

図 2 IFN-α併用5-FU肝動注化学療法(FAIT)のプロトコール

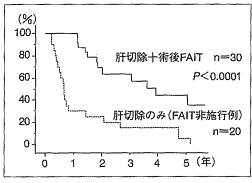


図3 腫瘍遺残のない肝切除十術後補助療法として FAITの累積生存率(TYPE-II)

と考えられる. 教室での102例¹⁴⁾では,治療回数は2クール以上で,効果の得られた症例には繰り返し治療を行った.治療効果は,CR;11例(10.8%),PR;29例(28.4%)と,その奏効率は39.2%であり,全症例の生存期間の中央値は9か月であり,1,3,5年生存率が,それぞれ36.8%,10.8%,7.6%であった.特に,治療が奏効した40例の生存期間の中央値は25か月であり,非奏効62例の6か月と比較して有意に良好であり,奏効例を選別する治療効果予測の確立が重要な課題である.

(2)根治肝切除および術後補助療法としてのFAIT の治療成績(TYPE-II)

一般的に門脈内腫瘍栓を伴う肝癌症例(Vp3以上)は、仮に腫瘍の完全摘出を施行し得ても高率に発生する残肝再発により、その1年生存率は約40%である²⁰⁾. そこで、教室ではこのような進行肝癌30例に対して肉眼的に腫瘍遺残のない肝切除を施行したのちに、術後補助療法としてFAITを3クール施行した。その成績は、1年、3年無再発生存率がそれぞれ70%、39.7%であり、1年、3年生存率は100%、65.9%であった。この成績は、当科において同一ステージの進行肝癌

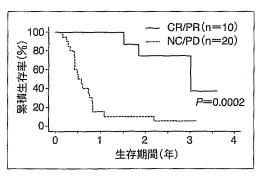


図 4 減量肝切除十FAIT施行30例の生存曲線(CR/ PR vs. NC/PD)

に対して肝切除のみを施行した20例(FAIT非施行例: historical control)と比較して、有意に良好であった(P<0.0001)(図 3).

(3)減量肝切除および残存腫瘍に対するFAITの 治療成績(TYPE-III)

TYPE-IIIにあたる門脈内腫瘍栓に片葉の主腫瘍と全肝多発病巣を伴う30例に対して、減量肝切除と術後にFAITを施行した¹³. 肝内病巣に関しては、7例のCRを含む10例に効果を認め、その奏効率は33.3%であった、奏効例(CR/PR)10例の1,2,3年生存率は、それぞれ100,75,37.5%であり、非奏効例(NC/PD)より有意に良好であった(図 4). しかし、肝内病巣に奏効したものの肺への遠隔転移を3例に認めた、このように、本療法の問題点の一つとして、肝内病巣には有効であるものの、肝外病変の制御は困難であり、今後の検討すべき課題である.

IFN/5-FU併用化学療法の 作用機序に関する基礎的検討

IFN-αは単剤でも抗腫瘍効果があるとされ、その機序は癌細胞への直接的な抗腫瘍効果として細胞障害作用、細胞周期遅延作用、癌抗原の発現上昇などが報告されている。しかし、現在ま

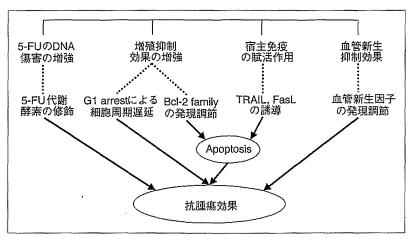


図5 IFN-α/5-FU併用化学療法の作用機序

での肝細胞癌に対する臨床報告の治療成績から考えると、単独での治療効果は乏しく、主には IFN- α と5-FUの相加・相乗効果による抗腫瘍効果であると考えられる 21 .

その相加・相乗効果について、IFN-αが5-FUの代謝調節に作用し、TP(thymidine phosphorylase)を活性化し中間代謝産物であるFdUMP(5-fluoro-2'-deoxyuridine 5-monophosphate)の細胞内濃度を上昇させる効果やTS(thymidylate synthetase)阻害率の増強効果などにより報告されている²²⁾²³⁾。さらに、両薬剤併用による作用機序(図3)として、IFN-αによる5-FUのDNA合成阻害作用の増強以外にも、①直接的な増殖抑制効果の増強、②宿主免疫の賦活作用、③血管新生抑制効果が関与しているとの仮説を立てて証明してきた(図5).

(1)IFNによる直接的な増殖抑制効果

両薬剤併用による細胞周期遅延やapoptosisの誘導による増殖抑制効果について検討を行い、ヒト肝細胞癌株を用いた併用治療により、GO/G1期での細胞集積による細胞増殖遅延と細胞周期関連蛋白であるp27Kip1の発現増強を伴うことを見出した²⁴⁾。また、この増殖抑制効果はインタフェロンレセプター(IFNα/βレセプター;IFNAR2)の発現が強い細胞株で顕著に認められ、IFNAR2の発現が、STAT1(signal transducer and activator of transcription)のリン酸化による活性化、apoptosisの頻度およびapoptosis関連蛋白であるBcl-2 familyの発現調節と相関することを確認した²⁵⁾²⁶⁾。この点については、IFNAR2の遺伝子発

現が、IFNもしくは併用療法の抗腫瘍効果に重要であることが多施設からも報告されている²⁷¹²⁸⁾.

(2)宿主免疫賦活作用

IFN-αによる宿主免疫作用として、IFN-α投与に より高度進行肝細胞癌患者の末梢血中の単核球に TRAIL(tumor necrosis factor-related apoptosis-induced ligand) mRNAの発現が誘導され、in vitroに おいても同様にIFN-αを添加によってTRAILmRNA の発現を確認した. さらに末梢血単核球の肝細胞 癌株に対する細胞障害活性は、末梢血単核球にIFNαの前刺激を加えることにより有意に増加し、TRAIL 中和抗体によってその活性は阻害されること、肝 癌細胞上のTRAILレセプター(TRAILR)発現が5-FU により増強すること29)から、その一部はTRAIL-TRAILR系を介していると考えられる. また, Fas/ FasL系についても、IFN/5FUの併用によりNK細 胞を免疫担当細胞とする間接的抗腫瘍効果が示さ れ, Caspase-3, -8, -9とアポトーシス調節因子と してFLIP, Bcl-xL, Baxの関与が示され、Fas-FasL 系を介していることも明らかにした30).

(3)血管新生抑制効果

IFN/5-FU併用療法が血管内皮細胞に対して, 直接的な増殖抑制効果を有し,さらに先の肝細 胞癌細胞増殖抑制実験で用いた培養液中の血管 新生因子として血管内皮細胞増殖因子(VEGF), アンジオポイエチン-1,-2(Ang-1,-2)の発現量を 測定したところ, IFN-αと5FUの併用により VEGF, Ang-2の発現が減弱し, Ang-1の発現が増 強することを確認した³¹⁾(図 3). また,ヌードマ

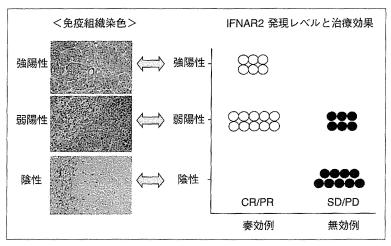


図 6 IFNAR2(IFNレセプター)の発現と臨床例での治療効果の関係

ウスを用いたモデルにより、腫瘍内微小血管数の有意な減少とVEGF, Ang-1, Ang-2の各種血管新生因子の発現調節について確認した³²⁾.

治療効果予測

これまでの臨床治療成績から、IFN併用化学療法は、既存の治療が奏効しない難治性高度進行 肝癌に高い奏効率と予後延長効果を有すること が確認された.しかし、奏効例では著明に生存 期間が延長するのに対して、非奏効例ではほと んどの症例が1年以内に癌死することから、治療効果予測因子を同定することが重要な課題で ある.

(1)IFNAR2(IFNレセプター)発現による治療効果予測

基礎的検討でも示したように、ヒト肝癌細胞株におけるIFNAR2の発現がIFN/5-FU併用療法の抗腫瘍効果と相関していたことより、切除不能症例の肝腫瘍生検サンプル31例を用いてIFNAR2の発現を免疫組織学的に検討したところ、IFNAR2陽性の22例中16例が奏効例であり、有意に治療効果との相関を認めた(図 6)¹¹⁾. そこで、減量肝切除後に残存腫瘍に対するFAITを行った30例についても同様に、IFNAR2の免疫組織染色を行った結果、IFNAR2陰性の10例はいずれも無効例であり、IFNAR2陽性20例では、有意に生存期間が延長することを報告した¹³⁾.

(2) 臨床検体を用いた網羅的遺伝子解析よる効果予測因子の同定

IFNAR2の発現がIFN/5-FU併用療法の治療効果予測因子の一つであることがわかったが、IFNAR2 発現を認めた症例でも、治療効果が得られない症例が約半数存在する。そこで、先ほどのTYPE-IIIにあたる減量肝切除を施行した後にFAITを行った30症例のうち、IFNAR2発現が陰性であった10例を除く20例を、臨床効果を認めた奏効群(CR/PR)の10例と無効群(NC/PD)の10例の2群にわけて網羅的遺伝子発現解析を行った。

その結果から 2 群間で有意に発現差が認められた161遺伝子を同定し、さらに遺伝子ネットワーク解析を行ったところ、Wnt/βカテニン経路が治療効果に関与していた。Wnt/βカテニン経路の中で、先ほどの161遺伝の上位に位置していたepithelial cell adhesion molecule(EpCAM)に着目し、EpCAMの発現を免疫組織学的に検討し、治療効果と比較した。EpCAM陽性の6例全例がFAIT無効群であり、EpCAM陽性 6 例の生存率は、EpCAM陰性の24例と比較して不良であった(図 7)333.

(3)IFN耐性肝癌細胞株の樹立と耐性化関連遺 伝子

ヒト肝癌細胞株:PLC/PRF/5をIFNに持続曝露し、IFNの増殖抑制効果に獲得耐性を示すIFN耐性株(PLC-R)を樹立した、親株と耐性株で、網羅的遺伝子解析を行い獲得耐性にかかわる107遺

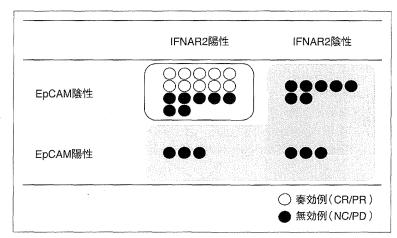


図7 IFNAR2およびEpCAM発現状況と治療効果

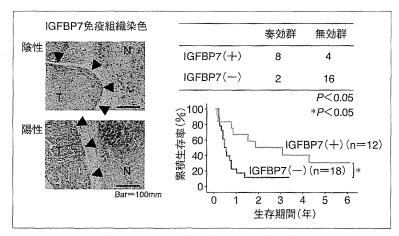


図 8 IGFBP7の発現状況とFAIT治療効果

伝子を同定した.この遺伝子群の中で, insulinlike growth factor binding-protein 7(IGFBP7)に着目し,減量肝切除30例におけるIGFBP7の発現とFAITの治療効果を検討したところ, IGFBP7陽性の12例では奏効率が66.7%に対して, IGFBP7陰性の18例の奏効率11.1%であり, IGFBP陽性例は陰性例と比較して有意に予後良好であった(図8)34).

基礎的検討および臨床検体を用いた検討によってFAITの治療効果と相関する因子として, IFNAR2, EpCAM, IGFBP7を同定した. それぞれ単一因子としてもFAITの治療効果を予測可能であるが, これら3つの因子を組み合わせることによって,表3に示すように,感度80.0%(8/10),特異度90.0%(18/20),正確度86.7%(26/30)

表 3 IFNAR2, EpCAM, IGFBP7の 3 因子の組み合 わせによるFAIT治療効果予測

	奏効群 (CR/PR)	無効群 (NC/PD)
IFNAR2(+) and EpCAM(-) and IGFBP7(+)	8	2
IFNAR2(-) or EpCAM(+) or IGFBP7(-)	2	18

でFAITの治療効果を予測することが可能であった.

おわりに

IFN-α/5-FU併用化学療法(FAIT)は難治性高度 進行肝癌に対して、きわめて有効な治療法であ る、そして集学的治療の一選択肢として、IFN/ 5-FU併用療法を肝切除と組み合わせることによって、その治療成績の飛躍的な向上が期待できる. しかし、無効例が約半数存在すること、肝外病変の制御は困難であることなどが今後の問題点であり、これらの克服のためには、治療前に有効例、無効例を判別する分子生物学的手法を確立や作用機序の解明により、本療法の効果増強が可能となる分子の同定などが必要である.

文 献

- Poon RT, Fan ST, Tsang FH, et al. Locoregional therapies for hepatocellular carcinoma: a critical review from surgeon's perspective. Ann Surg 2002; 235: 466.
- Bruix J, Llovet JM. Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology 2002; 35:519.
- Nowak AK, Chow PKH, Findlay M. Systemic therapy for advanced hepatocellular carcinoma: a review. Eur J Cancer 2004; 40: 1474.
- Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378.
- 5) Urabe T, Kaneko S, Matsushita E, et al. Clinical pilot study of intrahepatic arterial chemotherapy with methotrexate, 5-fluorouracil, cisplatin and subcutaneous interferon-alpha-2b for patients with locally advanced hepatocellular carcinoma. Oncology 1998; 55: 39.
- 6) Chung YH, Song IH, Song BC, et al. Combined therapy consisting of intraarterial cisplatin infusion and systemic interferon-alpha for hepatocellular carcinoma patients with major portal vein thrombosis or distant metastasis. Cancer 2000; 88: 1986.
- 7) Miyamoto A, Umeshita K, Sakon M, et al. Case report: advanced hepatocellular carcinoma with distant metastases, successfully treated by a combination therapy of alpha-interferon and oral tegafur. J Gastroenterol Hepatol 2000; 15: 1447.
- Kaneko S, Urabe T, Kobayashi K, et al. Combination chemotherapy for advanced hepatocellular carcinoma complicated by major portal vein thrombosis. Oncology 2002; 62:69.

- Lai CL, Lau JY, Wu PC, et al. Recombinant interferon-alpha in inoperable hepatocellular carcinoma: a randomized controlled trial. Hepatology 1993; 17: 380
- 10) Sakon M, Nagano H, Dono K, et al. Combined intraarterial 5-fluorouracil and subcutaneous interferon-alpha therapy for advanced hepatocellular carcinoma with tumor thrombi in the major portal branches. Cancer 2002; 94: 435.
- 11) Ota H, Nagano H, Sakon M, et al. Treatment of hepatocellular carcinoma with major portal vein thrombosis by combined therapy with subcutaneous interferon-alpha and intra-arterial 5-fluorouracil; role of type 1 interferon receptor expression. Br J Cancer 2005; 93: 557.
- 12) Nagano H, Sakon M, Eguchi H, et al. Hepatic resection followed by IFN-α and 5-FU for advanced hepatocellular carcinoma with tumor thrombus in the major portal branch. Hepatogastroenterology 2007; 54: 172.
- 13) Nagano H, Miyamoto A, Wada H, et al. Interferonalpha and 5-fluorouracil combination therapy after palliative hepatic resection in patients with advanced hepatocellular carcinoma, portal venous tumor thrombus in the major trunk, and multiple nodules. Cancer 2007; 110: 2493.
- 14) Nagano H, Wada H, Kobayashi S, et al. Long-term outcome of combined interferon-α and 5-fluorouracil treatment for advanced hepatocellular carcinoma with major portal vein thrombosis. Oncology 2011; 80:63.
- 15) Patt YZ, Hassan MM, Lozano RD, et al. Phase II trial of systemic continuous fluorouracil and subcutaneous recombinant interferon alfa-2b for treatment of hepatocellular carcinoma. J Clin Oncol 2003; 21:421.
- 16) Obi S, Yoshida H, Toune R, et al. Combination therapy of intraarterial 5-fluorouracil and systemic interferon-alpha for advanced hepatocellular carcinoma with portal venous invasion. Cancer 2006; 106: 1990.
- 17) Uka K, Aikata H, Takaki S, et al. Similar effects of recombinant interferon-alpha-2b and natural inter-

- feron-alpha when combined with intra-arterial 5-fluorouracil for the treatment of advanced hepatocellular carcinoma, Liver Int 2007; 27: 1209.
- 18) Uka K, Aikata H, Takaki S, et al. Pretreatment predictor of response, time to progression, and survival to intraarterial 5-fluorouracil/interferon combination therapy in patients with advanced hepatocellular carcinoma. J Gastroenterol 2007; 42:845.
- 19) Enjoji M, Morizono S, Kotoh K, et al. Re-evaluation of antitumor effects of combination chemotherapy with interferon-alpha and 5-fluorouracil for advanced hepatocellular carcinoma. World J Gastroenterol 2005; 11: 5685.
- 20) Ikai I, Yamaoka Y, Yamamoto Y, et al. Surgical inetervention for patients with stage IV-A hepatocellular carcinoma without lymph node metastasis. Ann Surg 1998; 227: 433.
- 21) Damdinsuren B, Nagano H, Sakon M, et al. Interferon-beta is more potent than interferon-alpha in inhibition of human hepatocellular carcinoma cell growth when used alone and in combination with anticancer drugs. Ann Surg Oncol 2003; 10: 1184.
- 22) Elias L, Sandoval JM. Interferon effects upon fluorouracil metabolism by HL-60 cells. Biochem Biophys Res Commun 1989; 163: 867.
- 23) Schwartz EL, Hoffman M, O'Connor CJ et al. Stimulation of 5-fluorouracil metabolic activation by interferon-alpha in human colon carcinoma cells. Biochem Biophys Res Commun 1992; 182: 1232.
- 24) Eguchi H, Nagano H, Yamamoto H, et al. Augmentation of antitumor activity of 5-fluorouracil by interferon alpha is associated with up-regulation of p27Kip1 in human hepatocellular carcinoma cells. Clin Cancer Res 2000; 6:2881.
- 25) Kondo M, Nagano H, Sakon M, et al. Expression of interferon alpha/beta receptor in human hepatocellular carcinoma. Int J Oncol 2000; 17:83.
- 26) Kondo M, Nagano H, Wada H, et al. Combination of IFN-alpha and 5-fluorouracil induces apoptosis through IFN-alpha/beta receptor in human hepatocellular carcinoma cells. Clin Cancer Res 2005;

- 11:1277.
- 27) Oie S, Ono S, Yano H, et al. The up-regulation of type I interferon receptor gene plays a key role in hepatocellular carcinoma cells in the synergistic antiproliferative effect by 5-fluorouracil and interferon-alpha. Int J Oncol 2006; 29: 1469.
- 28) Wagner TC, Velichko S, Chesney SK, et al. Interferon receptor expression regulates the antiproliferative effects of interferons on cancer cells and solid tumors. Int J Cancer 2004; 111: 32.
- 29) Yamamoto T, Nagano H, Sakon M, et al. Partial contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway to antitumor effects of interferon-alpha/5-fluorouracil against Hepatocellular Carcinoma. Clin Cancer Res 2004; 10:7884.
- 30) Nakamura M, Nagano H, Sakon M, et al. Role of the Fas/FasL pathway in combination therapy with interferon-alpha and fluorouracil against hepatocellular carcinoma in vitro. J Hepatol 2007; 46:77.
- 31) Wada H, Nagano H, Yamamoto H, et al. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells. BMC Cancer 2009; 9:361.
- 32) Wada H, Nagano H, Yamamoto H, et al. Combination therapy of interferon-alpha and 5-fluorouracil inhibits tumor angiogenesis in human hepatocellular carcinoma cells by regulating vascular endothelial growth factor and angiopoietins. Oncol Rep 2007; 18:801.
- 33) Noda T, Nagano H, Takemasa I, et al. Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma. Br J Cancer 2009; 100: 1647.
- 34) Tomimaru Y, Eguchi H, Wada H, et al. Insulin-like growth factor-binding protein 7 alters the sensitivity to interferon-based anticancer therapy in hepatocellular carcinoma cells. Br J Cancer 2010; 102: 1483.

* * *

ORIGINAL ARTICLE

Combination chemotherapy with S-1 plus cisplatin for gastric cancer that recurs after adjuvant chemotherapy with S-1: multi-institutional retrospective analysis

Kohei Shitara · Satoshi Morita · Kazumasa Fujitani · Shigenori Kadowaki · Nobuhiro Takiguchi · Naoki Hirabayashi · Masazumi Takahashi · Masakazu Takagi · Yukihiko Tokunaga · Ryoji Fukushima · Yasuhiro Munakata · Kazuhiro Nishikawa · Akinori Takagane · Takaho Tanaka · Yoshiaki Sekishita · Junichi Sakamoto · Akira Tsuburaya

Received: 19 July 2011/Accepted: 11 September 2011/Published online: 13 October 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract

Background It is unclear whether S-1 plus cisplatin is effective for patients with recurrent gastric cancer after adjuvant S-1 chemotherapy.

Methods We retrospectively evaluated the efficacy of S-1 plus cisplatin in patients whose gastric cancer recurred after adjuvant S-1 chemotherapy.

K. Shitara (⊠)

Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan e-mail: Kouheis0824@yahoo.co.jp

S. Morita

Department of Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Japan

K. Fujitani

Department of Surgical Oncology, National Osaka Medical Center, Suita, Japan

S. Kadowaki

Department of Gastroenterology, Saitama Cancer Center Hospital, Saitama, Japan

N. Takiguchi

Department of Gastroenterological Surgery, Chiba Cancer Center Hospital, Chiba, Japan

N. Hirabayashi

Department of Surgery, Hiroshima City Asa Hospital, Hiroshima, Japan

M. Takahashi

Department of Gastroenterological Surgery, Yokohama Municipal Citizens Hospital, Yokohama, Japan

M. Takagi

Department of Surgery, Shizuoka General Hospital, Shizuoka, Japan

Results In the 52 patients evaluated, the median duration of adjuvant S-1 chemotherapy was 8.1 months, and the median recurrence-free interval (RFI) since the last administration of adjuvant S-1 was 6.4 months. Among the 36 patients with measurable lesions, 7 achieved a complete or partial response, and 13 were evaluated as having stable

Y. Tokunaga

Department of Surgery, Osaka North Japan Post Hospital, Osaka, Japan

R. Fukushima

Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan

Y. Munakata

Department of Surgery, Nagano Municipal Hospital, Nagano, Japan

K. Nishikawa

Department of Surgery, Osaka General Medical Center, Osaka, Japan

A. Takagane

Department of Surgery, Hakodate Goryoukaku Hospital, Hakodate, Japan

T. Tanaka

Department of Surgery, Social Insurance Tagawa Hospital, Tagawa, Japan

Y. Sekishita

Department of Surgery, Obihiro Kosei Hospital, Obihiro, Japan

J. Sakamoto

Young Leaders' Program in Medical Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan

A. Tsuburaya

Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan

246 K. Shitara et al.

disease, for an overall response rate of 19.4% and a disease control rate of 55.6%. For all patients, the median progression-free survival (PFS) was 4.8 months, and the median overall survival (OS) was 12.2 months. Compared with patients with an RFI of <6 months (n=25), patients with an RFI of ≥ 6 months (n=27) had a significantly higher response rate (5.0 vs. 37.5%, respectively), longer PFS (2.3 vs. 6.2 months, respectively), and longer overall survival (7.3 vs. 16.6 months, respectively). According to a multivariate Cox model including performance status (PS) and reason for discontinuation of adjuvant S-1, an RFI of 6 months was still significantly associated with PFS and OS. Conclusions S-1 plus cisplatin is effective for patients with gastric cancer that recurs after adjuvant S-1 chemotherapy, especially for those with an RFI of ≥ 6 months.

Keywords Adjuvant chemotherapy · Gastric cancer · Recurrence · S-1

Introduction

Gastric cancer is the fourth most common malignancy in the world (988,602 cases in 2008, 7.8% of total malignancy cases) and the second leading cause of cancer death (737,419 deaths, 9.7% of total) [1]. The prognosis of patients with advanced or recurrent gastric cancer remains poor; chemotherapy confers only a minimal survival advantage, with a median survival of approximately 1 year. The most commonly used regimens are combination chemotherapy consisting of a fluoropyrimidine [5-fluorouracil (5-FU) or oral fluoropyrimidine] plus a platinum agent with or without docetaxel or anthracyclines [2-6].

S-1 is an oral anticancer drug composed of the 5-FU prodrug tegafur and two 5-FU modulators; it has achieved high response rates in patients with gastric cancer in phase II studies [7, 8]. In the Japan Clinical Oncology Group (JCOG) 9912 trial, which compared S-1, cisplatin plus irinotecan, and 5-FU, S-1 demonstrated non-inferiority compared to 5-FU [9]. In another phase III trial that compared S-1 alone to S-1 plus cisplatin (SPIRITS trial), S-1 plus cisplatin showed a significantly higher response rate (54 vs. 31%), longer progression-free survival (PFS; 6.0 vs. 4.0 months), and longer overall survival (OS; 13 vs. 11 months) [4]. Also, in a large, non-Japanese, phase III trial (the First-Line Advanced Gastric Cancer Study; FLAGS trial), S-1 plus cisplatin was associated with fewer toxic effects and demonstrated non-inferiority compared with 5-FU plus cisplatin by exploratory analysis [6]. Therefore, S-1 plus cisplatin is now considered to be one of the standard regimens for metastatic or recurrent gastric cancer.

In addition, the ACTS-GC trial has demonstrated that S-1 is also effective as adjuvant chemotherapy for Japanese patients who have undergone curative gastrectomy for locally advanced gastric cancer [10]. However, approximately 30% of patients still develop recurrence after curative resection followed by adjuvant S-1 [10]. As few patients who received adjuvant chemotherapy were included in the phase III trials described above [4, 7, 9], it is unclear whether patients who develop recurrence after adjuvant S-1 could achieve efficacy with S-1 plus cisplatin similar to that achieved in patients without adjuvant chemotherapy. To address this issue, we conducted the following multi-institutional retrospective analysis.

Patients and methods

Patients

This retrospective study was designed to evaluate the efficacy of first-line chemotherapy with S-1 plus cisplatin for recurrence in patients with gastric cancer who had undergone curative gastrectomy followed by adjuvant S-1 chemotherapy. Patients with histopathologically proven recurrent gastric adenocarcinoma after gastrectomy and lymph node dissection with no residual tumor were eligible for analysis. Additional eligibility criteria were: (1) previous adjuvant S-1 chemotherapy at a planned standard dose and schedule (80 mg/m² for 28 consecutive days followed by a 14-day rest; 42-day cycles to be repeated for 1 year); (2) Eastern Cooperative Oncology Group performance status (ECOG PS) 0-2; (3) adequate bone marrow, hepatic, and renal function to be treated with S-1 plus cisplatin; (4) evaluable lesions according to Response Evaluation Criteria in Solid Tumors (RECIST ver. 1.1); and (5) treated with a standard regimen of S-1 plus cisplatin (S-1 80 mg/m² for 21 consecutive days followed by a 14-day rest; cisplatin 60 mg/m² intravenous infusion on day 8; 35-day cycles to be repeated) [4]. Written informed consent for treatment was obtained from each patient prior to treatment initiation. The Institutional Review Board of each participating center approved the study.

Evaluation of treatment and statistical analysis

The tumor response was assessed objectively according to RECIST ver. 1.1, and the best overall response was recorded as the antitumor effect for that patient. The disease control rate (DCR) represented the percentage of patients with a complete response (CR), partial response (PR), or stable disease (SD). PFS was measured from the date of initiation of S-1 plus cisplatin to the date of progressive disease or death from any cause. Time to treatment failure

(TTF) was measured from the date of initiation of S-1 plus cisplatin to the date of last administration of S-1. OS was estimated from the date of initiation of S-1 plus cisplatin to the date of death or last follow-up visit, using the Kaplan-Meier method. The interval from the last administration of adjuvant S-1 to recurrence was defined as the recurrence-free interval (RFI).

The Cox proportional hazards model was used to estimate the impact of the RFI on TTF, PFS, and OS, with adjustment for other factors that were shown to be significant with a univariate log-rank test. P values for testing differences between proportions and response rates were calculated with χ^2 tests for homogeneity or for trend, or with Fisher's exact test. Results were considered to be statistically significant when the P value was <0.05. All reported P values are two-sided. In particular, we compared the response rate, DCR, time to progression (TTP),

PFS, and OS between patients with RFIs of ≥ 6 and < 6 months, because several clinical trials in the first-line setting set this interval of ≥ 6 months as an inclusion criterion [5, 9, 11].

Results

Patient characteristics

A total of 406 patients with recurrent gastric cancer after adjuvant S-1 chemotherapy had received chemotherapy at 18 institutions until October 2010. Among them, 57 patients (14.0%) had received S-1 plus cisplatin as first-line chemotherapy for recurrence. After the exclusion of 5 patients (1 patient with a non-evaluable lesion and 4 patients with insufficient data), 52 patients were included in the final

Table 1 Patient characteristics

Characteristic	All $(n = 52)$	RFI <6 months $(n = 25)$	RFI \geq 6 months ($n = 27$)	P value
Age, years				
Median (range)	61 (32–77)	59 (32–77)	62 (32–77)	
Gender, n (%)				
Male	30 (58)	15 (60)	15 (56)	0.75
Female	22 (42)	10 (40)	12 (44)	
ECOG PS at recurrence	e, n (%)			
0	32 (62)	11 (44)	21 (78)	0.012
1	20 (38)	14 (56)	6 (22)	
Histological type ^a , n (%	6)			
wel or mod	27 (52)	10 (40)	17 (63)	0.1
por or sig	24 (46)	15 (60)	9 (33)	
Other	1 (2)	-	1 (4)	
Pathological stage ^a , n (%)			
Stage I or II	8 (15)	4 (16)	4 (15)	0.57
Stage IIIA	17 (33)	6 (24)	11 (41)	
Stage IIIB	15 (29)	8 (32)	7 (26)	
Stage IV	12 (23)	7 (28)	5 (19)	
Site of recurrence, n (%	6)			
Peritoneum	21 (40)	7 (28)	14 (52)	0.08
Lymph node	25 (48)	13 (52)	12 (44)	0.59
Liver	14 (27)	10 (40)	4 (15)	0.041
Lung	4 (8)	3 (12)	1 (4)	0.262
Bone	6 (12)	1 (4)	5 (19)	0.102
Local	2 (4)	1 (4)	1 (4)	0.96
Number of recurrence s	ites, n (%)			
1	38 (73)	18 (72)	20 (74)	0.87
2 or more	14 (27)	7 (28)	7 (26)	

P values shown in italics indicate significant differences

RFI Recurrence-free interval, PS performance status, ECOG Eastern Cooperative Oncology Group, wel well-differentiated adenocarcinoma, mod moderately differentiated adenocarcinoma, por poorly differentiated adenocarcinoma, sig signet-ring-cell-like carcinoma

^a According to the Japanese classification

248 K. Shitara et al.

analysis (Table 1). The median duration of adjuvant S-1 chemotherapy was 8.1 months (range 0.7–37.4 months), and the median RFI since the last administration of adjuvant S-1 was 6.4 months (range 0–81.3 months). Thirty of the 52 patients (57.7%) completed the planned duration of adjuvant S-1 therapy. In contrast, 14 patients discontinued S-1 due to disease recurrence, and 8 patients stopped therapy due to toxicity or patient refusal. Other than PS and liver metastasis, characteristics did not differ significantly between patients with an RFI of \geq 6 months (n=27) and those with an RFI of \leq 6 months (n=25) (Table 1).

Treatment results and efficacy

The median TTF was 4.1 months (95% confidence interval [CI] 2.5–5.1 months), with a median duration of follow-up of 32 months. Forty-four patients discontinued S-1 plus cisplatin due to disease progression (n=40, 90.9%) or toxicity (n=4, 9.1%). Of the 36 patients with measurable lesions, 7 achieved a CR (n=3) or a PR (n=4), and 13 were evaluated as having SD, for an overall response rate of 19.4% (95% CI 7.0–37.0%) and a DCR of 55.6% (95% CI 38.1–72.1%). The median PFS was 4.8 months (95% CI 3.9–6.2 months), and the median OS of all patients was 12.2 months (95% CI 10.2–16.6 months) (Fig. 1). Of the 44 patients who had discontinued S-1 plus cisplatin, 31

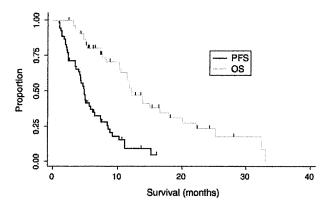


Fig. 1 Progression-free survival (*PFS*) and overall survival (*OS*) in all patients. The median PFS was 4.8 months (95% confidence interval [CI] 3.9–6.2 months), and the median OS was 12.2 months (95% CI 10.2–16.6 months). *PFS* progression-free survival, *OS* overall survival

(70.4%) received second-line or third-line chemotherapy, including taxanes (n = 25) or irinotecan (n = 17).

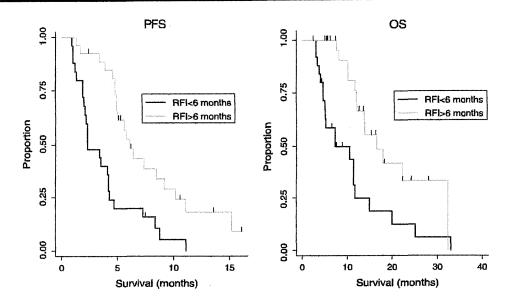
Significance of the RFI

The response rate was significantly better in patients with an RFI of ≥ 6 months (37.5%; 95% CI 14-61%) than that in patients with an RFI of <6 months (5.0%; 95% CI 0-15%, P=0.014, Table 2). In addition, compared with patients with an RFI of <6 months, patients with an RFI of ≥ 6 months had a significantly longer TTF (2.5 vs. 5.1 months, respectively, P = 0.025), longer PFS (2.3 vs. 6.2 months, respectively, P < 0.001, Fig. 2), and longer OS (7.3 vs. 16.6 months, respectively, P = 0.003, Fig. 2). According to a multivariate Cox model including PS and reason for discontinuation of adjuvant S-1, an RFI of 6 months was still significantly associated with PFS (hazard ratio [HR] 0.35, 95% CI 0.16-0.77, P = 0.009) and OS (HR 0.21, 95% CI 0.08-0.54, P = 0.001), although the association with TTF was not significant (HR 0.55, 95% CI 0.27-1.12, P=0.1). When we divided the patients into two groups based on an RFI of 12 months, no significant difference between the groups was found in response rate, TTP, PFS, or OS.

Discussion

In the ACTS-GC study, adjuvant S-1 chemotherapy significantly improved the survival of patients who had undergone curative gastrectomy for locally advanced gastric cancer [10]. On the other hand, several small studies have suggested that patients with recurrence after adjuvant S-1 were refractory to S-1-containing regimens or had a worse prognosis compared with that of patients without adjuvant chemotherapy [12–14]. Although these reports never precluded the use of adjuvant S-1 chemotherapy, they raised the issue of how to treat recurrent disease after adjuvant S-1.

In the present retrospective study, we evaluated the efficacy of S-1 plus cisplatin in patients whose gastric cancer recurred after adjuvant chemotherapy with S-1. The response rate of 19.4% and PFS of 4.8 months were


Table 2 Objective response rates in patients with measurable lesions

	n	CR	PR	SD	PD	NE	ORR (%)	95% CI (%)
All	36	3	4	13	14	2	18.8	7–32
RFI <6 months	20	0	1	6	13	0	5.0	0-15
RFI ≥6 months	16	3	3	7	1	2	37.5	14-61

CR Complete response, PR partial response, SD stable disease, PD progressive disease, NE not evaluable, ORR objective response rate, CI confidence interval

Fig. 2 Progression-free survival (*PFS*) and overall survival (*OS*) according to the length of the recurrence-free interval (*RFI*). Patients with an RFI of ≥ 6 months had a significantly longer median PFS (6.2 vs. 2.3 months, P < 0.001) and OS (16.6 vs. 7.3 months, P = 0.003) than patients with an RFI of <6 months. *RFI* recurrence-free interval, PFS progression-free survival, OS overall survival

relatively worse compared with those in the SPIRITS study [4]. However, our results also suggested that patients with an RFI of \geq 6 months who received S-1 plus cisplatin had a significantly better response rate, longer PFS, and longer OS compared to patients with an RFI of <6 months. The efficacy of S-1 plus cisplatin for patients with an RFI of ≥6 months in this study was almost compatible with that of patients in the SPIRITS trial in terms of PFS and OS, although these results should be interpreted cautiously due to the heterogeneity of the characteristics of the patients in the two studies. Although no prospective study has evaluated any chemotherapy specifically for patients who have failed adjuvant S-1, Kang and colleagues [15] conducted a phase II study of capecitabine plus cisplatin for 32 patients with gastric cancer that recurred after adjuvant chemotherapy with doxifluridine or 5-FU-containing regimens. They reported a response rate of 28% and a median TTP of 5.8 months, and concluded that capecitabine plus cisplatin was effective as first-line treatment in patients with recurrent gastric cancer after fluoropyrimidine-based adjuvant chemotherapy. In their report, the response rates (21 vs. 39%, P = 0.427), TTF (8.3 vs. 5.4 months, P = 0.072), and OS (14.1 vs. 9.3 months, P = 0.075) tended to be better in patients with an RFI of >6 months (n = 13) than in patients with an RFI of ≤ 6 months (n = 19), although the differences did not reach statistical significance [15]. These results were also consistent with those of previous studies in patients with other types of cancer, which suggested the importance of the RFI or treatment-free interval as a predictive marker of responsiveness to similar types of chemotherapy after recurrence [16-18]. Additionally, in the present study, the RFI cut-off value of 6 months was better than that of 12 months for predicting better outcomes and this finding may support the use of the

conventional exclusion criteria in clinical trials in the first-line setting, which excluded patients who experienced disease recurrence within 6 months after the last adjuvant chemotherapy [5, 9, 11]. Therefore, selected patients with an RFI of ≥6 months with sufficient organ function may be adequately treated as chemo-naïve patients with standard chemotherapies such as S-1 plus cisplatin.

In contrast to the results for patients with an RFI of ≥ 6 months, the response rate in patients with an RFI of <6 months in the present study seemed to be worse than that of commonly used second-line chemotherapy regimens such as irinotecan and taxane combinations, which have a reported response rate of approximately 20% for patients with gastric cancer who received prior chemotherapy with fluoropyrimidines alone [18-23]. Based on these results, it may be suggested that the evaluation of chemotherapy regimens other than S-1 plus cisplatin might be warranted for the initial treatment of gastric cancer recurrence after adjuvant S-1. The response rate of 5.0% in our subset of patients with an RFI of <6 months was also lower than that reported previously by Kang et al. for capecitabine plus cisplatin after adjuvant chemotherapy (21%) [15]. The exact reasons for this difference are unknown. One possible reason is that Kang and colleagues did not use the same fluoropyrimidine (capecitabine after doxifluridine or 5-FU), and this choice might have contributed to a higher response in regard to early recurrence, although rechallenge with different types of fluoropyrimidine after the failure of another drug is still controversial in several types of cancer [24-28]. Second, the planned dose intensity of cisplatin as another key drug for gastric cancer was higher in their capecitabine plus cisplatin regimen (60 mg/m² every 3 weeks) [15] than that in the S-1 plus cisplatin regimen (60 mg/m² every 5 weeks). The efficacy of capecitabine plus cisplatin compared with other

250 K. Shitara et al.

chemotherapy (irinotecan, taxane or irinotecan plus cisplatin) for recurrence after adjuvant S-1 should be evaluated in future clinical trials.

It is important to note the limitations of the present study. First, it was retrospective, and treatment after recurrence was selected by each physician individually. Considering the low proportion of patients who received S-1 plus cisplatin after recurrence (14.0%), the selected population may have been biased toward patients with good performance status (PS) and low tumor burden. Second, toxicity was not evaluated in this study, although the proportion of patients who discontinued S-1 plus cisplatin due to toxicity was low. Third, human epidermal growth factor receptor 2 (HER2) status was not evaluated. Trastuzumab, a humanized monoclonal antibody against HER2, has recently been shown to improve the prognosis of HER2-positive advanced gastric cancer [29], and the HER2 status of all gastric cancer types should be evaluated, even in this setting of recurrent disease. Fourth, the moderate sample size in a single-country study is another limitation; therefore, it would be better to validate the significance of the RFI after adjuvant failure on the PFS in other cohorts as well.

In conclusion, this is the first report to have evaluated the efficacy of chemotherapy with S-1 plus cisplatin in patients with gastric cancer that recurred after adjuvant chemotherapy with S-1. S-1 plus cisplatin was effective in such patients, especially in those with an RFI of ≥ 6 months. Further well-defined, prospective trials in this important patient population are required to identify optimal treatment regimens.

Acknowledgments This work was supported by the Epidemiological and Clinical Research Information Network (ECRIN).

Conflict of interest None of the authors have financial or personal conflicts of interest to disclose.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

- International Agency for Research on Cancer. GLOBOCAN. http://www-dep.iarc.fr/CancerMondial.htm (2008). Accessed April 2011
- Van Cutsem E, Moiseyenko VM, Tjulandin S, Majlis A, Constenla M, Boni C, et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol. 2006;24:4991-7.
- Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358:36–46.

- Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 2008;9:215-21.
- Kang YK, Kang WK, Shin DB, Chen J, Xiong J, Wang J, et al. Capecitabine/cisplatin versus 5-fluorouracil/cisplatin as first-line therapy in patients with advanced gastric cancer: a randomised phase III noninferiority trial. Ann Oncol. 2009;20:666-73.
- Ajani JA, Rodriguez W, Bodoky G, Moiseyenko V, Lichinitser M, Gorbunova V, et al. Multicenter phase III comparison of cisplatin/S-1 with cisplatin/infusional fluorouracil in advanced gastric or gastroesophageal adenocarcinoma study: the FLAGS trial. J Clin Oncol. 2010;28:1547-53.
- Sakata Y, Ohtsu A, Horikoshi N, Sugimachi K, Mitachi Y, Taguchi T. Late phase II study of novel oral fluoropyrimidine anticancer drug S-1 (1 M tegafur-0.4 M gimestat-1 M otastat potassium) in advanced gastric cancer patients. Eur J Cancer. 1998;34:1715-20.
- 8. Koizumi W, Kurihara M, Nakano S, Hasegawa K. Phase II study of S-1, a novel oral derivative of 5-fluorouracil, in advanced gastric cancer. For the S-1 Cooperative Gastric Cancer Study Group. Oncology. 2000;58:191-7.
- Boku N, Yamamoto S, Fukuda H, Shirao K, Doi T, Sawaki A, et al. Fluorouracil versus combination of irinotecan plus cisplatin versus S-1 in metastatic gastric cancer: a randomised phase 3 study. Lancet Oncol. 2009;10:1063-9.
- Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med. 2007;357: 1810-20.
- Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, et al. Bevacizumab in Combination With Chemotherapy As First-Line Therapy in Advanced Gastric Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase III Study. J Clin Oncol. 2011 Aug 15. [Epub ahead of print]
- Shitara K, Muro K, Ura T, Takahari D, Yokota T, Sawaki A, et al. Chemotherapy for gastric cancer that recurs after adjuvant chemotherapy with S-1. Jpn J Clin Oncol. 2008;38:786-9.
- Hasegawa H, Fujitani K, Kurokawa Y, Hirao M, Nakazuru S, Mita E, et al. Effect of S-1 adjuvant chemotherapy on survival following recurrence and efficacy of first-line treatment in recurrent gastric cancer. Chemotherapy. 2010;56:436-43.
- Aoyama T, Yoshikawa T, Watanabe T, Hayashi T, Ogata T, Cho H, et al. Survival and prognosticators of gastric cancer that recurs after adjuvant chemotherapy with S-1. Gastric Cancer. 2011;14: 150-4.
- Kang HJ, Chang HM, Kim TW, Ryu MH, Sohn HJ, Yook JH, et al. Phase II study of capecitabine and cisplatin as first-line combination therapy in patients with gastric cancer recurrent after fluoropyrimidine-based adjuvant chemotherapy. Br J Cancer. 2005;92:246-51.
- Pujade-Lauraine E, Paraiso D, Cure H, Germann N, Lortholary A, Lucas V, et al. Predicting the effectiveness of chemotherapy (Cx) in patients with recurrent ovarian cancer (ROC): a GINECO study. Proc Am Soc Clin Oncol 2002;21:abstract 829.
- Takashima A, Shirao K, Hirashima Y, Takahari D, Okita N, Akatsuka S, et al. Chemosensitivity of patients with recurrent esophageal cancer receiving perioperative chemotherapy. Dis Esophagus. 2008;21:607-11.
- 18. de Gramont Lesparre AH, Chibaudel B, Bourges O, Perez-Staub N, Tournigand C, Maindrault-Goebel F, et al. Definition of oxaliplatin sensitivity in patients with advanced colorectal cancer previously treated with oxaliplatin-based therapy. J Clin Oncol. 2009;27:15s. (abstr 4024).
- Futatsuki K, Wakui A, Nakao I, Sakata Y, Kambe M, Shimada Y, et al. Late phase II study of irinotecan hydrochloride (CPT-11) in

- advanced gastric cancer. CPT-11 Gastrointestinal Cancer Study Group. Gan To Kagaku Ryoho. 1994;21:1033-8.
- Taguchi T, Sakata Y, Kanamaru R, Kurihara M, Suminaga M, Ota J, et al. Late phase II clinical study of RP56976 (docetaxel) in patients with advanced/recurrent gastric cancer: a Japanese Cooperative Study Group trial (group A). Gan To Kagaku Ryoho. 1998;25:1915-24.
- Mai M, Sakata Y, Kanamaru R, Kurihara M, Suminaga M, Ota J, et al. A late phase II clinical study of RP56976 (docetaxel) in patients with advanced or recurrent gastric cancer: a Cooperative Study Group Trial (group B). Gan To Kagaku Ryoho. 1999;26:487–96.
- Yamada Y, Shirao K, Ohtsu A, Boku N, Hyodo I, Saitoh H, et al. Phase II trial of paclitaxel by three-hour infusion for advanced gastric cancer with short premedication for prophylaxis against paclitaxel-associated hypersensitivity reactions. Ann Oncol. 2001;12:1133-7.
- Nakae S, Hirao M, Kishimoto T, Iijima S, Ishida H, Morimoto T, et al. Phase II study of bi-weekly CPT-11 + CDDP for patients with gastric cancer refractory to S-1 (OGSG 0504 study). J Clin Oncol 2008;26 (May 20 suppl; abstr 4571).
- Lee JJ, Kim TM, Yu SJ, Kim DW, Joh YH, Oh DY, et al. Singleagent capecitabine in patients with metastatic colorectal cancer refractory to 5-fluorouracil/leucovorin chemotherapy. Jpn J Clin Oncol. 2004;34:400-4.

- 25. Yasui H, Yoshino T, Boku N, Onozawa Y, Hironaka S, Fukutomi A, et al. Retrospective analysis of S-1 monotherapy in patients with metastatic colorectal cancer after failure to fluoropyrimidine and irinotecan or to fluoropyrimidine, irinotecan and oxaliplatin. Jpn J Clin Oncol. 2009;39:315-20.
- Takiuchi H, Goto M, Imamura H, Furukawa H, Imano M, Imamoto H, et al. Multi-center phase II study for combination therapy with paclitaxel/doxifluridine to treat advanced/recurrent gastric cancer showing resistance to S-1 (OGSG 0302). Jpn J Clin Oncol. 2008;38:176-81.
- 27. Ono A, Boku N, Onozawa Y, Hironaka S, Fukutomi A, Yasui H, et al. Activity of S-1 in advanced or recurrent gastric cancer patients after failure of prior chemotherapy, including irinotecan + cisplatin or fluorouracil (except S-1). Jpn J Clin Oncol. 2009;39:332-5.
- Yamamoto D, Yoshida H, Iwase S, Odagiri H, Kitamura K. TS-1 in patients with capecitabine-resistant breast cancer. J Clin Oncol 27:15s, 2009 (suppl; abstr 1103).
- 29. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687-97.

が が 漢 方

国際医療福祉大学 学長/慶應義塾大学医学部 名誉教授 北島政樹 監修 北里大学薬学部 今津嘉宏 編

南山堂

2

がん治療を支える 漢方薬のエビデンス

■ 高まる漢方薬のエビデンス

現在,わが国では毎年10万人以上の大腸がん患者が発見されている。世界でもっとも内視鏡が普及し技術的レベルがきわめて高いわが国においても早期がんとして発見される割合は25%程度であり、75%は進行した大腸がんで発見され、その半分近くは肝転移や肺転移などで化学療法を受けることが必要となる¹⁾.ここ10年間で大腸がんの化学療法は飛躍的に進歩し、以前なら余命6ヵ月と告げられた切除不能大腸がんでも実に5倍に相当する3年程度まで延命が可能となってきている。

その推進力となっているのがオキサリプラチンとイリノテカンというがん細胞を殺すことができる抗がん薬である。最近、注目を集めている分子標的薬はがん細胞の増殖に関連する因子(腫瘍血管や上皮成長因子受容体など)に対する抑制効果を目的とした薬であり、直接的な殺作用はない。今後10年間は新たな殺作用を有する抗がん薬は登場しないとも言われている。

オキサリプラチンはわが国で発見されたものであるが、残念なことに仏国や米国で臨床開発が行われ世界に広まった。イリノテカンは米国で中国原産の喜樹(camptotheca acuminate)から抽出、単離された植物アルカロイドの誘導体だが、第II相臨床試験において、出血性膀胱炎と骨髄抑制などの副作用が発現することから開発中止となった。その後、わが国で毒性を軽減した誘導体の開発に成功し、世界に先んじて臨床開発された抗がん薬である。植物をベースにした医療が古代から世界中で盛んに行われてきたが、このように成分を特定し、薬効を明らかにすることで世界的に使用される薬として成功した1例である。わが国伝統の植物薬である漢方薬がイリノテカンと同じように世界的に使用される薬となる可能性が出てきたことを示唆している。

米国では医療費削減と合成薬剤の限界から植物をベースにしたハーバルメディシンに対して門戸を開こうとしている。また自ら年間1億ドル以上の巨額の研究費を拠出し、全米トップの大学や研究所を中心にしたエビデンス構築が行われつつある。しかし、残念ながら西洋医学的発想の原点である単一成分による効果検証を行うというスタイルではポジティブなデータを得ることができないでいた。その結果、議会でこれ

まで予算拠出に賛成してきた議員が反対票を投じるまでなった。そこで米国FDAは,これまで決して認めようとしなかった合剤に対して初めて臨床治験薬として大建中湯 (TU-100)を認可し、米国内で大建中湯を用いた臨床治験を行うことを認めたのである。FDAは5年以上前から日本の高度に発達した医療のなかでわが国の伝統的薬剤である漢方薬が薬として標準化され、保険薬として西洋薬と同じように処方されている点に注目していたと言われている。

FDAが植物薬に対してもっともハードルを高くした点は安全性と品質の均一性である.次に求めてきたのは薬効機序に関する基礎研究であり、これはこれまで西洋医学的な立場から理解ができなかった作用機序に関して、成分レベルで多くの新知見を得ることができたためである(図1)2~5). また、漢方薬として初めて大建中湯の薬物動態が明らかとなり、多くの有効成分が吸収され、血中レベルが上昇することが明らかとなった6. これらの研究成果は米国において臨床治験を開始する引き金となり、臨床的エビデンスとしては最高レベルであるプラセボを使用した二重盲検試験がメイヨー・クリニックで行われ、大建中湯の腸管運動に対する有効性が2010年に証明された7). これを皮切りに、炎症性腸疾患患者が100万人以上いる米国の治療のメッカであるシカゴ大学が中心となって全米20ヵ所で中等症までのクローン病に対する大建中湯の有効性を検証する臨床治験が2011年9月から開始され、順調に症例が集積

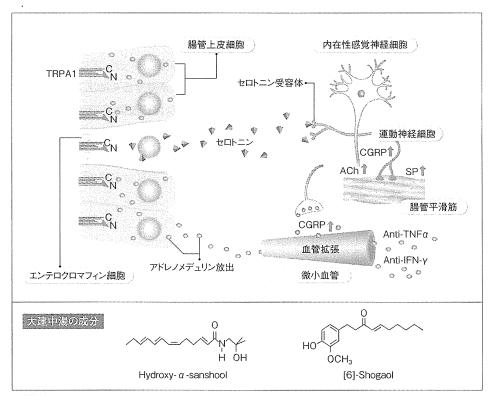


図1 大建中湯の薬理作用メカニズム (腸管血流と運動)

表1 化学療法による副作用対策に用いられる代表的な漢方薬

漢方薬	適応症状	有効成分と作用機序	臨床試験	副作用
六君子湯 (TJ-43)	食思不振	ヘプタメソキシフラボン セロトニン拮抗作用による グレリン分泌増強	プラセボ対象多施設 二重盲検前向き試験	電解質異常 偽アルドステロン
牛車腎気丸 (TJ-107)	末梢神経障害	成分未確定 一酸化窒素誘導による血流改善 ダイノルフィン,オピオイド受容体 を介した鎮痛作用	プラセボ対照多施設 二重盲検前向き試験 第Ⅱ相終了 第Ⅲ相試験中	間質性肺炎 肝機能障害
半夏瀉心湯	下痢	バイカリン,オウゴニン ショウガオール,ジンゲロール β- グルクロニダーゼ阻害 プロスタグランジン E ₂ 抑制 水分吸収促進	単盲検前向き試験	間質性肺炎 電解質異常 偽アルドステロン
(TJ-14)	口内炎	ベルベリン 抗菌作用 バイカレン,オウゴニン, ショウガオール,ジンゲロール プロスタグランジン E ₂ 抑制	プラセボ対照多施設 二重盲検前向き試験 第Ⅱ相試験中	含嗽では とくになし

されている. それ以外にも術後の麻痺性イレウス, 難治性便秘症で臨床治験が開始されているので. 興味のある方はFDAのホームページにアクセスしていただきたい (NCT00871325, NCT01139216, NCT01388933, NCT01348152).

わが国でも最近まで漢方薬に対する偏見からか、医師、薬剤師も大きな関心を示すことは少なかった.しかし、大建中湯の基礎研究を契機に全国大学病院の80%が参加する大建中湯の多施設共同二重盲検プラセボ対照比較試験グループ(北島政樹代表、DKTフォーラム)が組織され、高いエビデンスレベルを獲得するため2009年から症例集積中である.肝切除後の大建中湯の有効性を検証した臨床試験(草野満夫代表)において症例集積が終了し、現在解析中である.大建中湯レベルの機序解明が進んでいるものばかりではないが、西洋薬では十分対処することができていない抗がん薬の有害事象に使って有効性を実感しやすいもので、かつエビデンスレベルでの理解が進んでいる漢方薬を概説する(表1).

2 六君子湯

食思不振

"君子"は最高の意味で、胃腸に効果のある最高の6種類の生薬を組み合わせたものという意味である。しかし、六君子湯は8種類の生薬の合剤である。漢方薬発祥時に中国の中医から名前だけを拝惜し、その後、わが国で独自に発達したため生薬が変更になったと考えられている。

六君子湯は漢方薬のなかでもっとも機序解明が進んでいるものの1つである.とく

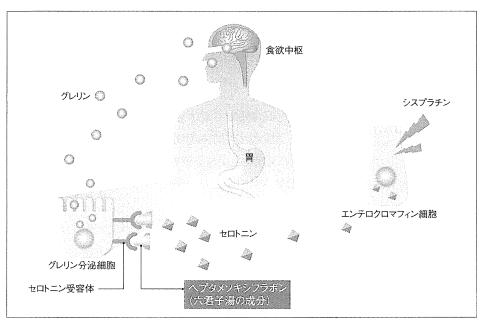


図2 六君子湯の薬理作用メカニズム(食思不振)

に食欲増進作用に関する機序解明は驚くべきスピードで進んでいる⁸⁾. グレリンはわが国の寒川らが発見したペプチドで、生体がもつ唯一の食欲増進ペプチドであるが、その産生抑制スイッチとなるセロトニン受容体に対して、六君子湯の構成生薬の1つである陳皮(温州ミカンの皮)の主要成分であるヘプタメソキシフラボンはセロトニンと拮抗的に働いて、胃や十二指腸にあるグレリン分泌細胞の抑制シグナルとなるセロトニンの作用をブロックし、グレリン分泌を間接的に増強させることが判明した(図2). 抗がん薬のなかでもとくに食思不振を招きやすいシスプラチンは、消化管上皮細胞の1つで神経内分泌細胞であるエンテロクロマフィン細胞を刺激してセロトニン産生を促し、グレリン分泌を抑制して食思不振を起こさせることが知られており、シスプラチンを用いた食思不振モデルにおいても六君子湯の効果が確認された⁸⁾. 厚生労働省の指導のもと、多施設二重盲検臨床試験が行われて効果が確認されており、化学療法による食思不振に六君子湯を用いることは強く推奨される.

安全性

グリチルリチンを主成分とする甘草が含まれているため、長期連用する際には、偽アルドステロン症・低カリウム血症に注意が必要である。とくに、化学療法や終末医療に使用する場合に体力低下などの理由で補中益気湯、十全大補湯など甘草を構成生薬とする漢方薬との併用の場合は、甘草成分の過剰投与となることが懸念され、電解質異常に注意を払うことが重要である。

③ | 牛車腎気丸

■末梢神経障害

牛車腎気丸は、牛膝や車前子など10種類の生薬から構成されている。牛車腎気丸は腰痛、下肢痛、しびれ、排尿困難、糖尿病性未梢神経障害に用いられている。牛車腎気丸の作用機序については、一酸化窒素誘導による血流改善や、ダイノルフィン、オピオイド受容体を介した鎮痛作用が推測されているが、成分レベルでは明らかとなっていない⁹.

タキサン系,白金製剤など,末梢神経障害を呈する抗がん薬は多い¹⁰⁾.しかも,末梢神経障害によって化学療法の使用制限や中止などがん患者の予後を左右する副作用となっているにもかかわらず,有効な予防法や治療法がいまだに発見されていない¹¹⁾.

オキサリプラチンは大腸がん化学療法のキードラッグの1つであるが、化学療法中に末梢神経障害出現率が90%、化学療法中止1年後でも30%の患者に残存することが大規模臨床試験で報告されており、オキサリプラチンの末梢神経障害(手指・足趾のしびれ感など)は、治療継続の大きな障壁となっている¹²⁾、神経障害の発現機序について以下のように考えられている。

血液神経関門が欠如している脊髄後根神経節は四肢体幹の感覚神経細胞が集まっているが、そこにオキサリプラチンや代謝産物であるシュウ酸が蓄積し、これらがナトリウムチャネルに作用することで神経細胞の過剰興奮を引き起こし、神経障害が発現する。そこで、神経障害の抑制にシュウ酸をキレートする目的でカルシウムやマグネシウムの投与が試みられ、有効性が後ろ向き試験で報告され、引き続きプラセボ二重盲検試験が計画され、症例集積が開始されたが、オキサリプラチンの抗腫瘍効果を減弱させる可能性が指摘されたため中止となってしまった。その後、一部解析が行われたが、その有効性はきわめて限局的であり、神経毒性抑制効果のエビデンスはいまだに不十分である^{13,14)}。

そこで、筆者らはオキサリプラチンを使用した化学療法を6クール以上完遂した進行・再発大腸がん90症例を対象に後ろ向きに解析を行った結果、牛車腎気丸が末梢神経障害発生を抑制する可能性を報告した⁹⁾.次に、徳島大学で小規模前向き試験を行った結果、牛車腎気丸の有効性が示唆された¹⁵⁾.そこで、多施設プラセボ対照前向き二重盲検第Ⅱ相試験(GONE試験)を計画し、症例集積を行った¹⁶⁾.予定期間より大幅に短い11ヵ月で目標症例数以上の94例が集積され、解析を行った結果、神経毒性のGrade2以上の発生率は25%、治療継続が困難となるGrade3の発生率は50%低下させることが明らかとなった。また、患者アンケート調査から歩行障害が抑制されることが明らかとなった。現在、九州大学を中心とした310例の大規模プラセボ対照前向き二重盲検第Ⅲ相試験(GENIUS試験)が厚生労働省科学研究費で行われ、症

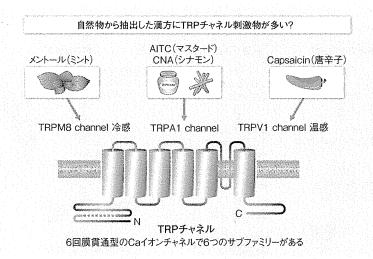


図3 生体センサー Transient Receptor Potential (TRP) チャネルと刺激物

例集積中である. これらの結果が明らかになれば、世界中で牛車腎気丸を併用した大腸がん化学療法が行われることが期待される. 最近、オキサリプラチンの神経毒性に関する新たな機序としてTRP (transient Receptor Potential) チャネルの関与が臨・床および基礎研究で示唆された. TRPチャネルは温度など生体センサーとして神経組織や上皮細胞にも存在することが報告されており、オキサリプラチンの冷覚過敏に対してTRPチャネルが関与し、牛車腎気丸の薬理作用においてもこのTRPチャネルとの関連が明らかとなることが期待されている(図3).

安全性

間質性肺炎、肝機能障害などが報告されているが重篤なものはない、

4 半夏瀉心湯

下 痢

半夏瀉心湯の構成生薬は、半夏、黄芩、黄連、人参、乾姜など7種類である。イリノテカンによる遅発性下痢発症予防で使用されている。

イリノテカンによる下痢の特徴は、投与開始24時間以内に発現する早期性下痢と、24時間以降とくに投与数日後に発現することが多い遅発性下痢の2種類に分かれる。早期性下痢の原因は、イリノテカンのアセチルコリンエステラーゼ阻害作用により副交感神経が刺激され、腸管運動の亢進、水分吸収阻害が起こり、下痢を起こす機序が特徴的だが、イリノテカンの下痢発生機序にプロスタグランジンE2も関与している。