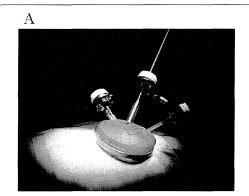
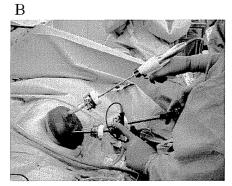
cancer. The inclusion criteria were right-sided colon cancer which required colon resection with D2 lymph node dissection. The single-port laparoscopic colectomy group included selected patients who completed their treatment between February 2010 and March 2011 (n = 10). Patients who underwent conventional laparoscopic surgery for right-sided colon cancer between April 2006 and March 2010 were selected as the control group for this study (n = 10). These patients were matched with regard to the patient's age, sex, body mass index (BMI), American Society of Anesthesiologists (ASA) score, history of abdominal surgery, disease type and tumor location. No consideration or analysis of surgical parameters and outcomes was made until these groups were definitively selected as the best comparison cohort based only on preoperative variables.

Surgical technique

After obtaining informed consent, we placed patients with right-sided colon cancer in the supine position. The surgical methods for both single-port laparoscopic colectomy (S-LAC) and conventional laparoscopic colectomy (C-LAC) were performed using a mediolateral approach, and the hand-sewn anastomoses were performed extracorporeally. In the S-LAC group, a 3-cm skin incision was made in the umbilicus and laparotomy was performed. The Gelport (Applied Medical, Rancho Santa Margarita, CA, USA) was inserted through this incision and used as the access port. We usually used three trocars of different sizes (Ethicon, Inc, Cincinnati, OH, USA) to prevent clashes between these trocars. The camera was a flexible videolaparoscope (Olympus Medical Systems Corp, Tokyo, Japan), and the energy source was the Harmonic Ace (Ethicon, Inc). The other laparoscopic instruments were the same as those used in conventional laparoscopic colonic surgery (Figure 1). For the C-LAC group, the first trocar was inserted through the infraumbilical incision, and another four trocars were inserted sequentially. After intracorporeal completion of the procedure, a small skin incision was made in the lower abdomen or umbilicus. All instruments used, including the camera and energy device, were the same in both the C-LAC and S-LAC groups.


The perioperative outcomes, including the surgical method, length of skin incision, length of operation, estimated blood loss and conversion rate to conventional laparoscopic surgery or open surgery, as well as the complications, were analyzed (Table 1). The pathological findings included the degree of differentiation, depth, presence of lymph node metastasis, lymphatic vessel invasion, vascular invasion and the number of lymph nodes resected, and these results were analyzed as well (Table 2).


Statistical analysis

All continuous variables are expressed as the median (range) and were compared using the Mann-Whitney U test. The χ^2 test and Fisher's exact test were used to compare discrete variables. Statistical calculations were performed with the help of the SPSS version 18.0 software program (SPSS, Chicago, IL, USA), and a P value < 0.05 was considered to indicate statistical significance.

Results

Twenty patients (8 males and 12 females) were enrolled in this study, and they were distributed into two groups: S-LAC and C-LAC. All patients were matched as closely as possible in terms of their selection criteria. The data for both groups are shown in Table 3. There was no surgical mortality or reintervention within 30 days in either group. There were no significant differences in the lengths of the operations between the S-LAC group (median 192 minutes, range 156 to 231 min) and the C-LAC group (median 222 minutes, range 44 to 244 minutes). There also were no significant differences in the estimated blood loss between the S-LAC group (median

Figure 1 The Gelport was used as the access port. The flexible videolaparoscope, the Harmonic Ace energy source and other laparoscopic instruments used were the same as those used in the conventional laparoscopic colectomy group.

Table 1 Perioperative outcomes^a

Parameters	Laparoscopic colectomy for colon cancer			
	S-LAC (N = 10)	C-LAC (N = 10)	P value	
Method			0.141	
lleocecal resection	8	5		
Right hemicolectomy	1	5		
Transverse colectomy	1	0		
Operative time (minutes)	192.0 (156 to 231)	222.0 (44 to 244)	0.063	
Estimated blood loss (ml)	48.0 (0 to 110)	51.5 (21 to 244)	0.190	
Length of skin incision (cm)	3 (2 to 3)	5 (3 to 6)	< 0.001	
Conversion rate (%)	0 (0%)	1 (10.0%)	0.474	
Hospital stay after operation (days)	8.0 (6 to 13)	10.5 (7 to 21)	0.023	

^aC-LAC = conventional laparoscopic colectomy; S-LAC = single-port laparoscopic colectomy. Data are expressed as median (range) or as raw numbers.

48.0 ml, range 0 to 110 ml) and the C-LAC group (median 51.5 ml, range 21 to 244 ml). Although there was one conversion to open surgery in the C-LAC group due to anatomical difficulties, there were no conversions in the S-LAC group. Regarding the length of the skin incision, that in the S-LAC group (median 3.0 cm, range 2.0 to 3.0 cm) was significantly shorter than that of the C-LAC group (median 5.0 cm, range 3.0 to 6.0 cm; P < 0.001). In terms of the hospital stay, the median stay of 8.0 days in the S-LAC group (range 6 to 13 days) was

significantly shorter than the median of 10.5 days in the C-LAC group (range, 7 to 21 days; P=0.023), as shown in Table 1. There were no surgical complications, including anastomotic leakage, surgical site infection, ileus, pneumonia, liver and renal dysfunction, or cardio-vascular disease in either group (data not shown). With regard to the pathological findings, including the tumor differentiation, depth of the tumor, node metastasis, lymphatic invasion and vascular invasion, there were no significant differences between the groups. Moreover,

Table 2 Pathological outcomes^a

	Laparos	copic colectomy for colon cance	er		
Parameters	S-LAC (N = 10)	S-LAC (N = 10) C-LAC (N = 10)			
Differentiation			0.661		
Well	7	6			
Moderate	1	2			
Pap	1	0			
Well-differentiated endocrine carcinoma	0	1			
Adenoma	1	1			
Depth			0.459		
m (membrane)	4	3			
sm (lymphatic invasion)	6	4			
mp (vascular invasion)	0	1			
a	0	2			
n			1.000		
Negative	10	9			
Positive	0	1			
ly ·			0.211		
Negative	10	7			
Positive	0	3			
V			1.000		
Negative	9	9			
Positive	1	1			
Lymph node harvest, median (range)	15.0 (3 to 30)	16.5 (3 to 23)	0.853		

^aC-LAC = conventional laparoscopic colectomy; S-LAC = single-port laparoscopic colectomy. Data are expressed as median (range) or as raw numbers.

Table 3 Preoperative parameters of patients^a

	Laparoscopic colectomy for colon cancer			
Demographics	S-LAC	C-LAC	P value	
Number of Patients	10	10		
Age (years)	68.5 (61 to 81)	68.0 (33 to 84)	0.853	
Sex			1.000	
Male	4	4		
Female	6	6		
BMI (kg/m²)	22.5 (19.6 to 24.6)	21.9 (17.1 to 26.2)	0.353	
ASA score			1.000	
1	8	7		
2	2	3		
Prior abdominal surgery rate (%)	2 (20%)	3 (0%)	1.000	
Type (Japanese Society for Cancer of the Colon and Rectum, 7th edition)			0.087	
0	10	6		
1	0	3		
2	0	1		
Location			0.057	
C (Cecum)	5	1		
A (Ascending colon)	4	9		
T (Transverse colon)	1	0		

^aASA = American Society of Anesthesiologists; BMI = body mass index; C-LAC = conventional laparoscopic colectomy; S-LAC = single-port laparoscopic colectomy. Data are expressed as median (range) or as raw numbers.

the median number of lymph nodes extracted was also not significantly different between the S-LAC group (median 15.0, range 3 to 30) and the C-LAC group (median 16.5, range 3 to 23), as shown in Table 2.

Discussion

The use of single-port laparoscopic cholecystectomy has spread rapidly, and many procedures have already been performed throughout the world. On the other hand, single-port laparoscopic colon surgery for colon cancer has not yet been standardized. There are only a few reports of small sample size studies in the literature [6-14]. It has been suggested that single-port laparoscopic colectomy for colon cancer provides a better cosmetic outcome for patients than conventional laparoscopic surgery, with equivalent invasiveness between the procedures. However, there has been no adequate evidence regarding not only these issues but also the feasibility and safety of this operation. In this study, we compared various parameters between S-LAC and C-LAC to evaluate the feasibility and safety, as well as the outcomes, of single-port laparoscopic colectomy for colon cancer which required D2 lymph node dissection.

The apparent advantage of single-port laparoscopic colectomy is a better cosmetic outcome. Our data also reveal that the median length of the skin incision in the S-LAC group of 3.0 cm (range 2.0 to 3.0 cm) was significantly shorter than that of 5.0 cm in the C-LAC group

(range 3.0 to 6.0 cm) (P < 0.001). To evaluate the invasiveness of the procedure, we compared the length of the operation, estimated blood loss and hospital stay. In our series, there were no significant differences between the S-LAC and C-LAC groups regarding the length of the operation or estimated blood loss. In terms of the hospital stay, the median of 8.0 days in the S-LAC group (range 6 to 13 days) was significantly shorter than the median of 10.5 days in the C-LAC group (range 7 to 21 days) (P = 0.023). Generally, the duration of the hospital stay has been used as one of the most important parameters of invasiveness. However, the hospital stay is defined not only by the patient's situation but also based on the characteristics of many Japanese patients who hope to stay for a long period in the hospital. Hence, the hospital stay is not necessarily a reliable parameter on which to objectively assess the invasiveness of such patients. However, these findings demonstrate that S-LAC is not more invasive than C-LAC or open colectomy.

The main disadvantage of this procedure is the difficulty in performing it, owing to the lack of instrument triangulation, clashing of the instruments outside the abdomen, a requirement for articulated instruments and the potential for pneumoperitoneum leaks. To resolve these problems, we primarily use the Gelport as the access port. In other words, the most important point for ensuring successful single-port laparoscopic colectomy is the selection of the access port to use. Initially, the multiple fascial puncture

technique under a skin flap [15] was used for single-incision laparoscopic surgery, especially for cholecystectomy. However, the disadvantages of this technique are the weakness of the fascia due to the creation of multiple defects, as well as seroma formation. Therefore, several new access ports have already been developed. We usually use the Gelport, which has been used for hand-assisted laparoscopic surgery, as the access port for single-port laparoscopic colectomy. The benefit of using the Gelport is that several trocars can be inserted multiple times if necessary, and the trocars can be kept apart for as long as possible to maintain instrument triangulation and to prevent instrument clashing outside the abdomen. The most important issue affecting single-port laparoscopic colectomy is the much smaller space outside the abdomen than is present during conventional laparoscopic surgery. This difficult situation requires the use of articulated instruments. However, we did not need to use any articulated instruments when we used the Gelport as the access port. Moreover, the Gelport was able to maintain an airtight seal during the operation. Therefore, we concluded that our method using the Gelport has the potential to successfully address these limitations [16].

Our series of single-port laparoscopic colectomies for colon cancers (n = 10) had no conversions (Table 1) and no surgical complications, including anastomotic leakage, surgical site infection, ileus, pneumonia, cardiovascular disease and so on. These results revealed the feasibility and safety of single-port laparoscopic colectomy for colon cancer during the perioperative period.

In terms of the median number of extracted lymph nodes, there were no significant differences between the S-LAC group (median 15.0, range 3 to 30) and the C-LAC group (median 16.5, range 3 to 23) (P = 0.912), as shown in Table 2. These results demonstrate the feasibility regarding the short-term oncologic outcomeof single-port laparoscopic colectomy for colon cancer which requires D2 lymph node dissection.

This study is limited by its small sample size. However, it provides an initial comparison between S-LAC and C-LAC and can provide the foundation for large, randomized controlled studies.

Conclusion

Our early experiences indicates that S-LAC for right-sided colon cancer is a feasible and safe procedure. Although there were no significant benefits regarding the perioperative and oncological results, S-LAC does provide a better cosmetic outcome. Before extending the indications of this procedure to advanced cases and those with rectal cancer, however, it will be necessary to evaluate this technique's perioperative and long-term oncological safety in a large, randomized controlled trial.

Abbreviations

ASA: American Society of Anesthesiologists; BMI: Body mass index; C-LAC: Conventional laparoscopic colectomy; NOTES: Natural orifice transluminal endoscopic surgery; S-LAC: Single-port laparoscopic colectomy.

Author details

¹Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. ²Advanced Medical Skills Training Center, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Hiroshima, Japan. ³Department of Surgery, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima 734-8530, Japan.

Authors' contributions

HE participated in the treatment of these patients and the literature search and drafted the manuscript. MH helped to draft the manuscript. TH, YT, YK, MS, MT, TA, TU and TI participated in the treatment of these patients. HO participated in treatment planning for these patients and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 27 February 2012 Accepted: 24 April 2012 Published: 24 April 2012

References

- Jacobs M, Verdeja JC, Goldstein HS: Minimally invasive colon resection (laparoscopic colectomy). Surg Laparosc Endosc 1991, 1:144-150.
- Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM, Visa J: Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. *Lancet* 2002, 359:2224-2229.
- Clinical Outcomes of Surgical Therapy Study Group: A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 2004, 350:2050-2059.
- Kalloo AN, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaughn CA, Magee CA, Kantsevoy SV: Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 2004, 60:114-117.
- Marescaux J, Dallemagne B, Perretta S, Wattiez A, Mutter D, Coumaros D: Surgery without scars: report of transluminal cholecystectomy in a human being. Arch Surg 2007, 142:823-827.
- Brunner W, Schirnhofer J, Waldstein-Wartenberg N, Frass R, Weiss H: Single incision laparoscopic sigmoid colon resections without visible scar: a novel technique. Colorectal Dis 2010, 12:66-70.
- Bucher P, Pugin F, Morel P: Single-port access laparoscopic right hemicolectomy. Int J Colorectal Dis 2008, 23:1013-1016.
- Choi SI, Lee KY, Park SJ, Lee SH: Single port laparoscopic right hemicolectomy with D3 dissection for advanced colon cancer. World J Surg 2010, 16:275-278.
- Law WL, Fan JK, Poon JT: Single-incision laparoscopic colectomy: early experience. Dis Colon Rectum 2010, 53:284-288.
- Leroy J, Cahill RA, Asakuma M, Dallemagne B, Marescaux J: Single-access laparoscopic sigmoidectomy as definitive surgical management of prior diverticulitis in human patient. Arch Surg 2009, 144:173-179.
- Merchant AM, Lin E: Single-incision laparoscopic right hemicolectomy for a colon mass. Dis Colon Rectum 2009, 52:1021-1024.
- Ramos-Valadez DI, Patel CB, Ragupathi M, Bartley Pickron T, Haas EM: Single-incision laparoscopic right hemicolectomy: safety and feasibility in a series of consecutive cases. Surg Endosc 2010, 24:2613-2616.
- Remzi FH, Kirat HT, Kaouk JH, Geisler DP: Single-port laparoscopy in colorectal surgery. Colorectal Dis 2008, 10:823-826.
- Rieger NA, Lam FF: Single-incision laparoscopically assisted colectomy using standard laparoscopic instrumentation. Surg Endosc 2010, 24:888-890.
- Piskun G, Rajpal S: Transumbilical laparoscopic cholecystectomy utilizes no incisions outside the umbilicus. J Laparoendosc Adv Surg Tech A 1999, 9:361-364.

 Egi H, Okajima M, Hinoi T, Takakura Y, Kawaguchi Y, Shimomura M, Tokunaga M, Adachi T, Hattori M, Urushihara T, Itamoto T, Ohdan H: Singleincision laparoscopic colectomy using the Gelport system for early colon cancer. Scand J Surg 2012, 101:16-20.

doi:10.1186/1477-7819-10-61

Cite this article as: Egi et al.: Single-port laparoscopic colectomy versus conventional laparoscopic colectomy for colon cancer: a comparison of surgical results. World Journal of Surgical Oncology 2012 10:61.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

ORIGINAL ARTICLE

Identification of patients likely to benefit from metastasectomy in stage IV colorectal cancer

Manabu Shimomura · Masazumi Okajima ·
Takao Hinoi · Hiroyuki Egi · Yuji Takakura ·
Yasuo Kawaguchi · Masakazu Tokunaga ·
Tomohiro Adachi · Hirotaka Tashiro · Hideki Ohdan

Accepted: 1 March 2012 / Published online: 10 March 2012 © Springer-Verlag 2012

Abstract

Purpose The aim of the present study was to determine selection criteria for patients with stage IV colorectal cancer (CRC) who were likely to show survival benefits of metastasectomy.

Methods Clinicopathological data of 119 patients with stage IV CRC who underwent primary CRC resection were retrospectively reviewed. The prognostic factors were analyzed according to the disease resectability status, and patients likely to show survival benefits of metastasectomy were identified.

Results Metastasectomy was performed in 63 patients. Among these patients, R0 resection was reported in 55 patients, who comprised the curable group. The other 64 patients comprised the noncurable group. For the noncurable group, postoperative chemotherapy was identified as the only significant prognostic factor. In the curable group, T stage, histological type, elevated serum carcinoembryonic antigen (CEA) level and the presence of extra hepatic disease were identified as independent prognostic factors. Patients within the curable group were further classified into a low-risk group (zero to two prognostic factors) and a highrisk group (three or more prognostic factors). The overall survival (OS) of the high risk patients in the curable group was as poor as that of the patients in the noncurable group. Conclusions Stage IV CRC patients consisted of heterogeneous populations who had different prognostic factors, stratified by the disease resectability status. No prognostic benefit of metastasectomy was observed in high-risk patients undergoing curative metastasectomy. These results suggested that patients showing survival benefits of metastasectomy can be identified by considering the prognostic factors in patients undergoing curative metastasectomy.

Keywords Colorectal cancer · Stage IV · Metastasectomy · Selection criteria · Resectability status

Introduction

Colorectal cancer (CRC) is the third most prevalent cancer and the fourth leading cause of cancer death worldwide [1]. Although the early stage disease of some patients is potentially curable, the detection of distant metastases at the time of presentation is common [2]. Although recent advances in chemotherapeutic regimens, including molecular targeted agents, have led to improved survival in patients with metastatic CRC, patients with stage IV disease have a very poor prognosis, with a 5-year survival of only 10–20 % [3].

Complete surgical resection of both primary CRC and its metastases remains the only potential curative therapy for stage IV CRC patients [2]. An increasing body of data suggests that patients who undergo curative resection of isolated metastases show survival benefits regardless of the metastatic site such as liver [4–6], lung [7–9], peritoneal [10, 11], ovarian metastases [12, 13] and extra regional lymph nodes [14, 15]. Although complete surgical resection of these metastases contributes to long-term survival in selected patients, some patients have early recurrence and very poor prognosis.

To identify the patients with poor prognosis after hepatic or pulmonary resection of metastatic CRC, investigators have proposed several different prognostic scoring systems

Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Hiroshima University, Hiroshima, Japan

e-mail: manabus@fuga.ocn.ne.jp

M. Shimomura () · M. Okajima · T. Hinoi · H. Egi ·

Y. Takakura · Y. Kawaguchi · M. Tokunaga · T. Adachi ·

H. Tashiro · H. Ohdan

[5, 8, 16, 17]. However, the factors contributing to the identification of patients likely to benefit from resection of metastatic disease have not been defined [18]. The actual indication of metastasectomy depends on the decision of surgeons or oncologists in each institution. The establishment of selection criteria for metastasectomy in patients with stage IV CRC is necessary.

Stage IV CRC encompasses a heterogeneous patient population in which both palliative and curative treatment strategies may be used [19]. The different treatment strategies are determined by the disease resectability status, and wide variation in the outcome has been shown [20]. In the present study, prognostic factors were compared between patients who underwent curative resection and those who did not to determine which patients are likely to benefit from metastasectomy among patients with stage IV CRC. The aim of this study is to establish selection criteria for metastasectomy in patients with stage IV CRC, based on the disease resectability status.

Patients and methods

We identified 131 patients with stage IV CRC disease from a prospective database from January 1992 to December 2008 at the Department of Surgery of Hiroshima University. Among these 131 patients, 119 patients underwent primary CRC resection (90.8 %), regardless of the resection of metastatic disease. These 119 patients were retrospectively analyzed based on the availability of detailed information about tumor-related factors.

Surgical treatment considered resection of the primary CRC when possible, with the exception of patients in poor condition. Determination of treatment strategy did not depend on the presence of tumor-related complications such as small bowel obstruction, bleeding or pain. In all cases with resectable synchronous metastases, simultaneous resection of both the primary and metastatic tumor was performed, regardless of the location of primary tumors and the extent of metastasis. Exceptionally, staged metastasectomy after resection of the primary tumor was performed in patients with lung metastasis or showing complications such as small bowel obstruction. For primary tumor resection, all patients underwent standard resection of colon and rectum with regional lymphadenectomy according to the Japanese general rules for clinical and pathological studies on cancer of the colon, rectum and anus, 7th edition (JGR) [21]. The indications for metastasectomy were the ability of the patient to tolerate the required surgical procedure and surgically controllable disease including primary lesion. For resection of liver metastases, radical operation was possible along with the preservation of at least 30 % of normal parenchyma. These criteria were independent of the number

and size of liver tumors. The indications for pulmonary resection were the preservation of adequate postresection respiratory function. Potentially resectable bilateral or multiple lesions were not excluded from the selection criteria [7]. The resection of ovarian, peritoneal and extra regional lymph nodes was performed, if these metastases were isolated and could be completely removed. Curative resection (R0) was defined as microscopically free tumor margins.

Individual demographic and clinicopathological data were collected including age, sex, tumor location, tumor stage (T stage), nodal stage (N stage), tumor histology, presence of lymphovascular invasion, preoperative serum carcinoembryonic antigen (CEA) level, the presence of extra hepatic disease, the extent of hepatic lesions, the presence of lung metastasis, the presence of peritoneal dissemination, the presence of postoperative complications, application of postoperative therapy and survival rate. T stage, N stage and tumor histology were pathologically determined from resected specimens. All patients were staged according to the American Joint Commission for Cancer Staging (AJCC/TNM the sixth edition) system [22]. Survival data were updated until March 2011. Survival was computed from the date of the primary tumor resection. All postoperative complications were reviewed for at least 30 days following surgery. The complications were graded according to the method described by Dindo et al. [23]. Complications with a grade above III were categorized as morbid. Postoperative mortality was defined as any death that occurred within 30 days of surgery.

Statistical analysis

Survival curves were plotted by the Kaplan–Meier method, and univariate analyses of factors thought to influence overall survival (OS) were estimated using the logrank test. The Cox proportional hazard model was used for multivariate analyses. To achieve an optimal cutoff value of serum CEA levels, receiver operating characteristic (ROC) curve analysis for survival was performed to obtain the area under the ROC curve (AUC), and optimal cutoff values were defined as the point on a ROC curve nearest to the point where both sensitivity and specificity were one. In all analyses, statistical significance was set at a *p* value of less than 0.05. All statistical analyses were performed using JMP 8 software (version 8.02, SAS Institute Inc., Cary, NC, USA).

Results

Clinicopathological features

The clinicopathological features of the 119 patients are summarized in Table 1. Seventy-five male and 44 female

Table 1 Patients' characteristics

	n=119	
Male/female	75/44	
Age (mean)	61.8 (range, 23-85)	
Median follow up time (month)	23.8 (range, 1.0-141.4	
Tumor location		
Colon/rectum	70/49	
Number of metastatic organs		
One organ/more than 2 organs	94/25	
Metastatic organs		
Liver	88	
Lung	9	
Extra regional lymph node	22	
Peritoneal dissemination	26	
Ovary	2	
Metastasectomy	63 (52.9 %)	
Curative/noncurative	55/8	

patients were included in this study, with a median age of 61.8 years (range, 23–85 years). The median follow-up period was 23.8 months (range, 1.0–141.4 months). The distribution of tumor location included 70 colon and 49 rectal cancers. Ninety-four patients had metastatic disease in only one organ, and the other 25 patients had metastasis to more than two organs. The distribution of metastases was 88 in the liver, nine in the lung, 22 in extra regional lymph nodes, 26 with peritoneal dissemination and two in the ovary (including overlapped cases).

Metastasectomy was performed in 63 patients (52.9 %). Synchronous resection of primary and metastatic tumors was performed in 59 patients, and staged resection was performed in four patients. Among these 63 cases, histological tumorfree margin was seen in 55 patients (R0), and histological positive tumor margin was seen in the other eight patients (R1, 2). In the 55 patients with curative resection, the metastatic organ distribution was liver in 47 cases, peritoneal dissemination in four cases, lungs in two cases, extra regional lymph nodes in two cases and ovaries in two cases (including overlapped cases). In cases with liver surgery (n=47), ten cases had more than three subsegments of the liver resected. Postoperative complications were reported in six cases (10.2 %) for patients with only primary CRC resection (n=59) and ten cases (16.7 %) for patients with both primary and metastatic CRC resection (n=60), respectively. There were no reports of mortality in either of the groups.

Overall survival (OS) and classification based on the disease resectability status

The 5-year OS was 24.9 % for all patients combined. The 5-year OS for patients who underwent curative resection (R0),

those who underwent noncurative resection (R1, 2) and those who did not undergo metastasectomy were 45.9 %, 12.5 % and 6.7 %, respectively (Fig. 1). The OS of patients who underwent curative resection for both primary and metastatic diseases was significantly better than that of the other two groups (p < 0.001, Fig. 1). On the other hand, the OS of patients who could not undergo curative resection of primary or metastatic disease was as poor as that of the patients who did not undergo resection of metastases (p=0.257, Fig. 1). Therefore, we stratified patients with stage IV CRC into two subgroups according to the disease resectability status: the patients who underwent curative resection for both primary and metastatic diseases (R0) were classified as the 'curable group' (n=55), and the patients who did not undergo curative resection for primary or metastatic diseases (R1, 2) and those who did not undergo resection of the metastatic disease were classified as the 'noncurable group' (n=64). The prognostic factors for both curable and noncurable patient groups were analyzed separately.

Postoperative chemotherapy

Among the patients in the noncurable group (n=64), 52 patients (82.8 %) received postoperative chemotherapy after primary tumor resection. The first-line postoperative therapy regimens were as follows: peroral drug regimen, such as S-1 (n=11) and tegafur-uracil (n=7), 5-FU/leucovorin (n=14), irinotecan-based regimen (n=7), transarterial chemotherapy (n=8) and oxaliplatin-based regimen (n=5).

For patients in the curable group (n=55), postoperative chemotherapy after metastasectomy was administered to 52 patients (94.5 %). The first-line postoperative therapy regimens were as follows: peroral drug regimen, such as S-1 (n=9), tegafur-uracil (n=8), tegafur-uracil/oral leucovorin (n=6) and capecitabine (n=1), transarterial chemotherapy (n=20), 5-FU/leucovorin (n=5) and oxaliplatin-based

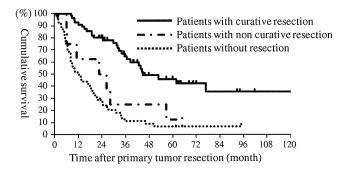


Fig. 1 Overall survival (OS) in patients with stage IV CRC classified by resectability status of the diseases. The OS of patients with curative resection was significantly better than that of the other two groups (p< 0.001). On the other hand, the OS of patients with noncurative resection was as poor as that of the patients without resection of metastases (p=0.257)

regimen (n=3). Before 2001, transarterial chemotherapy with fluorouracil was the main postoperative treatment for colorectal liver metastases. After 2002, peroral drug regimens were included in the treatment. More recently, oxaliplatin-based regimens have been considered as standard therapy in patients with high risk of cancer recurrence.

No patients were treated by molecular-targeted agents as a first line of treatment in either of the two groups, and these agents were applied as a second line of treatment or after the study period. In the noncurable group, one patient was treated with bevacizumab, and another patient was treated with cetuximab. In the curable group, three patients were treated with bevacizumab, and another three patients were treated with cetuximab. In both groups, cetuximab was administrated to the patients without KRAS mutation.

Prognostic factors for patients with noncurable stage IV CRC

To estimate prognostic factors, univariate analysis was performed for the following variables: age (<70 vs. ≥70 years old), sex (male vs. female), primary tumor location (colon vs. rectum), tumor stage (T1-T3 vs. T4), N stage (negative vs. positive), histological type (well-differentiated adenocarcinoma vs. other types), lymphatic invasion (negative vs. positive), venous invasion (negative vs. positive), serum CEA level (<30.0 ng/ml vs. ≥30.0 ng/ml), number of liver metastasis (0-3 vs. ≥4), maximum liver tumor diameter (<5 cm vs. ≥ 5 cm), lung metastases (absent vs. present), peritoneal dissemination (absent vs. present), extra hepatic disease (absent vs. present), postoperative complications (absent vs. present) and postoperative chemotherapy (no vs. yes). Tumor-related factors were not identified as significant prognostic factors, and only postoperative chemotherapy was identified as a significant prognostic factor (p<0.001, Table 2).

Prognostic factors for patients with curable stage IV CRC

To estimate prognostic factors, univariate analysis was performed for the same variables as those considered for noncurable disease and extent of liver resection (resection of two or fewer liver subsegments vs. three or more liver subsegments). T stage (T4, p=0.004), N stage (positive, p=0.026), histological type (other types, p=0.026), serum CEA level (\geq 30.0 ng/ml, p=0.002), peritoneal dissemination (present, p<0.001), extra hepatic disease (present, p<0.001) and postoperative chemotherapy (yes, p=0.036) were identified as significant prognostic factors (Table 3).

In multivariate analysis of selected variables found to be significant in the univariate analysis, T stage (T4, p=0.032), histological type (other types, p=0.043), serum CEA level (\geq 30.0 ng/ml, p=0.007) and the presence of extra hepatic

Table 2 Prognostic factors in patients with noncurable stage IV CRC (*n*=64)

Variables		Number	5-year OS	p value
Age	<70 ≥70	46 18	8.0 % 5.9 %	0.281
Sex	Male Female	41 23	6.1 % 9.6 %	0.681
Location	Colon Rectum	38 26	3.0 % 14.1 %	0.162
T factor	T1-3 T4	25 39	8.7 % 6.4 %	0.738
N factor	Negative Positive	9 55	0.0 % 9.0 %	0.878
Histology	Well Other types	52 12	0.0 % 8.1 %	0.830
Lymphatic invasion	Negative Positive	3 61	33.3 % 6.0 %	0.153
Venous invasion	Negative Positive	19 45	0.0 % 10.2 %	0.897
CEA (ng/ml)	<30 ≥30	39 25	9.0 % 5.0 %	0.611
Number of liver metastasis	0−3 ≥4	34 30	11.5 3.5	0.147
Maximum liver tumor diameter (cm)	<5 ≥5	36 28	10.2 4.3	0.091
Lung metastasis	Absent Present	55 9	8.5 % 0.0 %	0.331
Peritoneal dissemination	Absent Present	40 24	8.7 % 5.9 %	0.170
Extra hepatic disease	Absent Present	22 42	5.0 % 9.7 %	0.875
Postoperative complication	No Yes	57 9	8.2 % 0.0 %	0.076
Postoperative therapy	No Yes	12 52	0.0 % 9.4 %	<0.001

 $\it CRC$ colorectal cancer, $\it OS$ overall survival, $\it CEA$ carcinoembryonic antigen

disease (present, p=0.015) were identified as independent prognostic factors (Table 4).

Risk classification based on the independent prognostic factors for patients with curable stage IV CRC

To identify patients who might show a survival benefit from metastasectomy, we established a risk classification based on the following independent prognostic factors: T stage (T4), histological type (other than well-differentiated adenocarcinoma), serum CEA level (≥30.0 ng/ml) and the presence of extra hepatic disease. We, then, classified patients into two groups, a low-risk group (zero to two risk factors) and a high-risk group (three or more risk factors). Forty-six patients were classified into the low-risk group,

Table 3 Prognostic factors in patients with curable stage IV CRC (n=55)

Variables		Number	5-year OS	p value
Age	<70 ≥70	45 10	48.5 % 37.5 %	0.371
Sex	Male Female	34 21	50.0 % 39.3 %	0.813
Location	Colon Rectum	32 23	45.7 % 46.7 %	0.898
T factor	T1-3 T4	38 17	56.5 % 19.2 %	0.004
N factor	Negative Positive	16 39	70.2 % 35.7 %	0.026
Histology	Well Other types	17 39	65.7 % 37.6 %	0.026
Lymphatic invasion	Negative Positive	11 44	72.7 % 42.5 %	0.262
Venous invasion	Negative Positive	16 39	45.8 % 47.8 %	0.213
CEA (ng/ml)	<30 ≥30	34 21	67.5 % 16.7 %	0.002
Number of liver metastasis	0−3 ≥4	46 9	44.1 53.3	0.431
Maximum liver tumor diameter (cm)	<5 ≥5	48 7	45.5 51.4	0.647
Extent of liver resection	2 or fewer subsegments 3 or more subsegments	44 11	46.2 43.8	0.859
Lung metastasis	Absent Present	53 2	48.0 % 0.0 %	0.070
Peritoneal dissemination	Absent Present	52 3	48.8 % 0.0 %	< 0.001
Extra hepatic disease	Absent Present	48 7	52.0 % 0.0 %	< 0.001
Postoperative complication	No Yes	46 9	45.1 % 48.6 %	0.843
Postoperative therapy	No Yes	3 52	0.0 % 47.4 %	0.036

and nine patients were classified as a high risk group. For patients with curable stage IV CRC, the OS of the high-risk group was significantly poorer than that of the low-risk group (p<0.001, Fig. 2). Furthermore, the OS of this group was as poor as that of patients with noncurable stage IV CRC (p=0.474, Fig. 2).

Discussion

Complete surgical resection of metastases contributes to the long-term survival of patients with stage IV CRC. The present study confirmed that the OS of patients with curative metastasectomy was significantly better than that of patients with noncurative or without metastasectomy. However, there is no consensus regarding the upper limits of operative indications for metastatic tumors. The current guidelines state that the aim of liver resection in patients with colorectal

liver metastases is to remove all macroscopic disease, to achieve clear resection margins and to leave a sufficiently functioning liver [4, 18, 24]. These criteria apply to patients with solitary, multiple and bilobar disease as well as extra

Table 4 Prognostic factors in patients with curable stage IV CRC: multivariate analysis

Selected variables	p value	Odds ratio	95 % confidential interval
T factor (T4)	0.032	2.681	1.087-6.623
N factor (positive)	0.272	3.678	0.562-7.752
Histology (other types)	0.043	3.259	1.037-10.242
CEA (≥30 ng/ml)	0.007	3.717	1.443-9.615
Peritoneal dissemination (present)	0.899	1.147	0.137-9.615
Extra hepatic disease (present)	0.015	7.143	1.468-34.483
Postoperative chemotherapy (no)	0.069	5.826	0.875–38.811

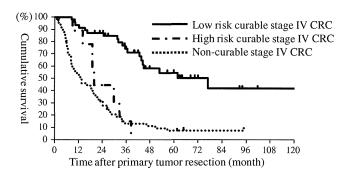


Fig. 2 The OS in patients with noncurable and curable stage IV CRC classified by the independent prognostic factors. For patients with curable stage IV CRC, the OS of the high risk group was significantly poorer than that of the low risk group (p<0.001). Furthermore, the OS of this group was as poor as that of patients with noncurable stage IV CRC (p=0.474)

hepatic disease that is confirmed in the lungs, ovary, peritoneal dissemination and extra regional lymph nodes [2, 3, 18, 24]. Therefore, the operative indications for metastasectomy are dependent on the decisions of surgeons or oncologists in each institution. Before resecting the metastatic tumor, it is important to recognize who is likely to benefit from the procedure. We, therefore, aimed to identify the patient population who likely benefit from metastasectomy.

Previous studies showed a wide variation in outcomes according to the baseline resectability status of metastases for stage IV CRC [20]. For the majority of patients, treatment remains of palliative benefit, with the possibility of cure, were restricted only to those patients who are suitable for surgical resection. Thus, stage IV CRC encompasses a heterogeneous patient population in which both palliative and curative treatment strategies may be used. In the present study, we also showed differences in the prognostic outcome according to the disease resectability status (curable group vs. noncurable group). Furthermore, among patients with noncurable stage IV CRC, tumor-related factors did not reflect the prognosis. Conversely, for patients with curable stage IV CRC, tumor-related factors, such as T stage, histological type, preoperative CEA level and the presence of extra hepatic disease, were indicative of the prognosis. These results implied that stage IV CRC patients consist of heterogeneous populations in which the prognoses and prognostic factors are different and can be stratified by the resectability status of the disease.

To address the controversial topic of patient selection for metastasectomy, various groups have proposed using a prognostic scoring system to stratify patients into different risk categories. Nordlinger et al. [16] and Fong et al. [5] each proposed a prognostic scoring system after hepatic resection using several clinical parameters. Recently, Kattan et al. [17] and Kanemitsu et al. [6] proposed a prognostic nomogram to identify high-risk patient groups. In these

systems, age, gender, primary site, primary T and N stage, short disease free interval, the size and number of liver tumors, surgical margin, preoperative CEA level and the presence of extra hepatic disease were found to be prognostic markers. However, there is no ideal prognostic system for the clinical management of patients with colorectal liver metastases [18]. As in liver metastases, a number of prognostic factors have been suggested to predict outcome after pulmonary metastasectomy [7–9]. In general, the number of pulmonary metastases, short disease free survival, preoperative CEA levels and nodal status of perihilar and mediastinal lymph nodes were reported as prognostic factors. However, disagreement exists over which prognostic factors determine who will benefit most from aggressive surgical treatment [25]. In the present study, T4, histological type (other than well-differentiated adenocarcinoma), elevated serum CEA level (≥30 ng/ml) and the presence of extra hepatic disease were identified as independent prognostic factors, considering only the patients with curative metastasectomy. In addition, a patient population likely to show a survival benefit of metastasectomy was identified, stratified by these prognostic factors. To best of our knowledge, the present study is the first to identify a patient population likely to show survival benefits from curative metastasectomy. These present results suggest that the identification of patients who would benefit from metastasectomy is possible, considering the prognostic factors extracted from patients with curative metastasectomy.

Although the presence of extra hepatic disease has long been considered a contraindication for resection, recent reports of long-term survival of patients who undergo resection of both sites suggest that some patients may show longterm benefits [25, 26]. Similar to the management of liver metastases, pulmonary resection for metastatic CRC is increasingly being considered as appropriate and beneficial in selected patients [7, 8]. Resection of metastases in more unusual sites, such as ovary, peritoneal dissemination and extra regional lymph nodes, is more controversial. However, several retrospective studies have suggested that selected patients may be cured with resection of these tumors [2, 10–15]. In the present study, the presence of extra hepatic disease was also selected as an independent prognostic factor in patients with curative metastasectomy. However, our data also showed that the prognostic benefit of resection of extra hepatic disease is limited to patients with two or less other prognostic factors (T4, other than well-differentiated adenocarcinoma and elevated serum CEA level). Our data supported the notion that surgical metastasectomy can be beneficial in well-selected patients with stage IV CRC, despite the number or site of metastatic organs.

Recent advances in chemotherapeutic regimens have produced good results with preoperative chemotherapy; thus, neoadjuvant chemotherapy followed by hepatectomy has

gradually gained acceptance for both initially nonresectable metastases and resectable metastases [2]. The high tumor response rates achieved with modern chemotherapeutics now enable a greater proportion of patients with initially inoperable disease to achieve an operable status and undergo liver resection with curative intent. This type of chemotherapy is termed 'conversion therapy' to differentiate it from 'neoadjuvant therapy' in upfront resectable metastases [27, 28]. The current study did not include so-called 'conversion therapy,' which is aimed at the complete resection after preoperative chemotherapy for patients with unresectable CRC. The present study did not show the prognostic benefit of metastasectomy for the initial treatment of patients with three or more risk factors, even if curative resection of metastases was performed. Although further investigation is required, preoperative chemotherapy may be recommended for such patients.

For the resection of isolated metastases with a curative intent, it is critical that the primary colorectal tumor has been or can be completely resected [2]. In cases with unresectable metastases, the role of primary tumor resection has been controversial, in particular with the improvement in newer chemotherapeutic agents [29]. Although a recent meta-analysis suggested the efficacy of primary CRC resection from a prognostic point of view [30], another study recommended the introduction of chemotherapy without removal of primary tumors in patients without any tumorrelated complications [29]. In the present study, our criteria for primary tumor resection did not include the presence of tumor-related complications. However, we recently introduced chemotherapy in patients with asymptomatic and minimally symptomatic tumorus, to avoid the delay of chemotherapy because of the resection of the primary tumors.

The timing of the synchronous resection of metastases and primary tumor has been a subject of debate [2, 4]. Recent studies have demonstrated equivalent outcomes without increased morbidity and mortality in patients who undergo simultaneous resection [31, 32]. In the present study, simultaneous resection of both the primary and metastatic tumors was performed in all cases of resectable synchronous metastases, regardless of the location of primary tumors and the extent of metastasis. The mortality and morbidity rate was low in this study as compared to previous reports [31, 32], which suggested that for well-selected patients, simultaneous resection of primary CRC and abdominal metastases is a safe approach.

This study had several limitations. First, the possible influence of the variable regimen of postoperative therapy cannot be ignored. Second, the current patient cohort included few patients treated with newer chemotherapy agents such as bevacizumab and cetuximab. There were no significant differences in the use of molecular-targeted therapies among the three groups (low-risk curable group, n=5; high-

risk curable group, n=1; and noncurable group, n=2; p=0.221). Therefore, we can safely assume that the application of these agents would not confound our results.

In conclusion, we demonstrated that stage IV CRC patients consist of a heterogeneous patient population with different prognostic factors, stratified by the disease resectability status. Consideration of the prognostic factors in patients treated with curative metastasectomy (T4, other than well-differentiated adenocarcinoma, elevated serum CEA level and the presence of extra hepatic disease) allowed the identification of patients who would most benefit from this procedure. This study is a retrospective trial with relatively low number of patients, therefore, our data is needed to validate with large series in order to establish universal selection criteria of metastasectomy for stage IV CRC. Regardless of this limitation, however, our data demonstrated the possibility of establishing ideal prognostic models based on the disease resectability status for stage IV CRC.

Acknowledgments We would like to express our gratitude to the staff of our department for their assistance in the collection and registration of patient's data.

References

- Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011)
 Global cancer statistics. CA Cancer J Clin 61:69–90
- Mahmoud N, Bullard Dunn K (2010) Metastasectomy for stage IV colorectal cancer. Dis Colon Rectum 53:1080–1092
- 3. Eadens MJ, Grothey A (2011) Curable metastatic colorectal cancer. Curr Oncol Rep 13:168–176
- Primrose JN (2010) Surgery for colorectal liver metastases. Br J Cancer 102:1313–1318
- Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1,001 consecutive cases. Ann Surg 230:309–318, discussion 318–321
- Kanemitsu Y, Kato T (2008) Prognostic models for predicting death after hepatectomy in individuals with hepatic metastases from colorectal cancer. World J Surg 32:1097–1107
- 7. Takakura Y, Miyata Y, Okajima M, Okada M, Ohdan H (2010) Short disease-free interval is a significant risk factor for intrapulmonary recurrence after resection of pulmonary metastases in colorectal cancer. Colorectal Dis 12(7 Online):e68–e75
- Demmy TL, Dunn KB (2007) Surgical and nonsurgical therapy for lung metastasis: indications and outcomes. Surg Oncol Clin N Am 16:579–605, ix
- Pfannschmidt J, Dienemann H, Hoffmann H (2007) Surgical resection of pulmonary metastases from colorectal cancer: a systematic review of published series. Ann Thorac Surg 84:324–338
- Shibata D, Paty PB, Guillem JG, Wong WD, Cohen AM (2002) Surgical management of isolated retroperitoneal recurrences of colorectal carcinoma. Dis Colon Rectum 45:795–801
- Esquivel J, Elias D, Baratti D, Kusamura S, Deraco M (2008) Consensus statement on the loco regional treatment of colorectal cancer with peritoneal dissemination. J Surg Oncol 98:263–267

- Huang PP, Weber TK, Mendoza C, Rodriguez-Bigas MA, Petrelli NJ (1998) Long-term survival in patients with ovarian metastases from colorectal carcinoma. Ann Surg Oncol 5:695–698
- Erroi F, Scarpa M, Angriman I, Cecchetto A, Pasetto L, Mollica E, Bettiol M, Ruffolo C, Polese L, Cillo U et al (2007) Ovarian metastasis from colorectal cancer: prognostic value of radical oophorectomy. J Surg Oncol 96:113–117
- Lefevre JH, Rondelli F, Mourra N, Bennis M, Tiret E, Parc R, Parc Y (2008) Lumboaortic and iliac lymphadenectomy for lymph node recurrence of colorectal cancer: prognostic value of the MSI phenotype. Ann Surg Oncol 15:2433–2438
- Min BS, Kim NK, Sohn SK, Cho CH, Lee KY, Baik SH (2008) Isolated paraaortic lymph-node recurrence after the curative resection of colorectal carcinoma. J Surg Oncol 97:136–140
- 16. Nordlinger B, Guiguet M, Vaillant JC, Balladur P, Boudjema K, Bachellier P, Jaeck D (1996) Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1,568 patients. Association Francaise de Chirurgie. Cancer 77:1254–1262
- Kattan MW, Gonen M, Jarnagin WR, DeMatteo R, D'Angelica M, Weiser M, Blumgart LH, Fong Y (2008) A nomogram for predicting disease-specific survival after hepatic resection for metastatic colorectal cancer. Ann Surg 247:282–287
- Gomez D, Cameron IC (2010) Prognostic scores for colorectal liver metastasis: clinically important or an academic exercise? HPB (Oxford) 12:227–238
- Katoh H, Yamashita K, Kokuba Y, Satoh T, Ozawa H, Hatate K, Ihara A, Nakamura T, Onosato W, Watanabe M (2008) Surgical resection of stage IV colorectal cancer and prognosis. World J Surg 32:1130–1137
- Watkins DJ, Chau I, Cunningham D, Mudan SS, Karanjia N, Brown G, Ashley S, Norman AR, Gillbanks A (2010) Defining patient outcomes in stage IV colorectal cancer: a prospective study with baseline stratification according to disease resectability status. Br J Cancer 102:255–261
- 21. Japanese Society for Cnacer of the Colon and Rectum (2009) General rules for clinical and pathological studies on cancer of the colon, rectum and anus (The 7th Edition, Revised version). Kanehara shuppan, Tokyo

- 22. Sobin LHGM, Wittekind C (2003) TNM classification of malignant tumors, 6th edn. Wiley, New York
- Dindo D, Demartines N (2004) Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6,336 patients and results of a survey. Ann Surg 240:205–213
- Garden OJ, Rees M, Poston GJ, Mirza D, Saunders M, Ledermann J, Primrose JN, Parks RW (2006) Guidelines for resection of colorectal cancer liver metastases. Gut 55(Suppl 3):iii1-iii8
- Shah SA, Haddad R, Al-Sukhni W, Kim RD, Greig PD, Grant DR, Taylor BR, Langer B, Gallinger S, Wei AC (2006) Surgical resection of hepatic and pulmonary metastases from colorectal carcinoma. J Am Coll Surg 202:468–475
- Elias D, Ouellet JF, Bellon N, Pignon JP, Pocard M, Lasser P (2003) Extrahepatic disease does not contraindicate hepatectomy for colorectal liver metastases. Br J Surg 90:567–574
- Bismuth H, Adam R, Levi F, Farabos C, Waechter F, Castaing D, Majno P, Engerran L (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–520, discussion 520–502
- 28. Adam R, Pascal G, Castaing D, Azoulay D, Delvart V, Paule B, Levi F, Bismuth H (2004) Tumor progression while on chemotherapy a contraindication to liver resection for multiple colorectal metastases? Ann Surg 240:1052–1061, discussion 1061–1054
- Poultsides GA, Servais EL, Saltz LB, Patil S, Kemeny NE, Guillem JG, Weiser M, Temple LK, Wong WD, Paty PB (2009) Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J Clin Oncol 27:3379–3384
- Stillwell AP, Buettner PG, Ho YH (2010) Meta-analysis of survival of patients with stage IV colorectal cancer managed with surgical resection versus chemotherapy alone. World J Surg 34:797–807
- 31. de Santibanes E, Fernandez D, Vaccaro C, Quintana GO, Bonadeo F, Pekolj J, Bonofiglio C, Molmenti E (2010) Short-term and long-term outcomes after simultaneous resection of colorectal malignancies and synchronous liver metastases. World J Surg 34:2133–2140
- Huh JW, Cho CK, Kim HR, Kim YJ (2010) Impact of resection for primary colorectal cancer on outcomes in patients with synchronous colorectal liver metastases. J Gastrointest Surg 14:1258–1264

World Journal of Surgical Oncology

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon.

Primary lung cancer presenting with metastasis to the colon: a case report

World Journal of Surgical Oncology 2012, 10:127 doi:10.1186/1477-7819-10-127

Hiroshi Sakai (hsakai56@yahoo.co.jp)
Hiroyuki Egi (hiroegi@yahoo.co.jp)
Takao Hinoi (thinoi@hiroshima-u.ac.jp)

Masakazu Tokunaga (masakazu.wing14@kym.biglobe.ne.jp)
Yasuo Kawaguchi (y-kawaguchi@pop02.odn.ne.jp)
Manabu Shimomura (manabus@fuga.ocn.ne.jp)
Tomohiro Adachi (adachitomohiro@hotmail.com)
Koji Arihiro (arihiro@hiroshima-u.ac.jp)
Hideki Ohdan (hohdan@hiroshima-u.ac.jp)

ISSN 1477-7819

Article type Case report

Submission date 4 March 2012

Acceptance date 2 June 2012

Publication date 28 June 2012

Article URL http://www.wjso.com/content/10/1/127

This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below).

Articles in WJSO are listed in PubMed and archived at PubMed Central.

For information about publishing your research in WJSO or any BioMed Central journal, go to

http://www.wjso.com/authors/instructions/

For information about other BioMed Central publications go to

http://www.biomedcentral.com/

© 2012 Sakai et al.; licensee BioMed Central Ltd.

Primary lung cancer presenting with metastasis to the colon: a case report

Hiroshi Sakai¹

Email: hsakai56@yahoo.co.jp

Hiroyuki Egi^{1*}

* Corresponding author Email: hiroegi@yahoo.co.jp

Takao Hinoi¹

Email: thinoi@hiroshima-u.ac.jp

Masakazu Tokunaga¹

Email: masakazu.wing14@kym.biglobe.ne.jp

Yasuo Kawaguchi¹

Email: y-kawaguchi@pop02.odn.ne.jp

Manabu Shinomura¹

Email: manabus@fuga.ocn.ne.jp

Tomohiro Adachi¹

Email: adachitomohiro@hotmail.com

Koji Arihiro²

Email: arihiro@hiroshima-u.ac.jp

Hideki Ohdan¹

Email: hohdan@hiroshima-u.ac.jp

Abstract

Although about 50% of lung cancers have distant metastasis at the time of initial diagnosis, colonic metastases are extremely rare. This report presents a rare clinical case of colonic metastasis from primary squamous cell carcinoma of the lung.

A 60-year-old female with anorexia and fatigue was referred to the department of pulmonary surgery in our hospital. The patient was diagnosed with primary squamous cell carcinoma of the lung, T2b N3 M1b Stage IV, and chemoradiotherapy was initiated. This treatment led to a good partial response in the primary lung lesion without any new metastatic lesions.

¹ Department of Gastroenterological Surgery, Hiroshima University Hospital, Hiroshima, Japan

² Department of Anatomical Pathology, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan

The patient developed left abdominal pain due to a bulky sigmoid colon tumor 6 months later, and was preoperatively diagnosed with primary colon cancer. She underwent colonic resection, and the pathology specimen demonstrated poorly differentiated squamous cell carcinoma that was suspected to be colonic metastasis from the primary lung cancer. The postoperative course was uneventful, and she was discharged. Chemotherapy for the lung cancer was scheduled in the department of pulmonary surgery.

This report presented a rare case of colonic metastasis from lung cancer. When patients with advanced primary lung cancer complain of abdominal symptoms, we should consider gastrointestinal tract metastasis from lung cancer.

Keywords

Colonic metastasis, Primary lung cancer, Squamous cell carcinoma

Background

Lung cancer is the most frequent cause of cancer death [1]. About 50% of all lung cancers have distant metastasis at the time of the initial diagnosis [2]. The brain, liver, adrenal glands, and bone are the most common sites of metastatic disease in patients with lung cancer [3]. Several autopsy studies reported that gastrointestinal metastasis from primary lung cancer occur in about 0.2 to 11.9% of cases [2,4-7]. A review of these studies indicates that the rate of metastasis of primary lung cancer to the gastrointestinal tract in autopsy studies is more common than originally thought. On the other hand, the clinical prevalence of symptomatic gastrointestinal metastasis of lung cancer is only 0.2 to 0.5% [5,8-11]. Within the gastrointestinal tract, the small bowel is the most common site of metastases from primary lung cancer [2]; however, the clinical prevalence of symptomatic colonic metastasis is extremely rare. This report presents a rare clinical case of colonic metastasis from primary squamous cell carcinoma of the lung.

Case presentation

A 60-year-old female with anorexia and fatigue was referred to the department of pulmonary surgery with a diagnosis of primary lung cancer. She had no past history of serious illnesses, operations or hospitalizations. The tumor markers were CEA 9.7 ng/ml, CYFRA 4.9 ng/ml, and SCC 0.6 ng/ml, respectively. A chest X-ray showed a 55 mm round mass in the right upper lung field (Figure 1a). Chest computed tomography (CT) revealed a mass in the right upper lobe with infiltration to the B2 and B3 bronchus and enlarged lymph nodes of the left upper mediastinum (#2 L), subcarina (#7) with infiltration to the esophagus and lesser curvature of the stomach (Figure 1b). In addition, positron emission tomography (PET)-CT revealed positive findings of the same lesions revealed by CT with no other positive lesion (maximum standardized uptake value (Max SUV): lung tumor 19.5, lymph nodes #2 L 9.3, #7 24.3, lesser curvature of the stomach 13.2) (Figure 2). A bronchoscopic biopsy specimen of B2 and B3 revealed squamous cell carcinoma. Upper gastrointestinal endoscopy showed an ulcerative lesion in the upper thoracic esophagus and a biopsy specimen from the lesion revealed invasion of the metastatic lymph nodes to the esophagus. The patient was diagnosed with primary squamous cell carcinoma of the lung, T2b N3 M1b (extrathoracic lymph node) Stage IV, and was treated with chemoradiotherapy.

Figure 1 Chest X-ray and computed tomography(CT) shows a huge tumor in the right lung field. (a) Chest X-ray shows a 55 mm round mass in the right upper lung field. (b) Chest computed tomography scan reveals the mass in the right upper lobe with infiltration to B2 and B3a bronchus

Figure 2 Chest computed tomography (CT) scan. The CT scan reveals the mass in the right upper lobe and enlarged lymph nodes of the upper mediastinum, around the upper thoracic esophagus and lesser curvature of the stomach. Positron emission tomography (PET)-CT reveals positive findings of the same lesions as the CT scan with no other positive lesion (maximum standardized uptake value: lung tumor 19.5, lymph nodes #2 L 9.3, #7 24.3, lesser curvature of the stomach 13.2)

The patient initially received 60 mg/m² docetaxel and 100 mg/m² nedaplatin on day 1, and this was repeated every 3 weeks. The patient experienced an adverse drug reaction, judged to be platinum allergy, after the first treatment, thus the regimen was changed to chemoradiotherapy with S-1 and regional radiation to the primary lung lesion and lymph nodes of #2 L and #7 with a dose of 70 Gy/35. Chest and abdominal CT scan demonstrated a good partial response to chemoradiotherapy in the primary lung lesion and lymph nodes of #2 L and #7. The lymph node of the lesser curvature of the stomach enlarged, and therefore additional radiation was introduced to the enlarged lymph node with a dose of 60 Gy/30. Chest and abdominal CT scan revealed reduction of the primary lung lesion and lymph nodes including lesser curvature of the stomach after this chemoradiotherapy, and no other tumor was detected. Ambulatory follow-up was continued in the department of pulmonary surgery.

The patient developed left abdominal pain 6 months later, and colonoscopy disclosed bulky disease with strictures in the sigmoid colon (Figure 3a), diagnosed to be primary colon cancer. The patient was referred to this department. Abdominal CT scan revealed a sigmoid colon tumor invading the abdominal wall, with no swelling of the colonic lymph nodes on distant metastasis (Figure 3b). The sigmoid colon tumor was thought to have rapidly progressed over the months after chemoradiotherapy to the primary lung cancer. She underwent a sigmoid colectomy and partial transverse colectomy for the bulky sigmoid tumor invading the transverse colon for curative resection based on a preoperative diagnosis of primary colon cancer (Figure 4).

Figure 3 Colonoscopy discloses bulky disease with stricture in the sigmoid colon. Abdominal computed tomography scan reveals sigmoid colon tumor invading the abdominal wall unaccompanied by swelling of colonic lymph nodes and distant metastasis

Figure 4 Gross specimen of sigmoid colon shows a bulky tumor invading the transverse colon without nodal involvement

The pathology specimen, however, demonstrated poorly differentiated squamous cell carcinoma without metastasis to the colonic lymph nodes, and immunohistochemistry showed that the carcinoma cells were negative for CDX2, cytokeratin20 (CK20), MUC2 and MUC5AC (Figure 5), thus indicating that the carcinoma was not colorectal carcinoma [12-14]. The immunohistological findings suggested the tumor to be metastatic colon cancer from the primary lung carcinoma. Cytology of peritoneal lavage fluid was negative for malignant cells. Her postoperative course was uneventful, and she was discharged 24 days after the operation. She is presently alive at 6 months after the operation, and chemotherapy for the lung cancer was scheduled in the department of pulmonary surgery.

Figure 5 The pathology specimen demonstrates poorly differentiated squamous cell carcinoma (H&E stain, x40/x200). The carcinoma cells are negative for CDX2, cytokeratin20, MUC2 and MUC5AC on immunohistochemistry (x200)

Discussion

Rossi and colleagues [7] stated that gastrointestinal metastasis from lung cancer has probably been underdiagnosed in living patients because it is frequently regarded as part of a generalized metastatic disease or the lesions are considered to be side effects of chemotherapy, such as ulcers, enteritis, or colitis. Small bowel tumors are likely to present with serious clinical complications such as perforation, obstruction or hemorrhage. Therefore, a number of clinical cases of small bowel metastasis from lung cancer have been reported, while clinical cases of colonic metastases have so far only rarely been reported. Only 11 clinical cases of colonic metastases from lung cancer have been published as case reports [2,10,15-22]. The pathological diagnosis in 10 of the 12 cases, including our presented case, was squamous cell carcinoma. Small cell carcinoma or large cell carcinoma occurred in only one case each.

On the other hand, the most common histological tumor type causing gastrointestinal metastasis varies according across different studies, and every type of lung cancer can result in gastrointestinal metastasis [2,4,6,8,10,11,23,24]. In other words, there is no determinant for any particular cell type to metastasize to the gastrointestinal tract. These data were mostly obtained from the small bowel metastatic cases. More reports of colonic metastasis from primary lung cancer are therefore required to clarify the clinical features.

Regarding the preoperative diagnosis, it is difficult to correctly diagnose the origin of gastrointestinal tumor by CT scan and, even at endoscopy, lung cancer involving the gastrointestinal tract has no peculiar features, mimicking a primary gastrointestinal tumor [7]. Thus, the histological examination is the only way to identify metastatic tumors to the gastrointestinal tract, and immunostaining with TTF-1, CDX2, CK7 and CK20 is also helpful to distinguish primary gastrointestinal carcinoma from metastasis of lung carcinoma [7]. Preoperative diagnosis based on the endoscopic findings was not corrected in the present case. If we had preoperatively performed immunohistochemical examination, correct diagnosis might have been made.

Fecal blood test is useful for early detection of the intestinal metastasis, and is suitable for the first examination for abdominal symptoms [15]. Recently, clinical usefulness of a PET-CT scan is firmly established in primary gastrointestinal carcinoma [2]. Even patients with asymptomatic gastrointestinal metastasis from lung cancer were diagnosed with PET-CT scan in past reports [5,16]. Therefore, PET-CT scan may also play an important role in early diagnosis of colonic metastasis of lung cancer. Gastrointestinal symptoms should be noted in lung cancer patients to avoid underdiagnosis or overlooking colonic metastasis from lung cancer, and to allow early detection with these modalities.

Yang and colleagues [2] reported that the average time from the diagnosis of gastrointestinal metastasis to death was 130 days, indicating poor prognosis. However one report showed a patient remaining alive more than 5 years after resection of metastatic intestine [5]. Although patients with gastrointestinal metastasis from lung cancer are in the latter stages of the disease, early detection and surgical intervention may provide some relief [11].

Conclusion

This report presented a rare case of colonic metastasis from primary lung cancer. Patients with advanced primary lung cancer that complain of abdominal symptoms may therefore have gastrointestinal metastases from lung cancer, and their gastrointestinal tract should be actively examined to allow early detection and treatment.

Consent

Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Abbreviations

CDX2, Caudal-type homeobox 2; CK, Cytokeratin; CT, Computed tomography; Max SUV, Maximum standardized uptake value; PET, Positron emission tomography; TTF, Thyroid transcription factor-1.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

HS participated in treatment of the patient, contributed to collection of the clinical data and relevant literatures, and to writing of the manuscript. HE participated in treatment of the patient, and helped to edit the manuscript. HT, MT, YK, MS, TA and HO participated in treatment of the patient, and revised and approved the manuscript. KA contributed to histological diagnosis. All authors read and approved the final manuscript.

References

- 1. Parkin DM, Bray F, Ferlay J, Pisani P: **Global cancer statistics**, **2002.** *CA Cancer J Clin* 2005, **55**(2):74–108.
- 2. Yang CJ, Hwang JJ, Kang WY, Chong IW, Wang TH, Sheu CC, Tsai JR, Huang MS: Gastro-intestinal metastasis of primary lung carcinoma: clinical presentations and outcome. Lung Cancer 2006, 54(3):319–323.
- 3. Hillers TK, Sauve MD, Guyatt GH: Analysis of published studies on the detection of extrathoracic metastases in patients presumed to have operable non-small cell lung cancer. *Thorax* 1994, **49**(1):14–19.
- 4. Yoshimoto A, Kasahara K, Kawashima A: Gastrointestinal metastases from primary lung cancer. Eur J Cancer 2006, 42(18):3157–3160.

- 5. Kim MS, Kook EH, Ahn SH, Jeon SY, Yoon JH, Han MS, Kim CH, Lee JC: Gastrointestinal metastasis of lung cancer with special emphasis on a long-term survivor after operation. *J Cancer Res Clin Oncol* 2009, **135**(2):297–301.
- 6. McNeill PM, Wagman LD, Neifeld JP: **Small bowel metastases from primary carcinoma of the lung.** Cancer 1987, **59**(8):1486–1489.
- 7. Rossi G, Marchioni A, Romagnani E, Bertolini F, Longo L, Cavazza A, Barbieri F: **Primary lung cancer presenting with gastrointestinal tract involvement: clinicopathologic and immunohistochemical features in a series of 18 consecutive cases.** *J Thorac Oncol* 2007, **2**(2):115–120.
- 8. Berger A, Cellier C, Daniel C, Kron C, Riquet M, Barbier JP, Cugnenc PH, Landi B: Small bowel metastases from primary carcinoma of the lung: clinical findings and outcome. *Am J Gastroenterol* 1999, **94**(7):1884–1887.
- 9. Kim SY, Ha HK, Park SW, Kang J, Kim KW, Lee SS, Park SH, Kim AY: Gastrointestinal metastasis from primary lung cancer: CT findings and clinicopathologic features. AJR Am J Roentgenol 2009, 193(3):W197–W201.
- 10. Gitt SM, Flint P, Fredell CH, Schmitz GL: **Bowel perforation due to metastatic lung cancer.** *J Surg Oncol* 1992, **51**(4):287–291.
- 11. Lee PC, Lo C, Lin MT, Liang JT, Lin BR: Role of surgical intervention in managing gastrointestinal metastases from lung cancer. World J Gastroenterol 2011, 17(38):4314–4320.
- 12. Saad RS, Ghorab Z, Khalifa MA, Xu M: **CDX2 as a marker for intestinal differentiation: its utility and limitations.** World J Gastrointest Surg 2011, **3**(11):159–166.
- 13. Hinoi T, Tani M, Lucas PC, Caca K, Dunn RL, Macri E, Loda M, Appelman HD, Cho KR, Fearon ER: Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. *Am J Pathol* 2001, **159**(6):2239–2248.
- 14. Shin JH, Bae JH, Lee A, Jung CK, Yim HW, Park JS, Lee KY: **CK7**, **CK20**, **CDX2** and **MUC2** immunohistochemical staining used to distinguish metastatic colorectal carcinoma involving ovary from primary ovarian mucinous adenocarcinoma. *Jpn J Clin Oncol* 2010, **40**(3):208–213.
- 15. Hirasaki S, Suzuki S, Umemura S, Kamei H, Okuda M, Kudo K: **Asymptomatic colonic metastases from primary squamous cell carcinoma of the lung with a positive fecal occult blood test.** *World J Gastroenterol* 2008, **14**(35):5481–5483.
- 16. Stinchcombe TE, Socinski MA, Gangarosa LM, Khandani AH: Lung cancer presenting with a solitary colon metastasis detected on positron emission tomography scan. *J Clin Oncol* 2006, **24**(30):4939–4940.
- 17. Habesoglu MA, Oguzulgen KI, Ozturk C, Akyurek N, Memis L: **A case of bronchogenic carcinoma presenting with acute abdomen.** *Tuberk Toraks* 2005, **53**(3):280–283.