a fair method to
test diagnostic performance. Finally, there are some technical diffi-
culties with Doppler echocardiography. The motion of the mitral
annulus is not entirely due to myocardial contraction, but rather
is the summation of contraction, rotation, and translation of the
' is dependent on the Doppler angle and
can change slightly from beat to beat.

In conclusion, decreased a’ during sinus rhythm may be a useful
parameter for the prediction of LA blood stasis in patients with
non-valvular paroxysmal atrial fibrillation.

heart. Furthermore, a
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SUMMARY

Wnt signaling plays critical roles in development of
various organs and pathogenesis of many diseases,
and augmenied Wnt signaling has recently been
implicated in mammalian aging and aging-related
phenotypes. We here report that complement Cig
activates canonical Wnt signaling and promoies
aging-associated decline in tissue regeneration.
Serum C1qg concentration is increased with aging,
and Wnt signaling activity is augmented during aging
in the serum and in muitiple tissues of wild-type mice,
but not in those of Cliga-deficient mice. Clg acti-
vates canonical Wnt signaling by binding fo Frizzled
receptors and subsequently inducing Cis-depen-
dent cleavage of the ectodomain of Wnt coreceptor
low-density lipoprotein receptor-related protein 6.
Skeletal muscle regeneration in young mice is
inhibited by exogencus Clg treatment, whereas
aging-associated impairment of muscie regeneration
is restored by C1s inhibition or C1ga gene disruption.
Qur findings therefore suggest the unexpected role
of complement Clq in Wnt signal transduction and
modulation of mammalian aging.

INTRODUCTION

Wnts constitute a large family of secreted proteins that elicit
evolutionarily conserved intracellular signaling and affect diverse
cellular responses during development. Wnt signaling also plays
critical roles in various physiological and pathological processes
in adult organisms, including stem cell self-renewal/differentia-
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tion, degenerative diseases, and carcinogenesis (Blanpain
et al., 2007; Clevers, 2006; Logan and Nusse, 2004). The B-cat-
enin-dependent canonical Wnt pathway is the most understood
signaling cascade initiated by Wnt proteins. Upon Wnt stimula-
tion, cytosolic B-catenin is stabilized and translocates to the
nucleus, where it binds to T cell factor/Lymphoid enhancer factor
(Tcf/Lef) and induces Tcf/lLef-dependent transcription (Logan
and Nusse, 2004). This canonical Wnt signaling is mediated by
two types of cell surface receptors, the Frizzled (Fz) family of
serpentine proteins and the single-transmembrane protein low-
density lipoprotein receptor-related protein 5/6 (LRP5/6) (Angers
and Moon, 2009; MacDonald et al., 2009). :

Recent studies have revealed a role of Wnt signaling in the
regulation of mammalian aging. Wnt/B-catenin signaling is
augmented in a mouse model of accelerated aging (Liu et al.,
2007), and inhibition of canonical Wnt signaling reverses the
aging-associated impairment of skeletal muscle regeneration
(Brack et al.,, 2007). Moreover, this age-related activation of
Whnt signaling was attributed to the substance(s) in the serum
that binds to the extracellular cysteine-rich domain (CRD) of Fz
(Brack et al.,, 2007). However, because Wnt proteins tightly
bind to the cell surface and/or extracellular matrix and are
thought to act in a short-range manner (Kikuchi et al., 2007;
White et al., 2007), the substance(s) in the serum that activates
Wnt signaling was assumed to be distinct from classical Wnt
proteins.

Here, we show that complement C1q is an activator of Wnt
signaling. C1q activates canonical Wnt signaling by binding to
Fz receptors and subsequently inducing C1s-dependent
cleavage of the ectodomain of LRP6. Serum C1q concentration
and the expression of C1q in various tissues are increased with
aging, which are associated with increased Wnt signaling activity
in serum and in multiple tissues during aging. We further demon-
strate that activation of Wnt signaling by C1q accounts for the
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impaired regenerative capacity of skeletal muscle in aged mice.
These results suggest that C1q activates Wnt signaling and
modulates mammalian aging-related phenotypes.

RESULTS

Complement Ciq Is a Fz-Binding Protein in the Serum
Consistent with a previous report (Brack et al., 2007), mouse and
human serum activated canonical Wnt signaling, as assessed
by the TOPFLASH reporter gene assay that reflects Tci/Lef-
dependent transcription (Figure 1A). Human serum-induced
activation of Wnt signaling was partly suppressed by a Fz8
CRD-IgG/Fc fusion protein (Fz8/Fc), but not by IgG/Fc (Fig-
ure 1B), and serum from aged mice showed higher TOPFLASH
activity than serum from young mice (Figure 1C). We also found
that the serum obtained from two different mouse models
of heart failure more potently increased TOPFLASH activity
compared with serum from aged mice (Figure 1D). We therefore
hypothesized that the serum of mice with heart failure contains
the Wnt activator more abundantly than that of aged mice,
and we used the former as a starting material to isolate the
Wnt activator in the serum. Precipitation of Fz8/Fc-binding
proteins followed by SDS-PAGE identified a 26 kDa protein
that was upregulated in the serum from mice with heart failure
(Figure 1E). Mass spectrometric analysis revealed that this
26 kDa protein was complement C1ga, which is a major constit-
uent of complement C1q.

C1q is composed of 18 polypeptides: 6 C1ga, 6 Cigb, and 6
C1gc chains, each encoded by 3 individual genes. Although C1q
is known to bind to Fc portion of aggregated immunoglobulins,
purified C1q was precipitated by Fz8/Fc and a Fz8 CRD-alkaline
phosphatase (AP) fusion protein, but not by IgG/Fc or AP protein
in a pull-down assay (Figures 1F and 1G and Figures S1A and
S1B available online), indicating that C1qg binds to CRD of Fz8.
C1q also bound to CRD of other Fz receptors such as Fz1, 2,
4, and 7 (Figure S1C).

Complement C1q Is an Activator of Canonical

Wnt Signaling

We next investigated whether C1q is a specific ligand for Fz
receptors. A binding assay demonstrated that the interaction

between C1g and Fz8 CRD was specific and saturable (Fig-
ure 1H). A Scatchard plot analysis revealed that Ciq has a
single binding site for Fz8 CRD, with a binding affinity compa-
rable to that of Wnt3A (Kdg1q: 2.8 nM, Kdwniza: 1.25 nM) (Figures
11, $1D, and S1E). A heterologous competition assay revealed
that C1g and Wnt compete with each other for the binding to
Fz8 CRD (Figure S1F). Purified C1q dose dependently increased
TOPFLASH activity (Figure 1J), stabilized cytosolic B-catenin
(Figure 1K), and increased the expression of Axin2, a well-estab-
lished target gene of canonical Wnt signaling (Figure 1L). C1g-
induced TOPFLASH activity was inhibited by Fz8/Fc or Dkk1
(Figure 1J). These results strongly suggest that C1q is a Fz-
binding protein that activates canonical Wnt signaling.

Despite the similar binding affinity to Fz receptor, dose-
response curves of C1g and Wnt3A on TOPFLASH activity
revealed that the ECsg of C1q on activation of Wnt signaling
(259 nM) was 200-fold higher than that of Wnt3A (1.27 nM)
(Figures 1M and 1N). Based on the mode of C1q activation by
immunoglobulins or SIGN-R1 (Duncan and Winter, 1988; Kang
et al., 2006; Schumaker et al., 1986), in which the binding of
multiple or aggregated immunoglobulins or SIGN-R1 to Ciq
initiates C1q activation, we hypothesized that increasing the
amount of Fz receptors may promote C1g-induced activation
of Wnt signaling. Indeed, overexpression of Fz8 decreased
the ECso of C1g by 13-fold (259 nM to 22.8 nM), whereas the
ECso of Wnt3A was less affected (1.27 nM to 0.852 nM)
(Figures 1M and 1N). These results suggest that the mode of
Wnt signaling activation by C1q is distinct from that by Wnt3A
and is affected by the cellular context, including the density of
Fz receptors.

C1iq Mediates Serum-induced Activation of Wnt
Signaling In Vitro and Maintains Basal Wnt Signaling
Activity in Multiple Tissues In Vivo

We assessed whether serum-induced activation of Wnt signaling
is attributable to C1q. C1g-depleted serum or serum treated with
Fz8/Fc showed lower TOPFLASH activity compared with normal
serum and C3- or C5-depleted serum, and addition of Fz8/Fc to
C1g-depleted serum did not further reduce TOPFLASH activity
(Figure 2A). Likewise, serum from C1qga-deficient mice showed
lower TOPFLASH activity compared with serum from wild-type

Figure 1. Complement C1iq Binds to Fz and Activates Wit Signaling

(A-D) TOPFLASH assay. Mouse and human serum (10%) and Wnt3A protein (10 ng/ml) activated canonical Wnit signaling to the same degree (A). Activation of
Whnt signaling by human serum was suppressed by Fz8/Fc (500 ng/ml). *p < 0.05 versus human serum (B). Serum-induced Wnt signaling activity was higher in
aged mice (C) and in mice with heart failure (D). Data are presented as mean =SD. PO, mice with pressure overload; DCM, mice with dilated cardiomyopathy.
(E) Silver staining of SDS-PAGE gel. Serum obtained from control mice and mice with heart failure were incubated with Fz8/Fc and precipitated by protein G.
SDS-PAGE of the precipitates revealed that the amount of a protein of ~26 kDa (arrowhead) was increased in the serum from mice with heart failure. PO, mice
with pressure overload; DCM, mice with dilated cardiomyopathy.

(F and G) Pull-down assay. C1q was precipitated by Fz8/Fc, but not by IgG/Fc (F). C1q was precipitated by Fz8 CRD-AP, but not by AP (G).

(H and 1) Binding kinetics of C1q to Fz8 CRD. A binding curve (H) and a Scatchard plot (I) are shown.

(J) TOPFLASH assay. C1q dose dependently activated canonical Wnt signaling, which was blocked by Fz8/Fc (20 png/ml) or Dkk-1 (20 ng/ml). Data are presented
as mean +SD. *p < 0.01 versus of C1q (100 pg/mi).

(K) B-catenin stabilization assay. B-catenin stabilization assay was performed in HEK293 cells 1 hr after C1q stimulation (200 pg/mi).

(L) Axin2 mRNA levels. C1q (100 pg/ml) and Wnt3A (10 ng/ml) activate canonical Wnt signaling to the same degree as assessed by Axin2 mRNA induction in
HEK293 cells. Axin2 mRNA was assessed 24 hr after stimulation. Data are presented as mean +SD.

(M and N) Dose-response curves of C1q and Wnt3A on TOPFLASH activity. Fz8 overexpression induced marked leftward shift of the response curve of
C1g-induced TOPFLASH activity (M) but had minimal effects on that of Wnt3A-induced TOPFLASH activity (N).

See also Figure S1.
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Figure 2. C1q Mediates Serum-Induced Activation of Wnt Signaling In Vitro and Is Required for Basal Wnt Signaling Activity In Vivo

(A) TOPFLASH assay. Wnt signaling activation by serum was partially blocked by Fz8/Fc (10 ug/mi) or C1q depletion, but not by C3 or C5 depletion. Combination
of Fz8/Fc and C1q depletion did not further decrease TOPFLASH activity. Data are presented as mean £8D. *p < 0.01 versus normal serum.

(B) TOPFLASH assay. In wild-type (WT) mice, serum from aged mice showed higher TOPFLASH activity than serum from young mice. Serum from young C1qga-
deficient mice showed lower TOPFLASH activity compared with serum from young WT mice, and the elevation of TOPFLASH activity during aging was not
observed in C1qga-deficient mice. Data are presented as mean +SD. *p < 0.01 versus serum obtained from young WT mice. *p < 0.01 versus aged serum
obtained from WT mice.

(C~F) B-catenin stabilization assay. Human serum activated Wnt signaling, which was abolished by Fz8/Fc (10 ng/ml) (C). Wnt signaling activation by serum was
also abolished by C1q depletion, but not by C3 or C5 depletion (D). Reduced Wnt signaling activation by C1q depletion was fully restored by C1q (10 pg/ml)
application (E). The results were quantified by measuring the relative amount of B-catenin over actin (F). Data are presented as mean +SD. *p < 0.05 versus normal
human serum (n = 5).
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or C3-deficient mice at the age of 3 months (Figure S2). More-
over, augmentation of serum TOPFLASH activity by aging was
not observed in C1ga-deficient mice (Figure 2B). Thus, C1qg
mediates serum-induced activation of Wnt signaling and
accounts for increased Wnt signal activation by serum from
aged mice.

We also assessed the activation of Wnt signaling by analyzing
cytosolic B-catenin level at 1 hr after the treatment with serum
because TOPFLASH assay is performed at relatively later time
points after serum stimulation and therefore may be affected
by other factors that indirectly modulate Tcf/Lef-dependent
transcription. Indeed, unlike TOPFLASH assay, serum-induced
activation of Wnt signaling as assessed by p-catenin stabilization
was almost completely blunted by Fz8/Fc or C1qg depletion, but
not by C3 or C5 depletion, which was fully recovered by the addi-
tion of C1q (Figures 2C-2F). These results further support the
notion that C1q is responsible for serum-induced activation of
canonical Wnt signaling.

We further investigated whether activation of Wnt signaling by
C1q is physiologically relevant in vivo. Real-time PCR analysis
revealed that expression levels of Axin2 gene were decreased
in various tissues of C1qa-deficient mice, but not in those of
C3-deficient mice, most notably in spleen, intestine, lymph
nodes, and skeletal muscle (Figure 2G). This result suggests
that basal activity of canonical Wnt signaling is at least in part
dependent on C1qg and underscores the physiological relevance
of C1g-induced Wnt signaling activation in vivo.

C1iqg Mediates Augmented Wnt Signaling Activity
Associated with Aging

We next examined whether C1gq mediates augmented Wnt
signaling activity during aging. ELISA and western blot analysis
revealed that serum C1g concentration was increased with
aging (Figures 3A and 3B). It was previously reported that cells
of the monocyte/macrophage lineage are the major source of
serum C1qg (Petry et al.,, 2001). Indeed, expression levels of
C1q in peritoneal macrophages were higher in 1-year-old and
2-year-old mice than in young mice (2-months-old) (Figure 3C),
consistent with the observation that serum C1q levels were
upregulated at these ages (Figures 3A and 3B). Expression levels
of C1q were upregulated in various tissues of 2-year-old mice
(Figure 3D), suggesting that upregulation of C1q in macrophages
causes an initial increase in serum C1q levels and that C1q
produced in other tissues at later stages may contribute to
a further increase in serum C1q levels.

We also assessed whether C1q is responsible for age-associ-
ated augmentation of Wnt signaling activity. An age-associated
increase in Axin2 mRNA was observed in various tissues of
wild-type mice. On the other hand, there was no significant
difference in Axin2 mRNA levels between young and aged
C1ga-deficient mice in all tissues examined (Figure 3E). Thus,
C1q is responsible for augmented Wnt signaling activity in
multiple tissues of aged animals.

C1q Activates Canonical Wnt Signaling by Inducing
C1is-Dependent Cleavage of the Extracellular Domain

of LRP6

The complement system is one of the major components of the
mammalian immune responses and plays a pivotal role in innate
immunity (Walport, 2001). The classical complement pathway is
triggered by C1, which is composed of C1q and two proen-
zymes, C1r and C1s. Conventionally, C1q binds to aggregated
immunoglobulins, which leads to conformational change and
subsequent activation of C1qg (Duncan and Winter, 1988; Schu-
maker et al., 1986). Upon C1q activation, C1rundergoes autoac-
tivation and, in turn, cleaves and activates C1s. C1s then cleaves
C2 and C4 to instigate following activation steps of the comple-
ment system. We therefore tested whether C1r/C1sisinvolved in
C1g-induced activation of Wnt signaling. Consistent with the
observation that purified C1qg activates Wnt signaling in
a serum-free condition (where no exogenous C1r/C1s is thought
to exist) (Figures 1J-1L), western blot analysis revealed that both
C1rand C1s are expressed in the target cells and secreted into
the culture media (Figure 4A). Knockdown of C1r/C1s by siRNAs
totally blunted C1qg-induced cytosolic B-catenin stabilization and
TOPFLASH activation (Figures 4B and 4C). Likewise, addition of
C1 inhibitor (C1-INH), an endogenous inhibitor of C1rand Cis, or
a neutralizing antibody against C1s (M241) (Matsumoto and
Nagaki, 1986) strongly inhibited C1g-induced activation of Wnt
signaling (Figure 4D). To test whether C1s is activated upon
C1g-Fz interaction, we treated NIH 3T3 cells with C1q and C4
in a serum-free condition. C4 is a target of C1s, and its cleaved
product, C4b, covalently binds to the cellular surface after
cleavage. We found that overexpression of Fz8 pronouncedly
enhanced C4b deposition on the cellular surface (Figures 4E
and 4F). These results suggest that endogenous Cir and Cis
are activated upon C1g-Fz binding and that C1g-induced activa-
tion of Wnt signaling requires protease activity of C1s.

In addition to C2 and C4, C1s has been reported to cleave
other cell surface proteins such as major histocompatibility
complex {(MHC) class | molecules (Eriksson and Nissen, 1990).
Because deletion of the extracellular domain of LRP6 results in
constitutive activation of canonical Wnt signaling (Liu et al,,
2003; Mao et al.,, 2001), we tested whether LRPS6 is the target
of C1s. Treatment of LRP6 extracellular domain-lgG/Fc fusion
protein with active C1s resulted in the appearance of two major
cleaved products (Figure 4G), and N-terminal amino acid
sequencing revealed that LRP6 was cleaved between Arg792
and Ala793 in the third B-propeller domain. The C1s cleavage
site of LRP6 was conserved in various species, and similar
sequences were also found in the third B-propeller domain of
LRP5 (Figure 4H). The C1s cleavage site of LRP6 is adjacent to
the Dkk1-binding site (Ahn et al., 2011; Chen et al, 2011).
However, the inhibitory effect of Dkk1 on C1g-induced Wnt acti-
vation (Figure 1J) does not appear to be due to the direct inhibi-
tion of LRP6 cleavage because Dkk-1 did not have major impact
on in vitro cleavage of LRP6 by C1s (data not shown).

(G) Expression levels of Axin2 mRNA in various tissues of 3-month-old wild-type (n = 8), C1ga-deficient (n = 8), and C3-deficient (n = 4) mice. Expression levels of
Axin2 gene expression were lower in various tissues of C1ga-deficient mice, but not in those of C3-deficient mice. Data are presented as mean +SD. *p < 0.05

compared with wild-type mice. L.N., lymph node; SkM, skeletal muscle.
See also Figure S2.
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Figure 3. Ct1q Mediates Augmented Wnt Signaling Associated with Aging

(A and B) Serum C1g concentration of mice at different ages was assessed by ELISA (A) and western blot (B). Serum C1qg concentration was increased with aging.
Data in (A) are presented as mean +SD.

(C and D) Western blot analysis of C1q in peritoneal macrophages (C) and in various tissues (D) derived from wild-type mice at different ages. C1q expression in
macrophages and skeletal muscle was increased at 1 year of age, whereas a robust increase in C1q expression in other tissues was observed at 2 years of age.
(E) Expression levels of Axin2 mRNA in various tissues from young (3 months old) and aged (2 years old) wild-type (young, n = 8; aged, n = 4) and C1qa-deficient
mice (young, n = 8; aged, n = 3). Axin2 gene expression was increased with aging in multiple tissues of wild-type mice (WT), but not in those of C1ga-deficient mice
(C1gKO). L.N., lymph node; SkM, skeletal muscle. Data are presented as mean +SD. *p < 0.05 compared with young wild-type mice.
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(A) HepG2 cells were cultured and stimulated with or without C1q (100 ng/mi) in a serum-free condition for 24 hr. Culture media and total cell lysate were analyzed
by western blotting. Both C1r and C1s protein were observed in the culture media under serum-free condition.

(B) B-catenin stabilization assay. HepG2 cells transfected with control siRNA (Con) responded to C1q (100 pg/ml), but those transfected with siRNAs against Cir
and C1s (C1r/s) did not.
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We also assessed whether C1q induces cleavage of endoge-
nous LRP6 in HepG2 cells. C1g-induced activation of Wnt
signaling was associated with the appearance of cleaved
N-terminal fragment of LRP6 (~~100 kDa) in culture media, which
was detected by an antibody raised against extracellular portion
of LRP6 (LRP6 ECD Ab), but not by an antibody against LRP&
intracellular domain (LRP6 ICD Ab) (Figure 5A). When cells
were treated with C1q in the presence of a lysosomal inhibitor
Chloroquine, LRP6 ICD Ab detected a protein compatible in
size with the C-terminal cleaved fragment of LRP6 (~140 kDa)
in the membrane/organelle fraction (Figure 5B). Notably, there
was no apparent change in the expression levels of full-length
LRP6 by C1q treatment, and this band was not observed in the
absence of Chloroquine or when the cells were treated with
Wnt3A (Figure 5B). Thus, a relatively small fraction of LRP6 is
cleaved by Cis following C1q treatment, and the resultant
C-terminal fragment of LRP6 produced by Cis cleavage
appears to be subjected to lysosomal degradation.

We next tested whether serum induces cleavage of LRP6 in
a Cl1g-dependent manner. HepG2 cells were transfected with
N-terminally myc-tagged LRP6 and treated with serum. Western
blot analysis following immunoprecipitation with anti-myc anti-
body revealed that the cleaved product of LRP6 was detected
in the culture media following treatment with normal serum, but
not with C1g-depleted serum (Figure 5C). The ability to cleave
LRP6 was fully recovered after restoring C1q to C1g-depleted
serum (Figure 5C). The N-terminal fragment of endogenous
LRP6 was also detected in the serum from wild-type mice, but
not in C1qga-deficient mice, and the concentration of LRP6
C-terminal cleaved fragment was increased by ~2-fold in aged
mice compared with young mice (Figures 5D and 5E). These
observations indicate that both serum-induced LRP6 cleavage
in vitro and an age-dependent increase in LRP6 cleavage in vivo
occur in a C1g-dependent manner.

To examine whether LRP6 cleavage by Cis is sufficient
for Wnt signaling activation by C1q, we generated a LRP6
deletion mutant that lacks amino acids 21-792 (Del-LRP6).
Transfection of Del-LRP6 increased Wnt signaling activity by
47-fold compared with wild-type LRP6 (WT-LRP6) (Figure 5F),
suggesting that cleavage of LRP6 between Arg792 and
Ala793 is sufficient for activation of canonical Wnt signaling. As
phosphorylation of the intracellular region of LRP5/6 is a halimark
of LRP5/6 activation (Tamai et al., 2004; Zeng et al., 2005), we
investigated the phosphorylation status of LRP6 after Ciqg
stimulation. When the cells were treated with C1qg together
with Chloroquine for 3 hr, phosphorylation of cleaved LRP6

C-terminal fragment (~140 kDa) was detected (Figure S3A). Of
note, we found that phosphorylation of full-length LRP6 was
also increased following C1q treatment (Figure S3A). Moreover,
transfected Del-LRP6 was strongly phosphorylated even in
the absence of Wnt3A stimulation (Figure S3B) and induced
the phosphorylation of simultaneously transfected full-length
WT-LRP6 (Figure S3C). These results suggest that a rela-
tively small amount of cleaved LRP5/6 fragment may amplify
Wnt signaling by inducing the phosphorylation of uncleaved
LRP5/6.

To test whether LRP6 cleavage by C1s is required for C1g-
induced activation of Wnt signaling, we generated a C1s-resis-
tant LRP6 mutant in which Arg792 and Ala793 were substituted
to glycines (Mt-LRP86). Overexpression of WT-LRP6 or Mt-LRP6&
induced an ~7-fold increase in TOPFLASH activity (Figure S3D).
Although WT-LRP6-transfected cells and Mt-LRP6-transfected
cells responded to Wnt3A treatment similarly, C1q treatment
strongly enhanced TOPFLASH activity (~18-fold) in WT-LRP6-
transfected cells but only marginally in Mt-LRP6-transfected
cells (~1.7-fold) (Figures 5G, 5H, and S3D). This slight increase
in C1g-induced TOPFLASH activity in Mt-LRP6-transfected cells
presumably reflects the activation of Wnt signaling mediated by
cleavage of endogenous LRP8. These results suggest the
requirement of LRP6 cleavage in Clg-induced activation of
Wnt signaling.

We next tested the requirement of C1r, C1s, LRP5/6, and Fz
receptors in C1g-induced LRP6 cleavage and subsequent acti-
vation of Wnt signaling by siRNA-mediated knockdown of C1r,
C1s, LRP5, and LRPS (Figure S3E) or by overexpression of Shisa
protein to reduce cell surface Fz receptors (Yamamoto et al.,
2005; Zeng et al., 2008). The amount of C-terminal (LRP6 ICD)
and N-terminal (LRP6 ECD) cleaved forms of LRP6 following
C1q treatment was dramatically decreased by C1r/C1s knock-
down, LRP5/6 knockdown, or Shisa overexpression (Figure 5I),
which was associated with inhibition of C1g-induced B-catenin
stabilization and TOPFLASH activation (Figure 5J). These results
collectively suggest that C1q binding to Fz receptors results in
the activation of C1r/C1s, which cleaves LRP5/6 and produces
N-terminal truncated form of LRP5/6, leading to activation of
canonical Wnt signaling (Figure 5K).

C1ig Activates Wnt Signaling in Skeletal Muscle

and Exhibits Differential Effects on Satellite Cells

and Fibroblasts

Activation of Wnt signaling in skeletal muscle was shown to
mediate a decrease in regenerative capacity and an increase in

(C) TOPFLASH assay. HEK293 cells transfected with control siRNA (siCon) responded to both C1q (100 pg/ml) and Wnt3A (10 ng/mi), but those transfected with
siRNAs against C1r and C1s (siC1r/s) responded to Wnt3A, but not to C1q. Data are presented as mean +SD.

(D) TOPFLASH assay. Activation of Wnt signaling by C1q (100 pg/ml) was inhibited by an endogenous C1-inhibitor (C1-INH: 100 pug/ml) or by a neutralizing
antibody against C1s (M241: 100 pg/ml). Data are presented as mean +SD. *p < 0.01 versus C1q alone.

(E and F) C4 cleavage assay. C4b deposition on the cell surface was assessed by immunostaining (E) or ELISA (F). C4b deposition was increased after Fz8
overexpression. Data are presented as mean +SD. *p < 0.05 versus control vector (n = 5).

(G) Coomassie staining of SDS-PAGE gel. LRP6 extracellular domain (ECD})-IgG/Fc fusion protein (4 pg) was incubated with active-C1s (176 ng) with or without
aneutralizing antibody against C1s (M241). Proteins were fractionated by SDS-PAGE and visualized by Coomassie staining. C1s treatment of LRP6 ECD resulted
in the appearance of two major bands (indicated by * and **). Amino acid sequencing revealed that * represented LRP6 ECD (amino acids 793-1368) + IgG/Fc, and

** represented LRP6 ECD (amino acids 20-792).

(H) Amino acid sequence alignment of potential C1s cleavage site in the third B-propeller domain of LRP5 and LRP6. C1s cleavage site is predicted to be between
arginine (R) and alanine (A). Cleavage site of C1s is highly conserved among species.
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Figure 5. C1q Activates Wnt Signaling by Inducing Cis-Dependent Cleavage of the Extracellular Domain of LRP6

(A) Western blot analysis of LRP6 fragment in the culture media from HepG2 cells treated with C1q (100 pg/mi). N-terminal cleaved fragment of endogenous LRP&
was detected in the culture media. ECD, extraceliular domain; ICD, intracellular domain.

(B) Western blot analysis of LRP6 in the membrane/organelle fraction of HepG2 cells treated with C1g (100 pg/ml) or Wnt3A (10 ng/ml). C-terminal cleaved
fragment of LRP6 (~140 kDa) was detected by anti-LRP6 ICD Ab only in the cells treated with C1q plus lysosomal inhibitor Chioroquine (50 pM).
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tissue fibrosis associated with aging (Brack et al., 2007). We
examined the effects of C1q treatment on skeletal muscle satel-
lite cells and fibroblasts because these cell types play important
roles during skeletal muscle regeneration, the former being the
source of new myocytes and the latter being responsible for fi-
brotic change of the regenerating tissue. We isolated satellite
cells and fibroblasts from skeletal muscle of young mice and
treated them with C1g or Wnt3A. Both treatments stabilized
cytosolic B-catenin (Figure 6A) and increased Axin2 gene
expression (Figure S4A) in these cell types. Serum from aged
mice also stabilized cytosolic B-catenin and increased Axin2
gene expression more potently than serum from young mice,
and this effect of serum from aged mice was inhibited by M241
(Figures 6B and S4B). These results suggest that C1q activates
Wnt signaling both in satellite cells and fibroblasts and that C1qg
accounts for increased Wnt signaling activation by serum from
aged mice in these cells.

We also tested whether C1q activates Wnt signaling in skeletal
muscle in vivo using TOPGAL mice, which express B-galactosi-
dase (B-gal) transgene under the control of Tcf/Lef-binding sites.
For C1q application, we placed hydrogel containing C1g on the
gastrocnemius muscle. Interestingly, C1q treatment alone did
not activate Wnt signaling in skeletal muscle of young mice.
However, 2 days after cryoinjury, Wnt signaling activity was
slightly increased in injured skeletal muscle of control mice and
was robustly enhanced in mice treated with Clqg (Figures 6C
and 6D). Real-time PCR analysis revealed that the expressions
of C1rand C7s, but not Irp5 or Irp6, were markedly upregulated
after injury (Figure 6E), suggesting that induction of C1rand C1s
contributes to the enhanced Wnt signaling activation by C1q in
injured muscle.

We next examined the effect of C1g-induced activation of Wnt
signaling on satellite cells and fibroblasts derived from skeletal
muscle in vitro. We found that C1q and Wnt3A attenuated satel-
lite cell proliferation, whereas they stimulated fibroblast prolifer-
ation (Figures 6F and 6G). C1g and Wnt3A also increased the
collagen production/release from fibroblasts (Figure 6H). Like-
wise, serum from aged mice attenuated satellite cell prolifera-
tion, stimulated fibroblast proliferation, and increased collagen

production in fibroblasts, and these effects were abolished by
M241 treatment (Figures 61-6K). We also found that C1q treat-
ment decreased the number of proliferating satellite cells and
increased the number of proliferating fibroblasts in skeletal
muscle in vivo (Figures 6L, 6M, S4C, and S4D). Taken together,
reduced regenerative capacity associated with increased
fibrosis in the skeletal muscle of aged organisms may be ex-
plained by differential effects of C1g-induced activation of Wnt
signaling on satellite cells and fibroblasts.

C1q Mediates Impaired Skeletal Muscle Regeneration
Associated with Aging

We then examined whether C1q mediates reduced regenerative
capacity of skeletal muscle associated with aging. When the
gastrocnemius muscle of young mice was cryoinjured and
treated with C1qg, canonical Wnt signaling was activated (Fig-
ure 7A). C1q treatment also strongly impaired regeneration and
promoted fibrotic change in skeletal muscle (Figure 7B).
Enhanced tissue fibrosis was also evidenced by increased
expression of Col3a7 gene and increased soluble collagen
content in the regenerating muscle (Figures 7C and 7D). Activa-
tion of Wnt signaling and impairment of skeletal muscle regener-
ation after C1q treatment was also observed in C3-deficient mice
(Figures 7A-7D), suggesting that the effect of C1q treatment on
skeletal muscle regeneration is independent of the classical
complement pathway activation.

We also cryoinjured the gastrocnemius muscle of aged wild-
type and C1qga-deficient mice and placed the hydrogel contain-
ing either M241 or an anti-C5 antibody (BB5.1) that prevents the
cleavage of C5. The former inhibits C1s and blocks both C1g-
induced activation of Wnt signaling and the activation of the
classical complement pathway, whereas the latter selectively
blocks the classical complement pathway. C1s inhibition or
C1ga gene disruption, but not the inhibition of complement acti-
vation, attenuated Wnt signaling activity in skeletal muscle and
improved skeletal muscle regeneration with reduced tissue
fibrosis following cryoinjury on aged mice (Figures 7E-7H).
These results suggest that C1g-induced activation of Wnt
signaling, but not C1g-triggered classical complement pathway

(C) Western blot analysis of the N-terminal cleaved form of LRP6 in culture media. N-terminal cleaved form of LRP6 was detected in culture media conditioned by
cells treated with normal human serum, but not with C1g-depleted serum. Addition of purified C1q protein (100 pg/mil) to C1g-depleted serum restored the activity
to cleave LRP6. IgHC, immunoglobulin heavy chain.

(D and E) N-terminal cleaved fragment of LRP6 in the serum was analyzed by western blotting (D) and ELISA (E). In wild-type (WT) mice, the amount of cleaved
form of endogenous LRP6 ectodomain was increased by 2-fold in serum from aged mice (2 years old: 130 ng/ml) compared with serum from young mice
(2 months old: 60 ng/mi). Cleaved LRP6 was not detected in the serum from young C1ga-deficient mice. Data are presented as mean +SD.

(F-H) TOPFLASH assay. Overexpression of N-terminal truncated LRP6 (Del-LRP6) resulted in enhanced activation of Wnt signaling compared with wild-type
LRP6 (WT-LRP6) (F). Cells transfected with WT-LRP6 responded to both C1q (100 ng/ml) and Wnt3A (10 ng/ml) (G), whereas those transfected with C1s-resistant
LRP6 (Mt-LRPS6) responded to Wnt3A, but not to C1q (H). Data are presented as mean £SD.

(l) Western blot analysis of C-terminal LRP6 fragment in the membrane/organelle fraction and N-terminal LRP6 fragment in the culture media after treatment of
HepG2 cells with C1q (100 ug/mi). Both C-terminal and N-terminal LRP5/6 fragments were not detected in cells transfected with siRNAs against C1r and Cis
(C1r/s), LRP5 and LRP8 (LRP5/6), or cells transfected with Shisa (Shisa O/E). An arrow indicates C-terminal LRP6 fragment, and an arrowhead indicates
N-terminal LRP6 fragment.

(J) (Top) B-catenin stabilization assay. HepG2 cells transfected with control siRNA (Con) responded to C1q (100 ng/ml), but those transfected with siRNAs against
Cirand C1s (C1r/s), LRP5 and LRP6 (LRP5/6) or cells transfected with Shisa (Shisa O/E) did not. (Bottom) TOPFLASH assay. HEK293 cells transfected with
control siRNA responded to both C1q (100 pg/ml) and Wnt3A (10 ng/ml), whereas those transfected with siRNAs against C1r and C1s (C1r/s) responded to
Wnt3A, but not to C1q. Data are presented as mean +£SD.

(K) Schematic diagram of C1g-induced activation of Wnt signaling. Upon binding to Fz receptors, C1q activates C1r/C1s, which results in LRP5/6 cleavage and
activation of Wnt signaling.

See also Figure S3.
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(A and B) B-catenin stabilization assay. Satellite cells and fibroblasts were stimulated with C1g (100 pg/mi) or Wnt3A (10 ng/mi). Both C1q and Wnt3A activated Wnt
signaling in these cells (A). Cells were aiso stimulated with serum derived from young (2 months old) or aged mice (2 years old). The extent of Wnt signaling activation
by serum from aged mice was greater than that by serum from young mice, and activation of Wnt signaling by serum from aged mice was attenuated by M241.
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activation, mediates reduced regenerative capacity in skeletal
muscle associated with aging.

DISCUSSION

The results of our in vitro experiments provide compelling
evidence showing that C1q activates Wnt signaling through
C1s-dependent cleavage of the ectodomain of LRP6 (Figure 5K).
The physiological relevance of C1g-induced activation of Wnt
signaling in vivo is supported by the following observations. First,
an aging-related increase in serum-induced activation of Wnt
signaling correlated with an increase in the amount of serum
C1q (Figures 1C, 2B, 3A, and 3B), and the concentration of
C1q that was shown to activate canonical Wnt signaling in cell
culture experiments (100 pg/ml) was within the physiological
range of the serum concentration of C1qg in humans and mice
(Figure 3A) (Borque et al., 1995; Yonemasu et al., 1978). Second,
cleaved product of LRP6 was detected in the serum in wild-
type mice, but not in C1ga-deficient mice, and its amount was
increased with aging (Figures 5D and 5E). Third, the expression
of Axin2 gene was downregulated in various tissues of
C1ga-deficient mice, but not of C3-deficient mice (Figure 2G).
Fourth, enhanced Wnt signaling activation by serum and
increased Wnt signaling in multiple tissues associated with aging
were observed in wild-type, but not in Clga-deficient mice
(Figures 2B and 3E). These observations strongly suggest the
physiological relevance of Cig-induced activation of Wnt
signaling in vivo.

Although C1g and Wnt3A bind to Fz receptors with similar
affinity (Figures 11 and S1E), ECsq value of C1q on TOPFLASH
activity cells was much higher than that of Wnt3A (Figure 1M).
In particular, the extent of Wnt signaling activation induced by
100 pg/mi (200 nM) of C1g and 10 ng/ml (0.2 nM) of Wnt3A
was comparable, as determined by Axin2 mRNA induction (Fig-
ure 1L) and TOPFLASH reporter gene assay (Figure 4C), which
indicates that 1,000 times more C1g molecules are required to

activate Wnt signaling to the same extent that Wnt3A does.
These apparent discrepancies may be explained by the unique
mode of Wnt signaling activation by C1g compared to that by
classical Wnt proteins. Activation of Wnt signaling by Ciq
requires several rate-limiting steps, which include the activation
of C1qg, Cir, and C1s. For instance, whether conformational
change of C1q required for its activation occurs at the cell
surface may be affected by the local density of Fz receptors,
analogous to the mechanism of C1q activation by immunoglob-
ulins (Duncan and Winter, 1988; Schumaker et al., 1986). This
notion is consistent with our data showing that increasing the
amount of Fz receptors potently decreased the ECsg value of
C1g-induced activation of Wnt signaling (Figures 1M and 1N).
Activation of C1r and C1s may be affected by their expression
levels or by the local concentration of endogenous C1 inhibitor,
which is also consistent with our observations that C1g-induced
activation of Wnt signaling in skeletal muscle was observed only
when the expressions of Cir and Ci1s were upregulated
following injury (Figures 6C-6E) and that treatment with C1 inhib-
itor or knockdown of C1r/C1s reduced Wnt signaling activation
by C1q (Figures 4B-4D and 5J). Thus, the extent of C1g-induced
activation of Wnt signaling is highly context dependent and
modulated not only by the concentration of C1q to which target
cells are exposed, but also by many factors, including the
expression levels of Fz receptors, LRP5/6 coreceptors, Cir,
C1s, and C1 inhibitor in target cells.

LRP5/6 mutants lacking the extracellular domain have been
reported to be a constitutively active form of canonical Wnt
signaling (Liu et al., 2003; Mao et al., 2001). Our findings indicate
that cleavage of extracellular N-terminal region of LRP5/6 by C1s
occurs under physiological situations. Moreover, C1q treatment
phosphorylated both cleaved and uncleaved LRP6, and overex-
pression of truncated LRP6 phosphorylated simultaneously
overexpressed full-length LRPS in the absence of ligand stimula-
tion (Figures S3A-S3C), indicating that cleaved LRP5/6 fragment
may amplify Wnt signaling by inducing the phosphorylation of

(C) X-gal staining of skeletal muscle after injury. Skeletal muscle of young (2 months old) TOPGAL mice was cryoinjured and treated with PBS or C1q (50 pg/mt).
X-gal staining showed that B-gal activity was slightly increased 2 days after cryoinjury, which was enhanced by C1q.

(D) Quantitative analysis of B-gal activity. TOPGAL mice were treated as in (C), and tissue B-gal activity was measured and corrected with tissue weight. Data are
presented as mean +SD. *p < 0.01 versus sham-operated mice treated with PBS (n = 10).

(E) Real-time PCR analysis. Mice were treated as in (C), and the expressions of Irp5, Irp6, C1r, and C7s were analyzed by real-time PCR. Data are presented as
mean +8D. *p < 0.01 versus sham-operated mice (n = 6).

(F and G) BrdU incorporation assay in satellite cells (F) and fibroblasts (G). Satellite cells and fibroblasts were stimulated with C1q (100 pg/ml) or Wnt3A (10 ng/mi)
for 24 hr. BrdU incorporation during the last 12 hr (satellite cells) or 4 hr (fibroblasts) was assayed by ELISA. C1q and Wnt3A inhibited satellite cell proliferation and
stimulated fibroblast proliferation. Data are presented as mean +8D. *p < 0.01 versus control {n = 4).

(H) Collagen concentration in the culture media. After stimulation with C1q (100 pg/ml) or Wnt3A (10 ng/ml) for 24 hr, medium was changed to serum-free medium,
and soluble collagen released to the medium was quantified 6 hr later. C1g and Wnt3A increased collagen production in fibroblasts. Data are presented as
mean +SD. *p < 0.01 compared with control (n = 4).

(land J) BrdU incorporation assay in satellite cells (I} and fibroblasts (J). Satellite cells and fibroblasts were cultured and stimulated with serum (5%) for 24 hr. BrdU
incorporation was assayed as in (F) and (G). Serum from aged mice reduced satellite cell proliferation and stimulated fibroblast proliferation, which was
attenuated by M241. Data are presented as mean +SD. *p < 0.01 versus serum from young mice. **p < 0.01 versus serum from aged mice (n = 4).

(K) Collagen concentration in the culture media. After stimulation with serum for 24 hr, soluble collagen in the medium was assayed as in (H). Serum from aged
mice increased collagen production in fibroblasts, which was attenuated by M241 treatment. *p < 0.01 versus serum from young mice. Data are presented as
mean +SD. *p < 0.01 versus serum from aged mice (n = 4).

(L and M) Number of proliferating satellite cells (L) and fibroblasts (M) in cryoinjured skeletal muscle of young mice (2 months old) in vivo. Sections were
immunostained with M-cadherin (a satellite cell marker), Vimentin (a fibroblast marker), and phospho-histone H3 (pH3) (a mitotic marker). Proliferating satellite
cells and fibroblasts were identified as M-cadherin/pH3 double-positive cells and Vimentin/pH3 double-positive cells, respectively. C1q treatment reduced
satellite cell proliferation and stimulated fibroblast proliferation in cryoinjured skeletal muscle. Data are presented as mean +SD. *p < 0.05 versus control (n = 5).
See also Figure S4.
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(A) Axin2 mRNA expression. Skeletal muscle of young (2 months old) wild-type (WT) and C3-deficient (C3KO) mice was cryoinjured and treated with PBS or C1q
(50 ng/mi). RNA was extracted 3 days later. C1q treatment increased Axin2 gene expression in injured skeletal muscle of both wild-type and C3-deficient mice.
Data are presented as mean +SD. *p < 0.01 versus PBS (n = 4).

(B) Immunostaining of skeletal muscle after cryoinjury. Tissue samples were harvested 5 days after injury and immunostained with embryonic myosin heavy-chain
(Red) and type I/1ll Collagen (green). Four wild-type mice (eight samples) and three C3-deficient mice (six samples) were used for each group, and representative
figures are shown. C1q treatment impaired muscle regeneration and increased fibrosis in both wild-type and C3-deficient mice. Scale bar, 150 um.

(C) Expression of Col3a7 gene. RNA was harvested 3 days after injury. C1q treatment increased Col/3a7 expression in injured skeletal muscle of both wild-type
and C3-deficient mice. Data are presented as mean +SD. *p < 0.01 versus PBS (n = 4).

(D) Soluble collagen content in skeletal muscle. Samples were harvested 5 days after injury. C1q treatment increased soluble collagen content in skeletal muscle
after cryoinjury of both wild-type and C3-deficient mice. Data are presented as mean +SD. *p < 0.01 versus PBS (n = 4).

(E) Axin2 mRNA expression. Skeletal muscle of aged (2 years old) wild-type (WT) mice or aged C1qga-deficient mice (C1gKO) was cryoinjured and treated with
M241 or BB5.1 (500 png/mi each). RNA was extracted 3 days after cryoinjury. The expression of Axin2 was suppressed by M241 treatment or in C1qga-deficient
mice, but not by BB5.1 treatment. Data are presented as mean +SD. *p < 0.01 versus aged WT PBS (n = 4).
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uncleaved LRP5/6. Although the precise mechanism by which
full-length LRP5/6 is phosphorylated in the presence of cleaved
form of LRP5/6 is currently unknown, these observations may, in
part, explain the reason why cleavage of a small fraction of LRP5/
6 by C1q treatment leads to activation of Wnt signaling to the
comparable level induced by Wnt3A.

In addition to its role in innate immunity, C1q is implicated in
the pathogenesis of various diseases, including autoimmunity
and neurodegenerative diseases (Nayak et al., 2010). C1q defi-
ciency in humans is tightly associated with the development of
systemic lupus erythematosus (SLE) (Pickering et al., 2000),
and it has been reported that Wnt/B-catenin signaling plays
a role in the immune system by regulating T cell development
and dendritic cell maturation (Manicassamy et al., 2010; Staal
et al., 2008; Xu et al., 2003). It would be interesting to test
whether downregulation of Wnt signaling activity in lymphocytes
plays a role in the development of autoimmunity. in the central
nervous system, complement system can be both protective
and deleterious because it works to eliminate toxic proteins,
whereas its sustained activation induces the production of cyto-
kines or oxidative products from microglia (Bonifati and Kishore,
2007). C1qg also mediates synapse elimination during develop-
ment and is reactivated in the retina of mice with glaucoma (Ste-
vens et al., 2007). Intriguingly, activation of Wnt signaling in the
brain has also been reported to be both protective and delete-
rious {Boonen et al., 2009), and Wnt signaling has been shown
to exert both positive and negative effects on synapse formation
(Klassen and Shen, 2007; Packard et al., 2002). It remains elusive
whether increased activation of canonical Wnt signaling by C1g
contributes to aging-associated neurological disorders.

In summary, we have shown that complement C1q is an acti-
vator of canonical Wnt signaling and that activation of Wnt
signaling by C1g mediates impaired regenerative capacity of
skeletal muscle in aged animals. These findings suggest that
C1g-induced activation of Wnt signaling plays an important
role in other aging-related phenotypes as well as in the patho-
genesis of various diseases that are related to augmented
Wnt signaling. Likewise, impaired function of C1g may play a
pathogenic role in the disease states associated with reduced
Wnt signaling. Modulation of C1g-dependent activation of Wnt
signaling may provide a therapeutic strategy for diseases linked
to dysregulated Wnt signaling.

EXPERIMENTAL PROCEDURES

Cell Culture

HEK293, NIH 3T3, and HepG2 cells were cultured in DMEM containing 10%
fetal bovine serum. Satellite cells in skeletal muscle were isolated as described
(Brack et al., 2007). Fibroblasts in skeletal muscle were prepared by repeated
digestion of skeletal muscle by trypsin.

TOPFLASH Assay

TOPFLASH assay was performed using a HEK293 cell line stably transfected
with a luciferase reporter gene under the control of eight Tcf/Lef-binding sites
(Super 8XTOPFLASH) (Veeman et al., 2003). Twenty-four hours after passage,
cells were serum starved for 3 hr before stimulation. Luciferase assay was per-
formed 24 hr after stimulation. Luciferase activity was determined using One-
Glo (Promega), as described (Naito et al., 2006). Experiments were performed
in triplicate for at least three different samples. Results are shown as the fold
induction of the luciferase activity relative to the control.

p~Catenin Stabilization Assay

HEK293 or HepG2 celis were used for B-catenin stabilization assay. Twenty-
four hours after passage, cells were serum starved for 24 hr before stimulation.
At 1 hr after stimulation, cytosolic fraction was obtained by ultracentrifugation.

RNA Analysis

Relative levels of gene expression were quantified by the comparative Ct
method using Universal Probe Library (UPL) (Roche) and Light Cycler TagMan
Master kit (Roche).

Protein Analysis

Total cell lysate was collected in lysis buffer containing 1% Triton X-100. Cyto-
solic and membrane/organelle fraction was obtained by differential centrifuga-
tion. Culture medium was concentrated using Amicon Ultra (Millipore) or
immunoprecipitated with anti-myc antibody.

Binding Assays

C1g/Wnt3A was labeled with succinimidyl alkyne (Invitrogen), and various
concentrations of labeled C1a/Wnt3A were mixed with 500 fmol (~21.65 ng)
of Fz8/Fc in a volume of 100 ul (5 nM). C1a/Wnt3A that bound to Fz8/Fc
was coprecipitated with protein G, eluted, quantified by ELISA using biotin-
azide and HRP-streptavidin, and shown as the molar that binds specifically
to 1 mg of Fz8/Fc. Unbound C1a/Wnt3A was collected and also quantified
by ELISA.

Cell Proliferation Assay

Proliferation of cultured satellite cells and fibroblasts derived from skeletal
muscle was assayed using Cell Proliferation ELISA, BrdU (Colorimetric)
(Roche). Different durations of BrdU labeling time between satellite cells and
fibroblasts are due to their difference in proliferative capacity.

Soluble Collagen Assay

Collagen content in culture media was assayed using Sircoll Collagen Assay
(Biocolor). Tissue collagen content was assessed in the same manner after
extraction of salt-soluble collagens using extraction buffer (50 mM Tris and
1.0 M NaCl plus protease inhibitors).

Animals

All protocols were approved by the Institutional Animal Care and Use
Committee of Chiba University and Osaka University. TOPGAL mice were
from Jackson laboratory. C1qga-deficient mice (Botto et al., 1998) and C3-defi-
cient mice (Wessels et al., 1995) were previously described. Mice backcrossed
to C57BL/6 background were used.

Statistical Analysis
Data are expressed as mean +SD. The significance of differences among
means was evaluated using analysis of variance (ANOVA), followed by

(F) Immunostaining of skeletal muscle after cryoinjury. Tissue samples were harvested 5 days after injury and immunostained as in (B). Three wild-type mice (six
samples) and two C1ga-deficient mice (four samples) were used, and representative figures are shown. Impaired skeletal muscle regeneration in aged mice was
restored by M241 treatment, but not by BB5.1 treatment, and was not observed in Ctqa-deficient mice. Scale bar, 150 um.

(G) Expression of Col3a7 gene. RNA was extracted 3 days after cryoinjury. The expression of Col3a7 gene was reduced by M241 treatment or in C1qa-deficient
mice, but not by BB5.1 treatment. Data are presented as mean +SD. *p < 0.01 versus aged WT PBS (n = 4).

(H) Soluble collagen content in skeletal muscle. Samples were harvested 5 days after cryoinjury. Soluble collagen content was attenuated by M241 treatment orin
C1ga-deficient mice, but not by BB5.1 treatment. Data are presented as mean +SD. *p < 0.01 versus aged WT PBS (n = 6).
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Mann-Whitney’s U test or Fisher's PLSD test for comparisons. Significant
differences were defined as p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures
and four figures and can be found with this article online at doi:10.1016/
j.cell.2012.03.047.
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