

calculated according to standard non-compartmental methods.

Results

Patient characteristics

A total of 31 patients were registered between May 2009 and February 2010. One patient was not eligible due to PS 3, and thirty eligible patients received more than one planned treatment with irinotecan and cetuximab and analyzed for efficacy and safety (Table 1). Most patients had a PS 0–1; 2 patients were PS 2. All patients had wild-type KRAS MCRC. All patients had received two or more prior chemotherapy regimens with a median interval from initiation of first-line chemotherapy to study entry of 17.7 months (range, 6.4–46.9 months). Prior oxaliplatin-containing regimens included FOLFOX (infusional and bolus 5-fluorouracil with oxaliplatin) in 29 patients and S-1 plus oxaliplatin in 1 patient. Prior irinotecan-containing regimens included FOLFIRI (infusional and bolus 5-fluorouracil with irinotecan) in 24 patients, irinotecan monotherapy in 2 patients, irinotecan plus hepatic arterial infusion chemotherapy of 5-FU in 3 patients, and S-1 plus

irinotecan in 1 patient. Twenty-one patients received oxaliplatin-based therapy prior to irinotecan-based therapy, while the nine patients received these therapies in reverse sequence. Bevacizumab had been previously used in 19 patients prior to study entry. All patients discontinued prior irinotecan based chemotherapy due to disease progression. Prior oxaliplatin-based regimen was discontinued due to disease progression in 24 patients and toxicity in 6 patients (neuropathy in 5 patients and allergy in 1 patient). The median PFS of oxaliplatin-based therapy and irinotecan-based therapy was 6.3 months and 6.7 months, respectively. The most common site of metastasis was the lungs in 24 patients, followed by the liver in 23 patients. Increased CEA was observed in 26 patients (>2 times the upper normal range), with a median value of 194 U/mL (range, 11.6 to 6,050 U/mL).

Treatment results

The median number of cetuximab and irinotecan administrations was 8 (range, 1 to 24) and 8 (range, 2 to 24), respectively. Irinotecan was administered at a dose of 100 mg/m², 120 mg/m², and 150 mg/m² in 7, 7, and 16 patients, respectively. Four patients continued protocol treatment as of the time of analysis, with a median follow-up of 12.0 months (range, 8.3–19.1 months). Two patients experienced cetuximab dose reductions due to skin toxicities, and 1 patient underwent a 50% infusion rate due to grade 2 infusion reaction. Seven patients required irinotecan dose reductions, primarily due to neutropenia and gastrointestinal toxicity. Protocol treatment was discontinued in 26 patients due to disease progression (n=24), dead by pneumonia (n=1), and lost follow up (n=1).

Efficacy

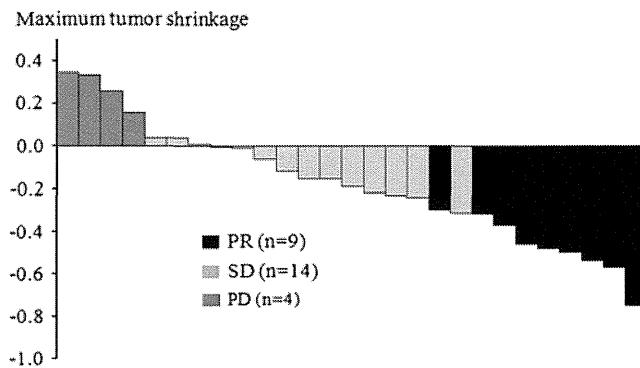

Among the 30 patients, no patient achieved a complete response, 9 patients experienced a confirmed partial response, and 14 had stable disease using RECIST criteria. Four patients had progressive disease, and three patients were not evaluable for treatment response due to symptomatic deterioration prior to radiological response evaluation in two patients and treatment withdrawal due to toxicity prior to response evaluation in one patient. The overall response rate was 30.0% (95% confidence interval [CI], 14.7%–49.4%) and the disease control rate (complete response, partial response, or stable disease) was 76.7% (95% CI, 57.7%–90.0%). Among the 14 patients with stable disease, 8 patients experienced tumor shrinkage of >10%; therefore a total of 17 of 30 patients (56.7%) achieved >10% tumor shrinkage (Fig. 1). A >50% decline in CEA was observed in 16 of 26 patients (61.6%) with abnormal values. The median progression-free survival was 5.3 months (95% CI; 3.6–7.1) and median overall

Table 1 Patient characteristics

Characteristics	No.	
Median age, years	61	(29–77)
Gender	Male/female	19/11
ECOG PS	0/1/2	12/16/2
Origin	Colon/rectum	15/15
Prior colostomy	Yes	26
Prior Radiation	Yes	3
Prior Adjuvant CTx	Yes	5
Prior CTx for advance	FOLFOX/SOX	29/1
	FOLFIRI/irinotecan/IRIS	24/5/1
	Bevacizumab	21
Number of prior CTx	2/3 or more	21/9
Disease sites ^a	Liver	23
	Lung	24
	Lymph node	16
	Peritoneum	7
No. of disease sites	1 or 2/ 3 or more	10/20

^a Some were overlapping

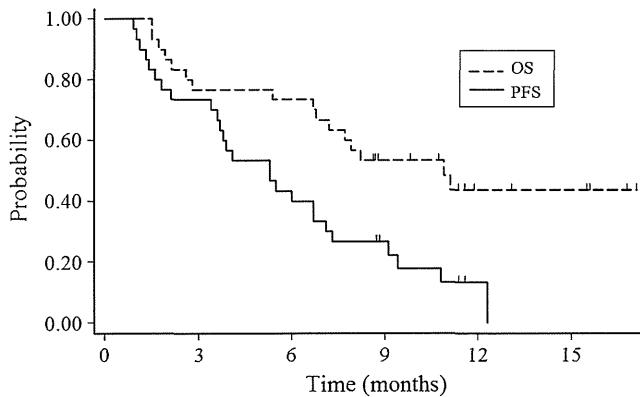
PS performance status; ECOG Eastern Cooperative Oncology Group; CTx chemotherapy, FOLFOX infusional and bolus 5-fluorouracil with oxaliplatin; SOX S-1 plus oxaliplatin; FOLFIRI infusional and bolus 5-fluorouracil with irinotecan; IRIS S-1 plus irinotecan

Fig. 1 Maximum tumor shrinkage from baseline. The objective response rate was 30.0%, and the disease control rate was 76.7%. Among the 14 patients with stable disease, 8 patients experienced >10% tumor shrinkage. Three patients were not evaluable for treatment response. Abbreviations: *PR* partial response; *SD* stable disease; *PD* progressive disease

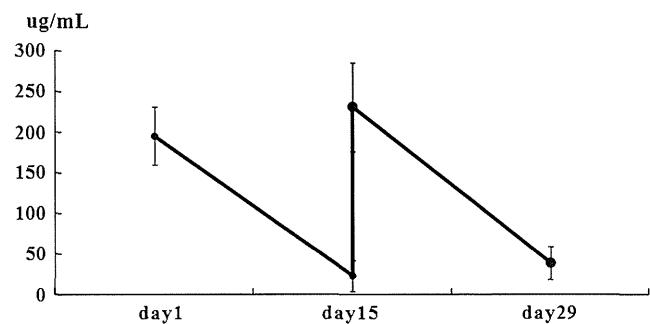
survival was 10.8 months (95% CI; 6.8–not reached) with fourteen patients still alive (Fig. 2).

Toxicity

Grade 3–4 neutropenia was observed in 9 patients (30.0%), 3 patients experienced grade 3–4 anemia, and one patient experienced grade 3–4 thrombocytopenia (Table 2). Febrile neutropenia was observed in 2 patients (6.7%), which were successfully managed by treatment with granulocyte-colony stimulating factor and antibiotics. Skin toxicity including acne, rash, dry skin, pruritus, acneiform dermatitis, and papular rash, was observed in 27 patients (90.0%); the majority of these ($n=15$) were grade 2. Three patients (10.0%) experienced grade 3 skin toxicity. One patient died from pneumonia. This patient experienced fever and dyspnea 10 days after the fourth cycle of treatment. CT scan showed diffuse gland glass opacity with consolidations. Culture of blood and sputum was negative for any


Table 2 Toxicity

Toxicity	Grade 1–4 (%)	Grade 3–4 (%)
Leucopenia	15 (50)	5 (17)
Neutropenia	16 (53)	9 (30)
Febrile neutropenia	2 (7)	2 (7)
Anemia	14 (47)	3 (10)
Thrombocytopenia	2 (7)	1 (0.3)
Fever	7 (23)	0 (0)
Diarrhea	14 (47)	5 (17)
Skin toxicity	26 (87)	3 (10)
Nausea	15 (50)	1 (0.3)
Vomiting	7 (23)	1 (0.3)
Fatigue	14 (47)	3 (10)
Stomatitis	10 (33)	1 (0.3)
Anorexia	19 (63)	3 (10)
Hypomagnesia	16 (53)	1 (0.3)


pathogen including *Pneumocystis jiroveci*. Although antibiotics and high doses of steroids were administered, the patient did not improve. Definitive cause of pneumonia could not be determined since autopsy was denied. Other grade 3–4 non-hematological toxicities included diarrhea (16.7%) and anorexia (10.0%).

Results of PK analysis

The mean of C_{max} was 195.20 $\mu\text{g}/\text{mL}$ on day 1 and 230.80 $\mu\text{g}/\text{mL}$ on day 15, and the mean of trough concentrations was 22.14 $\mu\text{g}/\text{mL}$ on Day 15 and 38.34 $\mu\text{g}/\text{mL}$ on day 29 (Fig. 3). The both C_{max} and trough were increasing. However; this was not shown in all the patients of multiple administrations due to the large variation in each case and the small patients number. The trough on day

Fig. 2 Progression-free survival and overall survival time. The median progression-free survival was 5.3 months and median overall survival was 10.8 months. Abbreviations: *PFS* progression-free survival; *OS* overall survival

Fig. 3 Mean (\pm S.D.) peak and trough cetuximab serum concentrations day 1–day 29. The mean of C_{max} was 195.20 $\mu\text{g}/\text{mL}$ on day 1 and 230.80 $\mu\text{g}/\text{mL}$ on day 15, and the mean of trough concentrations was 22.14 $\mu\text{g}/\text{mL}$ on Day 15 and 38.34 $\mu\text{g}/\text{mL}$ on day 29

15 and day 29 of Cetuximab 500 mg/m² administration were similar to the results from other studies [11, 12].

Discussion

In this study, we evaluated the efficacy and safety of combination chemotherapy with biweekly cetuximab plus irinotecan in patients with wild-type *KRAS* colorectal cancer who failed prior chemotherapy including irinotecan, oxaliplatin, and fluoropyrimidine. To our knowledge, this was the first report to evaluate biweekly cetuximab in prospectively recruit patients after assessing *KRAS* mutation status.

To our knowledge, there were three published reports that evaluated biweekly administration of cetuximab. Tabernero et al. conducted a phase I study of cetuximab monotherapy followed by a combination with a FOLFIRI regimen and reported that a cetuximab dose of 500 mg/m² every 2 weeks exhibited predictable pharmacokinetics, which were similar to those of the approved weekly dosing regimen [11]. Although most patients in the Tabernero study were chemo naïve patients, our results supported the assumption that 500 mg/m² might be optimal even in heavily pretreated patients with active serum concentrations of cetuximab maintained throughout the 2-week dosing period with this regimen. The other two reports in similarly pretreated settings showed almost consistent efficacy of biweekly use of cetuximab with irinotecan with a response rate of 22.5%–25% and 3.4–5.4 months [12, 13], although these studies did not evaluate *KRAS* status (Table 3).

The response rate of 30% in the present study was relatively higher than those of previous prospective studies in a similarly pretreated setting, such as the BOND-1 study

(22.9%, irinotecan plus cetuximab; 10.8%, cetuximab monotherapy) or the MABEL study, considering a study population with and without *KRAS* mutant tumors [2, 16]. The present disease control rate (76.7%) and progression free survival (5.3 months) was also relatively higher than that of the BOND-1 study (55.5% and 4.2 months in the combination arm) or the MABEL study (45.2% and 3.2 months) [2], although these indirect comparisons should be cautiously interpreted. The efficacy data in this study were almost similar to our previous phase II study using weekly cetuximab plus irinotecan for patients with *KRAS* wild-type metastatic colorectal cancer [9]. These results highlight the usefulness of biweekly administration of cetuximab.

Toxicity in our study and previous biweekly studies was almost compatible to those of weekly regimens (Table 3), although we experienced one possible treatment related death due to pneumonia. In this study, although 2 patients discontinued treatment due to toxicity, other toxicities were generally well tolerated and expected. Therefore biweekly administration may be a potentially convenient alternative to the approved weekly dosing regimen considering most chemotherapy regimens in colorectal cancer were based on biweekly administration, although cautions for toxicity are still required.

In conclusion, the results of this phase II study demonstrated that combination of biweekly cetuximab and irinotecan chemotherapy was active and tolerated in patients with wild-type *KRAS* colorectal cancer who failed prior chemotherapy including irinotecan, oxaliplatin, and fluoropyrimidine. Although the small number of patients in the single arm study was the major limitation to this study, our results suggested that the biweekly administration of cetuximab combined with irinotecan was feasible and active in patients heavily pretreated with MCRC. Further

Table 3 Results of prospective study of cetuximab plus irinotecan for MCRC refractory to irinotecan

Author	Weekly cetuximab plus irinotecan				Biweekly cetuximab plus irinotecan			
	Cunningham [2]	Wilke [16]	Pfeiffer [12]	Tahara [10]	Shitara [9]	Pfeiffer [12]	Martin-Martorell [13]	This study
Number of patients	329	1147	65	39	30	71	40	30
<i>KRAS</i> status	NR	NR	NR	NR	Wild	NR	NR	Wild
Previous oxaliplatin (%)	62.6	69	95	100	100	100	97.5	100
Response rate (%)	22.9	20.1	20	30.8	30	25	22.5	30
Disease control (%)	55.5	45.2	66	64.1	80	77	60	76.7
median PFS (months)	4.1	3.2	5.4	4.1	5.8	5.4	3.4	5.3
median OS (months)	8.6	9.2	10.4	8.8	12.5	8.9	8	10.8
Skin toxicity(G3-4)	9	13.3	11	5.1	0	5	7.5	10.0
Diarrhea (G3-4)	21	19	10	17.9	13.3	9	10	16.7
Neutropenia (G3-4)	9	9.9	4	23.1	33.3	7	7.5	30.0

NR not reported; PFS progression free survival; OS overall survival; G grade

randomized studies that compared biweekly administration of cetuximab with weekly administration might be warranted.

Acknowledgments None declared.

Funding None.

Conflict of interest statement None declared.

References

1. Jonker DJ, O'Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, Berry SR, Krahn M, Price T, Simes RJ, Tebbutt NC, van Hazel G, Wierzbicki R, Langer C, Moore MJ (2007) Cetuximab for the treatment of colorectal cancer. *N Engl J Med* 357:2040–2048
2. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. *N Engl J Med* 351:337–345
3. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. *N Engl J Med* 359:1757–1765
4. Di Fiore F, Blanchard F, Charbonnier F, Le Pessot F, Lamy A, Galais MP, Bastit L, Killian A, Sesboüé R, Tuech JJ, Queuniet AM, Paillot B, Sabourin JC, Michot F, Michel P, Frebourg T (2007) Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. *Br J Cancer* 96:1166–1169
5. Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, André T, Bibeau F, Diebold MD, Rougier P, Dureux M, Tomasic G, Emile JF, Penault-Llorca F, Laurent-Puig P (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. *J Clin Oncol* 26:374–379
6. De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem JL, Peeters M, Humblet Y, Van Cutsem E, Tejpar S (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. *Ann Oncol* 19:508–515
7. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. *Cancer Res* 67:2643–2648
8. NCCN Clinical Practice Guidelines in Oncology: Colon Cancer, version 2. 2010.
9. Shitara K, Yokota T, Takahari D, Shibata T, Ura T, Utsunomiya S, Inaba Y, Yamaura H, Sato Y, Najima M, Kawai H, Tajika M, Sawaki A, Yatabe Y, Muro K (2010) Phase II study of combination chemotherapy with irinotecan and cetuximab for pretreated metastatic colorectal cancer harboring wild-type KRAS. *Invest New Drugs*. 2010 Jan 14. [Epub ahead of print]
10. Tahara M, Shirao K, Boku N, Yamaguchi K, Komatsu Y, Inaba Y, Arai T, Mizunuma N, Satoh T, Takiuchi H, Nishina T, Sakata Y (2008) Multicenter Phase II study of cetuximab plus irinotecan in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin and fluoropyrimidines. *Jpn J Clin Oncol* 38:762–769
11. Tabernero J, Ciardiello F, Rivera F, Rodriguez-Braun E, Ramos FJ, Martinelli E, Vega-Villegas ME, Roselló S, Liebscher S, Kisker O, Macarulla T, Baselga J, Cervantes A (2010) Cetuximab administered once every second week to patients with metastatic colorectal cancer: a two-part pharmacokinetic/pharmacodynamic phase I dose-escalation study. *Ann Oncol* 21:1537–1545
12. Pfeiffer P, Nielsen D, Bjerregaard J, Qvortrup C, Yilmaz M, Jensen B (2008) Biweekly cetuximab and irinotecan as third-line therapy in patients with advanced colorectal cancer after failure to irinotecan, oxaliplatin and 5-fluorouracil. *Ann Oncol* 19:1141–1145
13. Martín-Martorell P, Roselló S, Rodríguez-Braun E, Chirivella I, Bosch A, Cervantes A (2008) Biweekly cetuximab and irinotecan in advanced colorectal cancer patients progressing after at least one previous line of chemotherapy: results of a phase II single institution trial. *Br J Cancer* 99:455–458
14. Yatabe Y, Hida T, Horio Y, Kosaka T, Takahashi T, Mitsudomi T (2006) A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung cancer. *J Mol Diagn* 8:335–341
15. Yokota T, Shibata N, Ura T, Takahari D, Shitara K, Muro K, Yatabe Y (2010) Cycleave polymerase chain reaction method is practically applicable for V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS)/V-raf murine sarcoma viral oncogene homolog B1 (BRAF) genotyping in colorectal cancer. *Transl Res* 156:98–105
16. Wilke H, Glynne-Jones R, Thaler J, Adenis A, Preusser P, Aguilar EA, Aapro MS, Esser R, Loos AH, Siena S (2008) Cetuximab plus irinotecan in heavily pretreated metastatic colorectal cancer progressing on irinotecan: MABEL Study. *J Clin Oncol* 26:5335–5343

治療薬 解説 大腸癌治療における 分子標的治療薬の位置づけ

室 主*

abstract

ここ数年進歩著しい分子標的治療薬が、大腸癌治療にも広く用いられるようになり、その標準的治療として組み入れられるようになった。現在、大腸癌領域において臨床導入されている分子標的治療薬は、抗血管内皮細胞増殖因子 (vascular endothelial growth factor: VEGF) 抗体薬のベバシズマブと抗上皮成長因子受容体 (epidermal growth factor receptor: EGFR) 抗体薬のセツキシマブ、バニツムマブである。これら有効性の証明された分子標的治療薬の臨床導入が、切除不能進行大腸癌の治療成績の向上に大きく寄与している。これらの薬剤を大腸癌治療経過中に、どのようにしてうまく使い切っていくかがきわめて重要なポイントである。今後、regorafenibなどの新規分子標的薬の上市も予定されている。ますます複雑化する大腸癌治療のレジメンを十分理解して、適切に毒性をマネジメントしていくことが望まれる。

I はじめに

大腸癌化学療法において、3種類の抗癌剤、すなわちフルオロウラシル (5-FU) 系薬剤 [5-FU + ロイコボリン (LV)], イリノテカン (CPT-11), オキサリプラチン (L-OHP) がkey drugであり、これら3剤を化学療法の経過中にすべて使い切ることが生存期間延長に最も寄与することが明らかになつた。これらに加えて、ここ数年進歩著しい分子標的治療薬が、大腸癌治療にも広く用いられるようになり、その標準的治療として組み入れられるようになった。現在、大腸癌領域において臨床導入されている分子標的治療薬は2種類に分けられる。すなわち、angiogenesis系阻害の抗血管内皮細胞増殖因子 (vascular endothelial growth factor: VEGF) 抗体薬とシグナル伝達阻害の抗上皮成長因子受容体

(epidermal growth factor receptor: EGFR) 抗体薬である。前者の代表がベバシズマブ、後者の代表がセツキシマブ、バニツムマブである。KRAS遺伝子野生型であれば先に挙げた抗癌剤3剤に分子標的治療薬2剤を加えた5剤を、KRAS遺伝子変異型であれば抗癌剤3剤にベバシズマブを加えた4剤を、大腸癌治療経過中に、どのようにしてうまく使い切っていくかがきわめて重要なポイントである。最新のNational Comprehensive Cancer Network (NCCN) のPractice Guideline (Colon Cancer) や、わが国の大腸癌治療ガイドラインでは²⁾、その治療アルゴリズムのなかで、上述の抗癌剤や分子標的治療薬は、いずれも1次治療や2次治療といった順番には関係なく、治療レジメンとして経過中にすべて使い切る形で複数の選択肢が提示されている。

図1A³⁾は、米国の代表的な施設の1つであるMD Anderson Cancer CenterとMayo Clinicにおける大

* 愛知県がんセンター中央病院薬物療法部部長

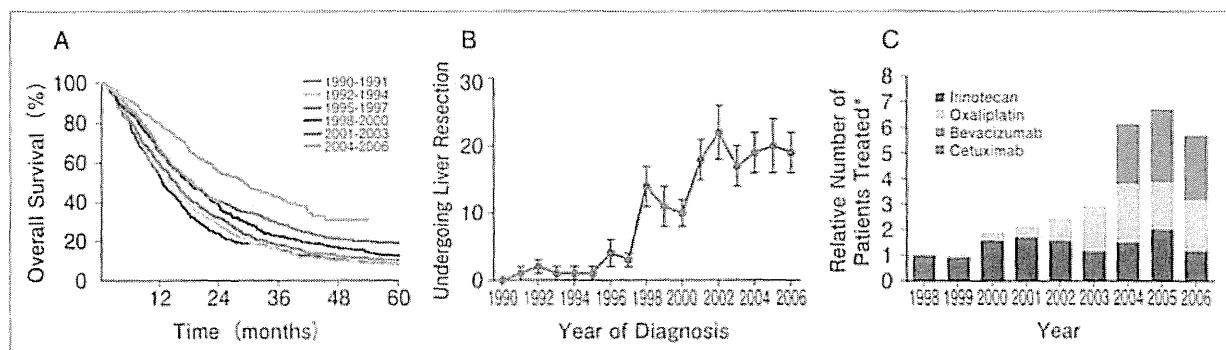


図1 肝切除 (Conversion) と分子標的治療薬の導入が進行大腸癌の治療成績向上に大きく寄与
MDACC&Mayo Clinic

(参考文献3) より引用改変

腸癌化学療法症例の治療成績の年次推移を示したものである。1990年以降、年々治療成績の向上が認められており、特に2004年以降の治療成績が格段に良くなっているのがわかる。その理由として、切除不能の状況から切除可能となった、いわゆるconversion (肝切除) 例が急速に増加している(図1B)³⁾ことが挙げられる。その背景には、近年の化学療法の進歩と切除への意識が高まったことがあるのではないかと推察される。実際、図1C³⁾に示されているように、2004年以降、従来の抗癌剤に加えて、ペバシズマブやセツキシマブといった分子標的治療薬が軒並み臨床導入され、化学療法における分子標的治療薬の役割が増していることが注目すべき点であろう。

以上から、肝切除と分子標的治療薬の導入が近年の進行大腸癌の治療成績向上に大きく寄与しているものと判断される。

以下の項では、それぞれの分子標的治療薬における重要な臨床試験結果や注意すべき副作用を示す。

III ベバシズマブ

ベバシズマブは、血管新生に必須のVEGFに特異的なヒト化IgG1モノクローナル抗体である。抗VEGF-A抗体として血液中のVEGF-Aに結合することで、VEGFR-1とVEGFR-2受容体への結合をブロックし、それ以下のシグナルを遮断する働きがある。それによって、腫瘍部位での腫瘍血管新生を

阻害するとともに、密生して複雑化した腫瘍血管を整備することで腫瘍内の組織間圧を軽減させ、抗癌剤の腫瘍への到達 (delivery) を改善する作用機序が推測されている。

ベバシズマブの臨床的効果を示す結果が最初にHurwitzらにより報告された (AVF2107g試験)⁴⁾。本試験では、進行大腸癌における1次治療としてイリノテカン+5-FU+LV (IFL) +ベバシズマブ群 (5mg/kg/2週) とIFL+プラセボ群の無作為化比較試験 (RCT) が、全生存期間 (overall survival: OS) をプライマリーエンドポイントとして行われ。ベバシズマブ群の生存期間中央値 (median survival time: MST) が20.3カ月、プラセボ群が15.6カ月であり、ベバシズマブによる明らかな生存期間延長が確認された (HR = 0.66, p < 0.001)⁴⁾。その後、5-FU、CPT-11 (IFL) 治療後の2次治療として本剤とFOLFOX4併用療法のOSにおける有用性も明らかになった (ECOG 3200試験: FOLFOX4+ベバシズマブ群のMSTが12.9カ月、FOLFOX4単独群のMSTが10.8カ月)⁵⁾。さらに、現在1次治療の化学療法として全世界で最も広く行われているFOLFOX (FOLFOX4) 療法またはカペシタビン+L-OHP (CapeOX) 療法にベバシズマブのon/offを比較するRCT (NO16966試験) が行われ、プライマリーエンドポイントの無増悪生存期間 (progression free survival: PFS) は、ベバシズマブ併用群がプラセボ群に比較して有意に延長していた (9.4カ月 vs. 8.0カ月, HR = 0.83, p = 0.0023)⁶⁾。上記試験ではいずれもベバシズマブ群の忍容性は十分良好であったが、

本剤に特徴的な毒性である血栓塞栓症・出血・高血圧・タンパク尿・消化管穿孔が認められた。時に致死的となるこれらの毒性には、十分な留意と予測に基づいた臨床的配慮が必要となる。

以上のように、ペバシズマブは化学療法剤との併用により、1次治療と2次治療での有用性が報告され、本剤が大腸癌化学療法のkey drugの1つであるという認識を確固たるものにした。

米国で行われた市販後研究 (BRiTE試験) から、ペバシズマブの維持療法の有用性が認められた。すなわち、ペバシズマブを用いた1次治療の増悪 (progressive disease: PD) 後、2次治療以降にもペバシズマブを継続していく有用性が示唆されたのである (bevacizumab beyond first progression: BBP)⁷⁾。BBPに関しては、ドイツのAIQグループが第Ⅲ相比較試験 (ML18147試験) を行っており、2012年1月でプライマリーエンドポイントであるOSにおける優越性が検証されたことがプレスリリースされた。同年の米国臨床腫瘍学会 (ASCO) で詳細な結果が報告される予定であり、その内容が注目される。

III セツキシマブ

EGFRはレセプタープロテインチロシンキナーゼの代表格であり、HERファミリーのHER1としても知られている。EGFRは正常組織にも発現しているが、大腸癌をはじめとする多くの上皮性腫瘍において過剰発現している。EGFRがEGFやtransforming growth factor α (TGF- α) などのリガンドと結合することで、レセプターの二量化が起こり、レセプターの細胞内チロシンキナーゼドメインが活性化され、これにより、細胞内シグナル伝達が活性化される。細胞内シグナル伝達の代表的な経路はRAS/RAF/MEK/MAPK pathway とPI3K/PTEN/AKT pathwayであり、これらの経路を通ったシグナルは最終的に核内に伝達され、細胞増殖、アポトーシスの抑制、血管新生などが引き起こされる。セツキシマブはIgG1ヒトマウスキメラモノクローナル抗体であり、EGFRに特異的に結合することにより、

シグナル伝達を阻害し、細胞死を誘導する。また、IgG1抗体であることより抗体依存性細胞障害 (antibody-dependent cell-mediated cytotoxicity: ADCC) 活性を有することが期待されている。

大腸癌では当初2次、3次治療としてCPT-11との併用ならびに単剤で有効性が報告され、その後1次治療としての有用性が明らかとなった。具体的には、1次治療例としてFOLFIRI+セツキシマブのFOLFIRIに対するPFSの優越性が証明された (CRYSTAL試験)⁸⁾。2次治療としてCPT-11+セツキシマブはCPT-11に対してOSでの優越性を示せなかつたがPFSでの優越性は明らかであった (EPIC試験)⁹⁾。さらに、5-FU、L-OHP、CPT-11抵抗性の3次治療として、セツキシマブ vs. best supportive care (BSC) の比較試験 (NCIC CTG CO.17) が報告され、セツキシマブ群がOS、PFSのいずれも有意に優れていた¹⁰⁾。こうした試験の後解析の結果、本剤と腫瘍組織のKRAS遺伝子変異との治療効果における密接な関係、すなわちKRAS遺伝子のstatusがセツキシマブのバイオマーカーとなることが明らかとなってきた。KRAS遺伝子変異症例ではセツキシマブの効果は期待できないので、KRAS遺伝子野生型での投与が推奨される。

毒性に関して、ざ瘡様皮疹、皮膚乾燥、皮膚搔痒、爪圓炎、裂創などの皮膚障害が必発であることから、本剤投与に当たり、皮膚症状に対するマネジメントが非常に重要である。また、キメラ型抗体であることより、infusion reactionへの配慮も必要となる。

IV パニツムマブ

パニツムマブはセツキシマブとは同様の機序をもつ抗EGFR抗体薬であるが、IgG2抗体であり、完全ヒト化抗体薬であることから、セツキシマブと比べて、ADCC活性を有さず、infusion reactionの頻度が少ないことが知られている。わが国では2010年に承認され、1次～3次治療まで、すべての治療ラインでの使用が可能となっている。重要な試験としては、1次治療FOLFOX4療法との併用のPRIME試験¹¹⁾、

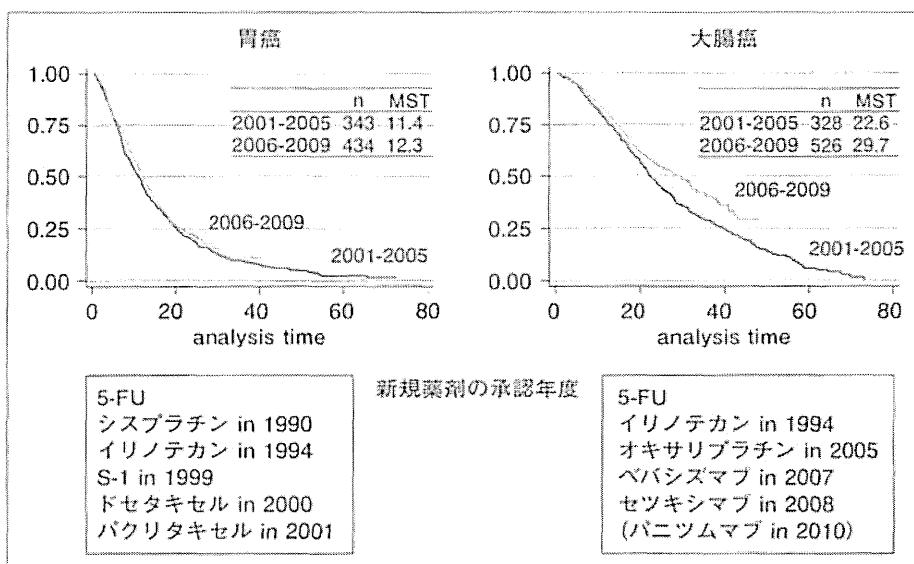


図2
愛知県がんセンター中央病院の
データ

[参考文献14]より引用改変]

2次治療FOLFIRI療法との併用の20050181試験¹²⁾、3次治療単剤とBSCとの比較試験（20020408試験）¹³⁾の3つがあり、いずれもプライマリーエンドポイントであるPFSの優越性が検証された。本剤においてもKRAS遺伝子変異型での効果は認められず、実地臨床においてはセツキシマブと同様に、KRAS遺伝子野生型に限定して使用されるべき状況となっている。皮膚毒性に関してはセツキシマブと同等以上に出現するので留意が必要である。

V わが国（当院）の実態

先述したように、米国のMD Anderson Cancer CenterとMayo Clinicにおける近年の分子標的治療薬導入による大腸癌化学療法の治療成績向上のデータを示した。では、わが国ではどのような状況であろうか。図2¹⁴⁾は当院における化学療法例について年代別の胃癌、大腸癌の治療成績を比較したものである。大腸癌に関して、当院の2001～2005年と2006年以降の2つの年代で生存成績を比較したところ、2006年以降の年代で明らかな生存成績向上が確認された。これは、2005年以降にオキサリプラチンや分子標的薬であるベバシズマブ、セツキシマブの新規薬剤が導入されたことが大きい。一方、胃癌におい

ては、2001～2005年と2006年以降で全く差を認めず、この10年間で進歩がない現状が浮き彫りになった。これは胃癌で有効な抗癌剤として、5-FU系、シスプラチン（CDDP）、CPT-11、taxane系とactive drugこそ多く、テガフル・ギメラシル・オテラシルカリウム（S-1）+CDDP療法という標準的治療も確立されたものの、2001年パクリタキセル承認以降、新規薬剤の導入が進んでいないことが主要因であると思われる。2011年にHER2陽性胃癌に対するトラスツズマブが承認された。胃癌全体の約15%と一部の胃癌ではあるが、明らかな生存期間の延長が認められたトラスツズマブの臨床導入により、今後胃癌全体の治療成績向上が図られることに期待したい。

以上から、新規薬剤、特に最近では有効性の証明された分子標的治療薬の臨床導入が、切除不能進行癌の治療成績向上にとってきわめて重要であるということを強く認識すべきであろう。

VI 今後臨床導入が期待される分子標的治療薬

2012年のAmerican Society of Clinical Oncology-Gastrointestinal Tract Cancer (ASCO-GI)においてCORRECT試験の結果が報告され、regorafenib

の有用性が証明された。Regorafenibは経口マルチキナーゼ阻害薬であり低分子化合物である。血管新生にかかる受容体型チロシンキナーゼ（VEGFR 1-3, TIE2）および間質系にかかる受容体型チロシンキナーゼ（PDGFR- β , FGFR），発癌に関与する受容体型チロシンキナーゼ（KIT, PDGFR, RET）に対する阻害作用を有する。CORRECT試験は、プライマリーエンドポイントをOSにおき、標準的化学療法に不応の切除不能進行・再発大腸癌（いわゆるサルベージライン）に対するregorafenibの有用性を評価する多施設共同プラセボ対照二重盲検無作為化比較第Ⅲ相国際共同試験である。本試験では日本からも100例の患者が短期間で登録され、症例集積に大きく貢献した点が注目される。これまでに、切除不能進行・再発大腸癌に対して多数の低分子化合物の開発がなされてきたが、OSの延長には結びつかなかった。多くの試験が初回化学療法における化学療法への上乗せ効果を検証するものであったが、マルチターゲットの低分子化合物の毒性が比較的強く、多岐にわたることから、併用により従来の化学療法剤のdose intensityを下げてしまうことが問題となっていた。本剤は、大腸癌で初めて有効性を示した低分子化合物となったが、単剤でかつサルベージラインでの開発が成功に結びついた主要因であると考えられる。今後の承認、実臨床への応用に期待がかかる。

VII おわりに

大腸癌化学療法は、5-FU, CPT-11, L-OHPの抗癌剤とベバシズマブ、セツキシマブ、パニツムマブの分子標的治療薬の導入により明らかなOSの延長を獲得し、個別化治療の第一歩を踏み始めた。わが国は長らく欧米で構築されたエビデンスに追従せざるを得ない状況であったが、ここにきて少なくとも薬剤環境に関してはようやく欧米並になった。しかし、まだまだ日本全国のすべての医師が高度に複雑化した大腸癌化学療法を十分に使いこなせているわけではない。1, 2年後に承認されるであろうre-

afenibではgrade 3以上の手足症候群、倦怠感、高血圧、下痢、皮疹が少なからず認められ、これらの毒性を適切にマネジメントする臨床力が求められる。どんな立場の医療者であろうとも、大腸癌化学療法に携わっている限り、up-to dateの知識の整理と最新の情報収集を怠らず行い、多くの臨床経験を積んでいくことが必要となる。適正な大腸癌化学療法を実践していくために、われわれ臨床家がなすべき課題はますます重く、多くなってきてている。

参考文献

- 1) Grothey A, Sargent D : Overall survival of patients with advanced colorectal cancer correlates with availability of fluorouracil, irinotecan, and oxaliplatin regardless of whether doublet or single-agent therapy is used first line. *J Clin Oncol* 23 : 9441-9442, 2005
- 2) 大腸癌研究会編：大腸癌治療ガイドライン医師用2010年版。p24-29。金原出版、東京、2010
- 3) Kepetz S, Chang GJ, Overman MJ, et al : Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. *J Clin Oncol* 27 : 3677-3683, 2009
- 4) Hurwitz H, Fehrenbacher L, Novotny W, et al : Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. *N Engl J Med* 350 : 2335-2342, 2004
- 5) Giantonio BJ, Catalano PJ, Meropol NJ, et al : Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer : results from the Eastern Cooperative Oncology Group Study E3200. *J Clin Oncol* 25 : 1539-1544, 2007
- 6) Saltz LB, Clarke S, Diaz-Rubio E, et al : Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer : a randomized phase III study. *J Clin Oncol* 26 : 2013-2019, 2008
- 7) Grothey A, Sugrue MM, Purdie DM, et al : Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer : results from a large observational cohort study (BRiTE). *J Clin Oncol* 26 : 5326-5334, 2008
- 8) Van Cutsem E, Kohne CH, Hitre E, et al : Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. *N Engl J Med* 360 : 1408-1417, 2009
- 9) Sobrero AF, Maurel J, Fehrenbacher L, et al : EPIC : phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. *J Clin Oncol* 26 : 2311-2319, 2008
- 10) Jonker DJ, O'Callaghan C, Karapetis CS, et al : Cetuximab for the treatment of colorectal cancer. *N Engl J Med* 357 : 2040-2048, 2007
- 11) Douillard JY, Siena S, Cassidy J, et al : Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer : the PRIME study. *J Clin Oncol* 28 :

4697-4705, 2010

- 12) Peeters M, Price TJ, Cervantes A, et al : Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. *J Clin Oncol* **28** : 4706-4713, 2010
- 13) Van Cutsem E, Peeters M, Siena S, et al : Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. *J Clin Oncol* **25** : 1658-1664, 2007
- 14) Shitara K, Matsuo K, Mizota A, et al : Association of fluoropyrimidines, platinum agents, taxanes, and irinotecan in any line of chemotherapy with survival in patients with advanced gastric cancer. *Gastric Cancer* **14** : 155-160, 2011

Trastuzumab for a Patient With Heavily Pretreated Gastric Cancer Plus Massive Ascites and Ovarian Metastasis

Kohei Shitara,¹ Yasushi Yatabe,² Tomoya Yokota,¹ Daisuke Takahashi,¹ Takashi Shibata,¹ Takashi Ura,¹ Yozo Satoh,³ Yasuhiro Kodera,⁴ Kei Muro¹

¹Department of Clinical Oncology

²Department of Pathology

³Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, Aichi, Japan

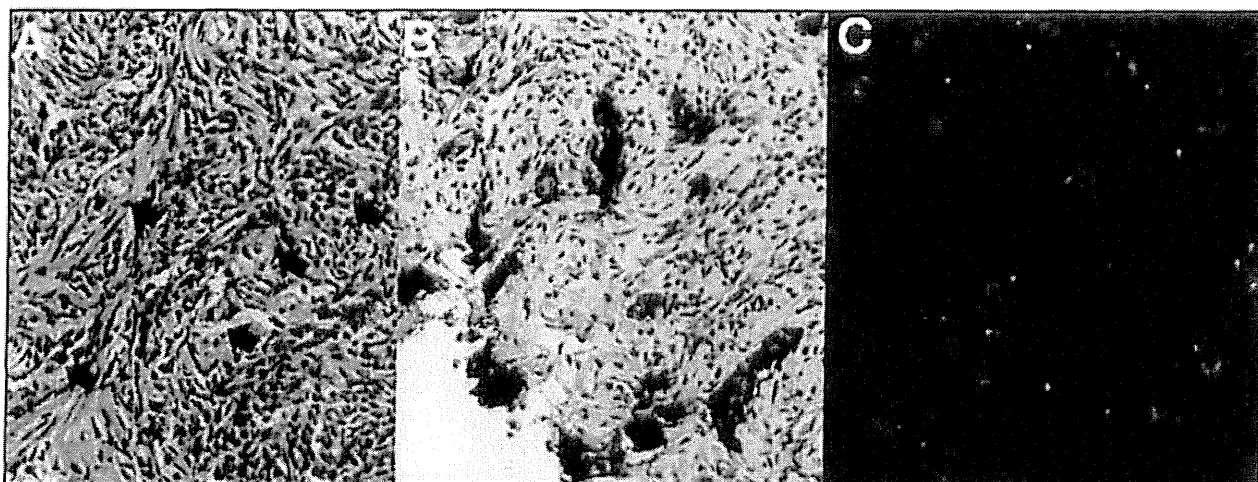
⁴Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan

© 2012 by International Society of Gastrointestinal Oncology

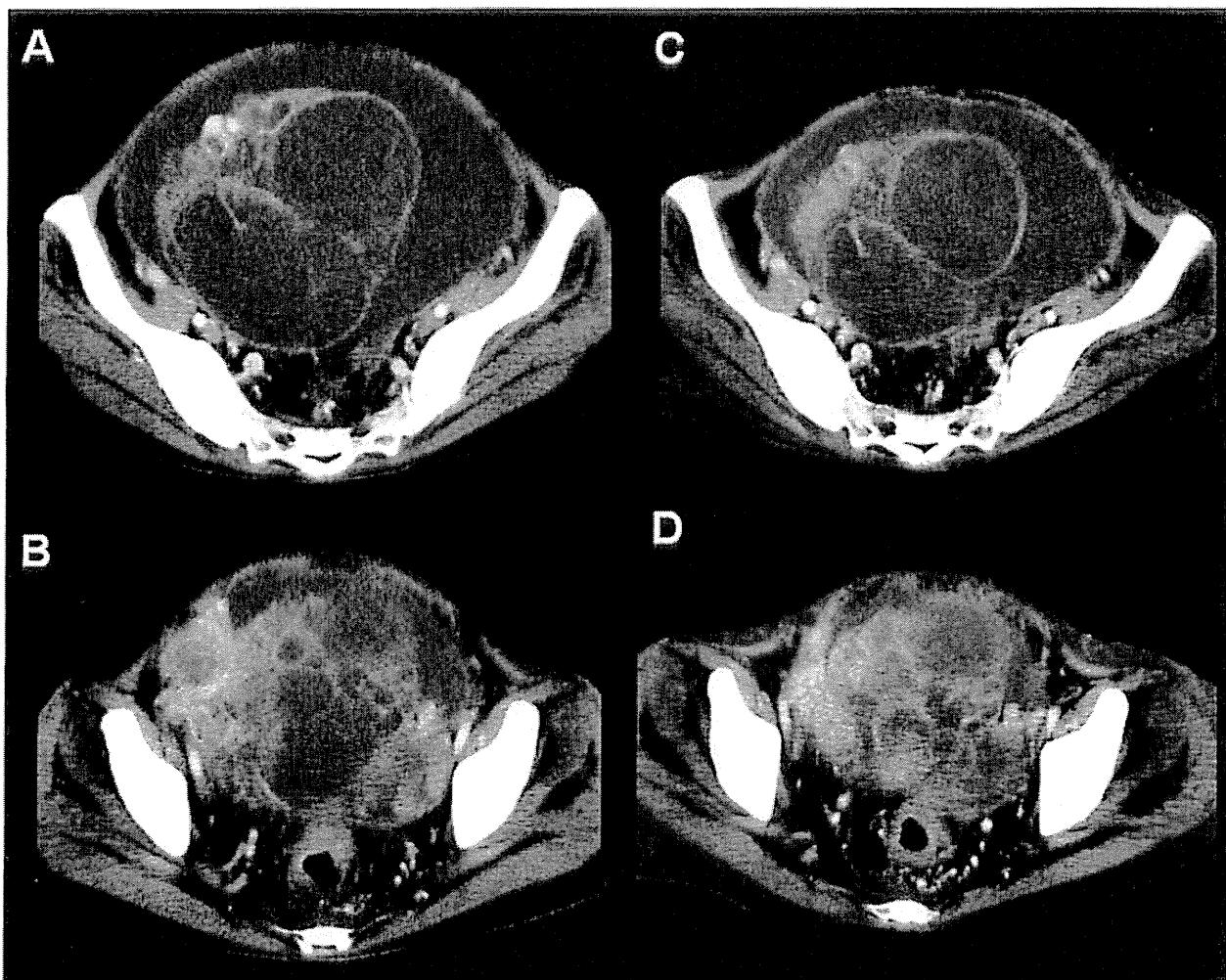
CASE REPORT

A 42-year-old female with a chief complaint of anorexia and abdominal fullness was diagnosed with gastric cancer and referred to our hospital in September 2008. Her oral intake was decreased to one-third of her normal intake. She was the mother of three children and had no significant past medical history. On physical examination, her abdomen was distended with fluid. Her ECOG performance status was 2. Gastroduodenoscopy revealed diffuse infiltration of gastric cancer with the appearance of *imitis plastica*. Pathological examination showed poorly differentiated adenocarcinoma (Figure 1A) with a signet-ring-cell carcinoma component. Computed tomography (CT) scan revealed massive ascites, thickened gastric wall, and bilateral ovarian metastases.

Beginning in October 2008, chemotherapy with weekly 5-fluorouracil, and methotrexate was administered as first-line chemotherapy. After three chemotherapy cycles, her abdominal distension and oral intake improved. Although the same regimen was continued for one additional month on an outpatient basis, the patient was again admitted in December 2008 with anorexia and abdominal distension due to increased ascites, which necessitated routine twice weekly paracentesis. She refused peritoneovenous shunt placement.


Second-line chemotherapy using paclitaxel was administered four times, with no tumor or ascites response. However, following chemotherapy with docetaxel and intraperitoneal cisplatin injection,

there was a decrease in her ascites, and the patient could be discharged.

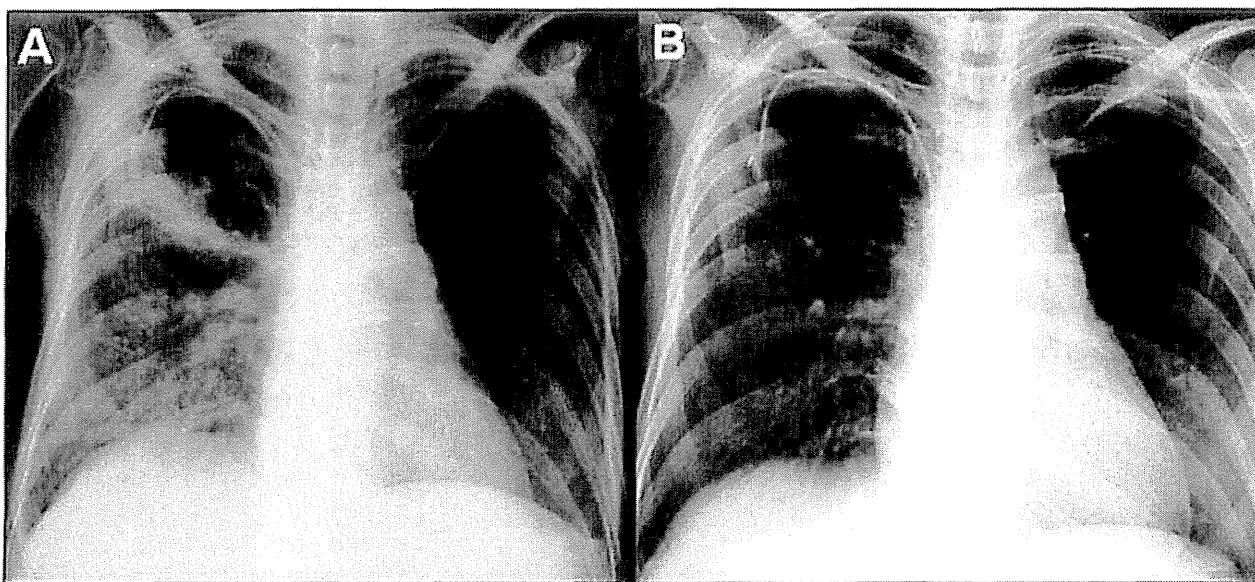

In April 2009, she was readmitted with fatigue, anorexia, and increased ascites. Paracentesis showed hemorrhagic ascites, which required twice weekly drainage, and she also required weekly transfusions. After two cycles of chemotherapy with triweekly pemetrexed, there was transient response, with a decrease in ascites that changed from hemorrhagic to serous.

In June, the patient's general status worsened, with frequent vomiting caused by gastrointestinal stenosis, massive ascites, and enlarged ovarian metastases (Figures 2A–B). Additionally, she also developed dyspnea with dry cough, and lymphangitic pulmonary metastases of the right lower lung were suspected (Figure 3A). Since she and her family strongly desired additional chemotherapy, the HER2 status of her gastric cancer biopsy specimen was evaluated by immunohistochemistry (IHC: HercepTest™, DAKO, Copenhagen, Denmark) and was found to be strongly positive (3+) (Figure 1B) in accordance with high gene amplification of HER2 (red signal, Figure 1C).

Because of her deteriorated performance status, trastuzumab monotherapy was initiated (4 mg/kg first dose, then 2 mg/kg weekly). A percutaneous transesophageal gastrostomy was also performed. After three cycles, her dyspnea improved (Figure 3A). After six administrations of trastuzumab, the volume of ascites was

Figure 1. Pathological specimen of the primary gastric cancer. (A) Endoscopic biopsy specimen showed poorly-differentiated adenocarcinoma cells (arrows). (B) HER2 status was evaluated by IHC (HercepTest), and was found to be strongly positive (3+). (C) High gene amplification of HER2 was also seen by FISH (red signal).

Figure 2. CT scan before and on trastuzumab monotherapy. (A-B) CT scans before treatment showed large ovarian metastasis with ascites. (C-D) CT scans after 6 administrations of trastuzumab showed that her ovarian tumors were slightly reduced.


decreased, and the frequency of paracentesis was reduced from twice to once weekly. A CT scan showed that her ovarian tumors were slightly reduced (Figures 2C-D). No apparent trastuzumab toxicity was observed, and her performance status was maintained for two and a half months. Trastuzumab monotherapy was continued for 3 months until the patient became icteric in September 2009, 11 months after the first admission and 9 months since routine paracentesis was begun. Best supportive care was offered thereafter.

DISCUSSION

Trastuzumab, a recombinant, human-mouse chimeric monoclonal IgG1k antibody that specifically targets HER2 protein, has improved survival in HER2-positive breast cancer patients. In the first pivotal trial of breast cancer, trastuzumab plus paclitaxel or an anthracycline improved overall survival by a hazard ratio of 0.80 (95% confidence interval [CI], 0.64–1.0, $P = .046$) compared with chemotherapy alone.¹ In another trial, trastuzumab plus docetaxel also improved breast cancer survival compared with chemotherapy alone.² After these results, trastuzumab-containing chemotherapy became the standard of care for breast cancer patients with HER2 overexpression.³

Because HER2-positive gastric cancers have been reported, the efficacy of trastuzumab for HER2-positive gastric cancer has also been anticipated. The ToGA study⁴ comparing 5-fluorouracil plus cisplatin with or without trastuzumab showed improved survival in the trastuzumab arm with a hazard ratio for death of 0.74 (95% CI, 0.60–0.91, $P = .046$). In contrast to breast cancer, HER2 amplification revealed by fluorescence in situ hybridization (FISH) was seen in gastric cancers with IHC results of 0 or 1+ by modified HercepTest. Therefore, when survival analysis in the TOGA study was limited to HER2 cancers that were 2–3+ by IHC and FISH-positive, the reduction in risk of death became more apparent (HR 0.65; 95% CI, 0.51–0.83). No apparent increase in toxicity was seen in the trastuzumab arm⁴; therefore combination chemotherapy using trastuzumab may become the standard of care for HER2-positive gastric cancer and has been approved in the United States for this indication.

In the TOGA study screening data,⁵ the HER2-positive rate was higher in gastroesophageal junction cancer (33.2%) than in gastric cancer (20.9%). In addition, the diffuse type had a lower positive rate (6%) than the intestinal type (34%) of gastric cancer. However,

Figure 3. Chest x-ray before and on trastuzumab monotherapy. (A) Lymphangitic pulmonary metastases of right lower lung were suspected. (B) Abnormal finding improved with trastuzumab.

as confirmed by experience with our patient, although patients with diffuse-type gastric cancer are frequently HER2 negative, HER2 status of all gastric cancer types should be evaluated.

Because the ToGA study included chemo-naïve patients with gastric cancer, the benefit or efficacy of chemotherapy using trastuzumab for patients pretreated with chemotherapy is not currently known. In addition, the antitumor effect of trastuzumab monotherapy is not known. However, trastuzumab monotherapy has been shown to be active with a response rate of 15% in pretreated breast cancer (18% for 3+ IHC),⁶ although this is a slightly lower response rate than for monotherapy in chemo-naïve breast cancer (35% in 3+ IHC),⁷ and trastuzumab monotherapy has been adopted for patients who are not considered suitable for cytotoxic chemotherapy.³

In summary, this case was instructive for the following reasons: (1) trastuzumab monotherapy was feasible in this heavily pretreated patient with gastric cancer plus massive ascites, (2) trastuzumab and sufficient supportive care were effective in improving the cancer-related symptoms in this patient, (3) although chemotherapy using trastuzumab may become standard first-line chemotherapy for patients with HER2-positive gastric cancer, trastuzumab may even be effective in the salvage setting.

REFERENCES

1. Slamon DJ, Leyland-Jones B, Shak S, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. *N Engl J Med* 344:783-792, 2001
2. Marti M, Cognetti F, Maraninchi D, et al: Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. *J Clin Oncol* 23:4265-4274, 2005
3. NCCN Clinical Practice Guidelines in Oncology. *Breast Cancer* ver. 2, 2009
4. Van Cutsem E, Kang Y, Chung H, et al: Efficacy results from the ToGA trial: a phase III study of trastuzumab added to standard chemotherapy (CT) in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (GC). *J Clin Oncol* 27:4265-18s, 2009 (suppl; abstr LBA4509)
5. Bang Y, Chung H, Xu J, et al: Pathological features of advanced gastric cancer (GC): relationship to human epidermal growth factor receptor 2 (HER2) positivity in the global screening programme of the ToGA trial. *J Clin Oncol* 27:4265-15s, 2009 (suppl; abstr 4556)
6. Cobleigh MA, Vogel CL, Tripathy D, et al: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. *J Clin Oncol* 17:2639-2648, 1999
7. Vogel CL, Cobleigh MA, Tripathy D, et al: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. *J Clin Oncol* 20:719-726, 2002

Disclosures of Potential Conflicts of Interest

The authors indicated no potential conflicts of interest.

Address correspondence to: Kohei Shitara, MD, Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Aichi, Japan. Phone: 81-52-762-6111; Fax: 81-52-752-8390; E-mail: Kouheis0824@yahoo.co.jp

Trastuzumab for a Patient With Heavily Pretreated Gastric Cancer Plus Massive Ascites and Ovarian Metastasis

Kohei Shitara,¹ Yasushi Yatabe,² Tomoya Yokota,¹ Daisuke Takahashi,¹ Takashi Shibata,¹ Takashi Ura,¹ Yozo Satoh,³ Yasuhiro Kodera,⁴ Kei Muro¹

¹Department of Clinical Oncology

²Department of Pathology

³Department of Diagnostic and Interventional Radiology, Aichi Cancer Center Hospital, Aichi, Japan

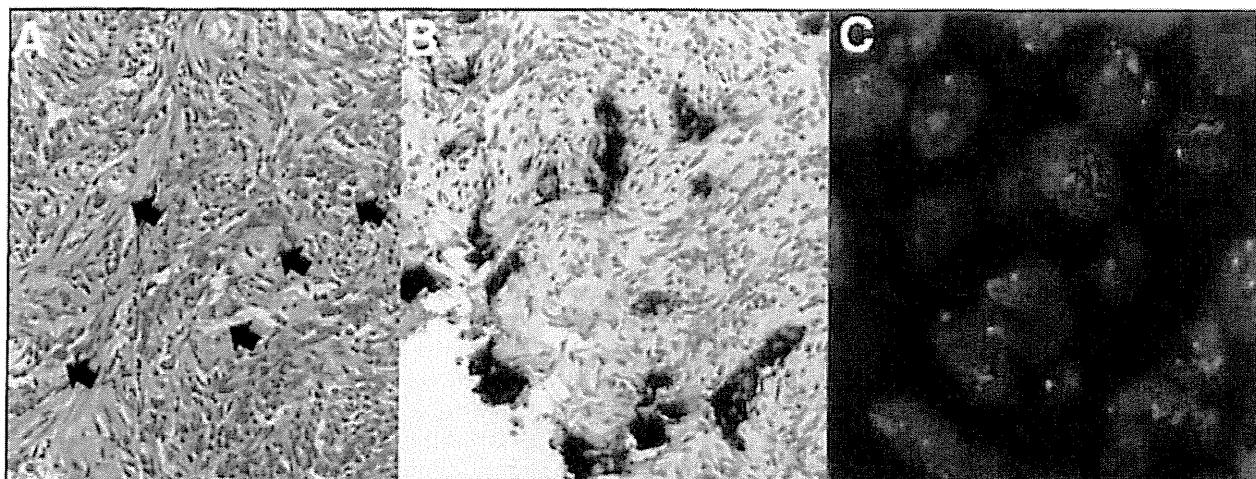
⁴Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan

© 2012 by International Society of Gastrointestinal Oncology

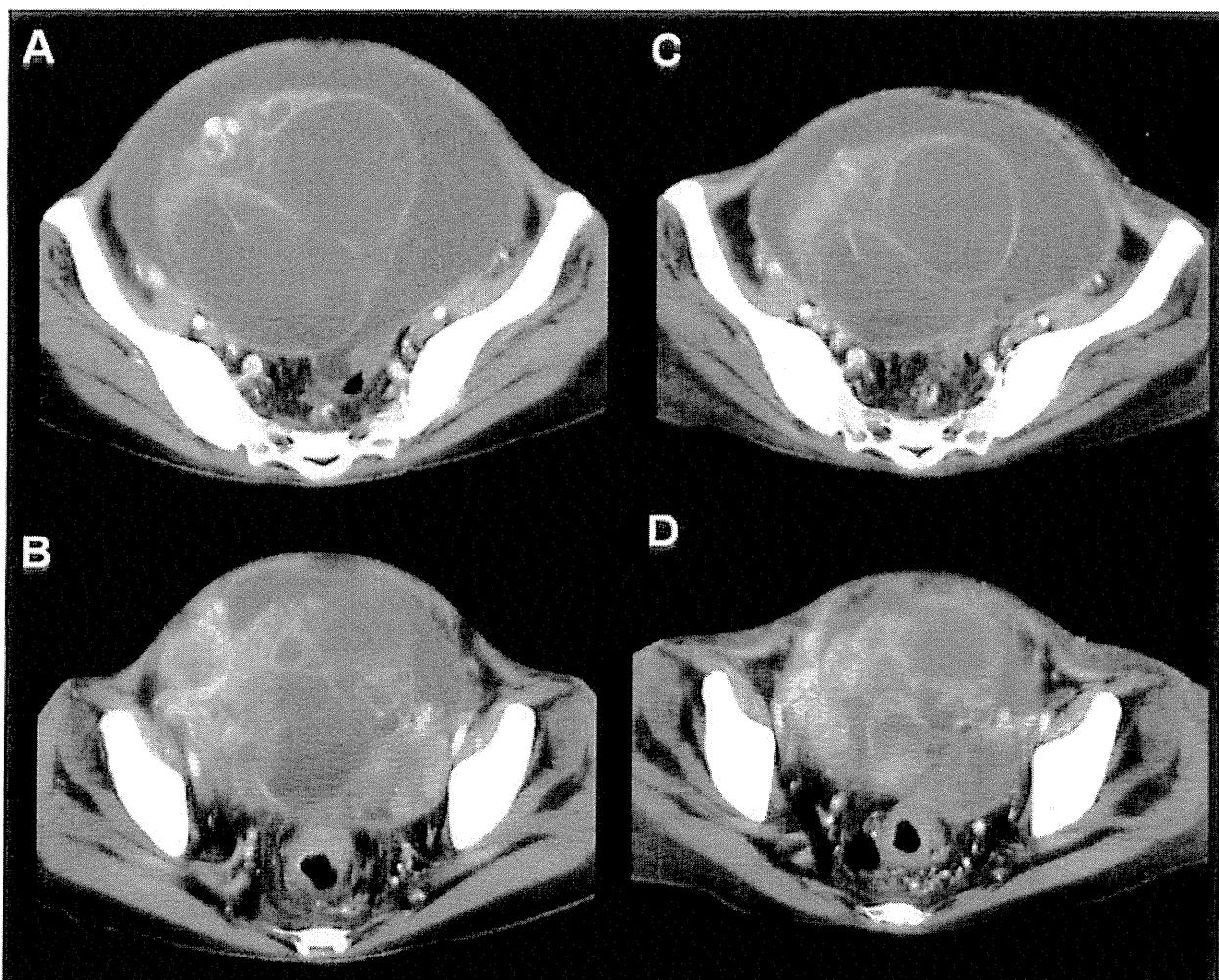
CASE REPORT

A 42-year-old female with a chief complaint of anorexia and abdominal fullness was diagnosed with gastric cancer and referred to our hospital in September 2008. Her oral intake was decreased to one-third of her normal intake. She was the mother of three children and had no significant past medical history. On physical examination, her abdomen was distended with fluid. Her ECOG performance status was 2. Gastroduodenoscopy revealed diffuse infiltration of gastric cancer with the appearance of *limbs plastica*. Pathological examination showed poorly differentiated adenocarcinoma (Figure 1A) with a signet-ring-cell carcinoma component. Computed tomography (CT) scan revealed massive ascites, thickened gastric wall, and bilateral ovarian metastases.

Beginning in October 2008, chemotherapy with weekly 5-fluorouracil, and methotrexate was administered as first-line chemotherapy. After three chemotherapy cycles, her abdominal distension and oral intake improved. Although the same regimen was continued for one additional month on an outpatient basis, the patient was again admitted in December 2008 with anorexia and abdominal distension due to increased ascites, which necessitated routine twice weekly paracentesis. She refused peritoneovenous shunt placement.


Second-line chemotherapy using paclitaxel was administered four times, with no tumor or ascites response. However, following chemotherapy with docetaxel and intraperitoneal cisplatin injection,

there was a decrease in her ascites, and the patient could be discharged.

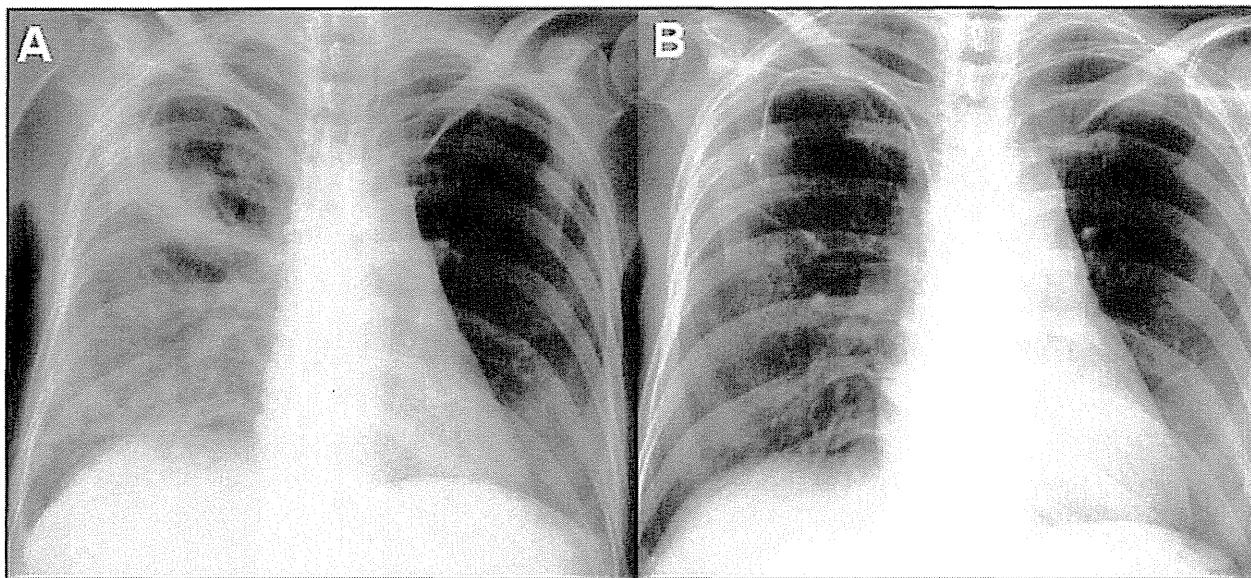

In April 2009, she was readmitted with fatigue, anorexia, and increased ascites. Paracentesis showed hemorrhagic ascites, which required twice weekly drainage, and she also required weekly transfusions. After two cycles of chemotherapy with triweekly pemetrexed, there was transient response, with a decrease in ascites that changed from hemorrhagic to serous.

In June, the patient's general status worsened, with frequent vomiting caused by gastrointestinal stenosis, massive ascites, and enlarged ovarian metastases (Figures 2A–B). Additionally, she also developed dyspnea with dry cough, and lymphangitic pulmonary metastases of the right lower lung were suspected (Figure 3A). Since she and her family strongly desired additional chemotherapy, the HER2 status of her gastric cancer biopsy specimen was evaluated by immunohistochemistry (IHC; HercepTest™, DAKO, Copenhagen, Denmark) and was found to be strongly positive (3+) (Figure 1B) in accordance with high gene amplification of HER2 (red signal, Figure 1C).

Because of her deteriorated performance status, trastuzumab monotherapy was initiated (4 mg/kg first dose, then 2 mg/kg weekly). A percutaneous transesophageal gastrostomy was also performed. After three cycles, her dyspnea improved (Figure 3A). After six administrations of trastuzumab, the volume of ascites was

Figure 1. Pathological specimen of the primary gastric cancer. (A) Endoscopic biopsy specimen showed poorly differentiated adenocarcinoma cells (arrows). (B) HER2 status was evaluated by IHC (HercepTest), and was found to be strongly positive (3+). (C) High gene amplification of HER2 was also seen by FISH (red signal).

Figure 2. CT scan before and on trastuzumab monotherapy. (A-B) CT scans before treatment showed large ovarian metastasis with ascites. (C-D) CT scans after 5 administrations of trastuzumab showed that her ovarian tumors were slightly reduced.


decreased, and the frequency of paracentesis was reduced from twice to once weekly. A CT scan showed that her ovarian tumors were slightly reduced (Figures 2C-D). No apparent trastuzumab toxicity was observed, and her performance status was maintained for two and a half months. Trastuzumab monotherapy was continued for 3 months until the patient became icteric in September 2009, 11 months after the first admission and 9 months since routine paracentesis was begun. Best supportive care was offered thereafter.

DISCUSSION

Trastuzumab, a recombinant, human-mouse chimeric monoclonal IgG1k antibody that specifically targets HER2 protein, has improved survival in HER2-positive breast cancer patients. In the first pivotal trial of breast cancer, trastuzumab plus paclitaxel or an anthracycline improved overall survival by a hazard ratio of 0.80 (95% confidence interval [CI], 0.64-1.0, $P = .046$) compared with chemotherapy alone.¹ In another trial, trastuzumab plus docetaxel also improved breast cancer survival compared with chemotherapy alone.² After these results, trastuzumab-containing chemotherapy became the standard of care for breast cancer patients with HER2 overexpression.³

Because HER2-positive gastric cancers have been reported, the efficacy of trastuzumab for HER2-positive gastric cancer has also been anticipated. The ToGA study⁴ comparing 5-fluorouracil plus cisplatin with or without trastuzumab showed improved survival in the trastuzumab arm with a hazard ratio for death of 0.74 (95% CI, 0.60-0.91, $P = .046$). In contrast to breast cancer, HER2 amplification revealed by fluorescence *in situ* hybridization (FISH) was seen in gastric cancers with IHC results of 0 or 1+ by modified HercepTest. Therefore, when survival analysis in the TOGA study was limited to HER2 cancers that were 2-3+ by IHC and FISH-positive, the reduction in risk of death became more apparent (HR 0.65; 95% CI, 0.51-0.83). No apparent increase in toxicity was seen in the trastuzumab arm⁴; therefore combination chemotherapy using trastuzumab may become the standard of care for HER2-positive gastric cancer and has been approved in the United States for this indication.

In the TOGA study screening data,⁵ the HER2-positive rate was higher in gastroesophageal junction cancer (33.2%) than in gastric cancer (20.9%). In addition, the diffuse type had a lower positive rate (6%) than the intestinal type (34%) of gastric cancer. However,

Figure 3. Chest x-ray before and on trastuzumab monotherapy. (A) Lymphangitic pulmonary metastases of right lower lung were suspected. (B) Abnormal finding improved with trastuzumab.

as confirmed by experience with our patient, although patients with diffuse-type gastric cancer are frequently HER2 negative, HER2 status of all gastric cancer types should be evaluated.

Because the ToGA study included chemo-naïve patients with gastric cancer, the benefit or efficacy of chemotherapy using trastuzumab for patients pretreated with chemotherapy is not currently known. In addition, the antitumor effect of trastuzumab monotherapy is not known. However, trastuzumab monotherapy has been shown to be active with a response rate of 15% in pretreated breast cancer (18% for 3+ IHC),⁶ although this is a slightly lower response rate than for monotherapy in chemo-naïve breast cancer (35% in 3+ IHC),⁷ and trastuzumab monotherapy has been adopted for patients who are not considered suitable for cytotoxic chemotherapy.³

In summary, this case was instructive for the following reasons: (1) trastuzumab monotherapy was feasible in this heavily pretreated patient with gastric cancer plus massive ascites, (2) trastuzumab and sufficient supportive care were effective in improving the cancer-related symptoms in this patient, (3) although chemotherapy using trastuzumab may become standard first-line chemotherapy for patients with HER2-positive gastric cancer, trastuzumab may even be effective in the salvage setting.

REFERENCES

- Slamon DJ, Leyland-Jones B, Shak S, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. *N Engl J Med* 344:783-792, 2001
- Marty M, Cognetti F, Maraninchi D, et al: Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. *J Clin Oncol* 23:4265-4274, 2005
- NCCN Clinical Practice Guidelines in Oncology. *Breast Cancer* ver. 2, 2009
- Van Cutsem E, Kang Y, Chung H, et al: Efficacy results from the ToGA trial: a phase III study of trastuzumab added to standard chemotherapy (CT) in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (GC). *J Clin Oncol* 27:4265-18s, 2009 (suppl; abstr LBA4509)
- Bang Y, Chung H, Xu J, et al: Pathological features of advanced gastric cancer (GC): relationship to human epidermal growth factor receptor 2 (HER2) positivity in the global screening programme of the ToGA trial. *J Clin Oncol* 27:4265-15s, 2009 (suppl; abstr 4556)
- Cobleigh MA, Vogel CL, Tripathy D, et al: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. *J Clin Oncol* 17:2639-2648, 1999
- Vogel CL, Cobleigh MA, Tripathy D, et al: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. *J Clin Oncol* 20:719-726, 2002

Disclosures of Potential Conflicts of Interest

The authors indicated no potential conflicts of interest.

Address correspondence to: Kohji Shitara, MD, Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Aichi, Japan. Phone: 81-52-762-6111; Fax: 81-52-752-8390; E-mail: Kouheis0824@yahoo.co.jp

Progression-free survival and time to progression as surrogate markers of overall survival in patients with advanced gastric cancer: analysis of 36 randomized trials

Kohei Shitara · Junko Ikeda · Tomoya Yokota ·
Daisuke Takahari · Takashi Ura · Kei Muro ·
Keitaro Matsuo

Received: 5 January 2011 / Accepted: 14 February 2011 / Published online: 25 February 2011
© Springer Science+Business Media, LLC 2011

Summary Progression-free survival (PFS) and time to progression (TTP) have been reported to correlate with overall survival (OS) in several types of cancers. To our knowledge, however, their use in the evaluation of new agents for AGC has not been investigated. We evaluated the potential of PFS and TTP to act as surrogates of OS in clinical trial settings. Randomized trials of systemic chemotherapy for advanced gastric cancer were identified by comprehensive electronic and manual search. Correlations between PFS/TTP and OS were evaluated. Thirty-six trials with a total of 83 treatment arms and 10,484 patients were selected for analysis. The nonparametric Spearman rank correlation coefficient (ρ) between median PFS/TTP and OS was 0.70 (95% CI, 0.59 to 0.82) and the correlation coefficient between hazard ratios in PFS/TTP and OS was 0.80 (95% CI, 0.68 to 0.92). Correlation tended to be higher in trials reporting PFS ($\rho=0.85$; 0.72–0.97) than in those reporting TTP ($\rho=0.60$; 0.24–0.97), trials in Non-Asian countries ($\rho=0.80$; 0.61–0.99) than Asia ($\rho=0.67$; 0.39–0.94), trials in patients with measurable lesions only ($\rho=0.91$; 0.77–1.00) than in those including non-measurable lesions ($\rho=0.71$; 0.50–0.93), albeit that none of these differences was significant. Our results indicate that

improvements in PFS/TTP in advanced gastric cancer strongly correlate with improvements in OS. Further research is needed to clarify the surrogacy of PFS/TTP for OS or the role of PFS as the true end point in future randomized clinical trials of chemotherapy for AGC.

Keywords Chemotherapy · Gastric cancer · Surrogate endpoint · Progression-free survival · Time to progression

Introduction

Gastric cancer remains one of the most common malignancies and leading causes of cancer death worldwide [1]. The most effective treatment for localized disease is surgery, but approximately half of all patients with advanced-stage disease develop recurrence after curative resection. The prognosis of patients with advanced or recurrent gastric cancer (AGC) remains poor, with median survival times for commonly used combination chemotherapy regimens, consisting of a fluoropyrimidine plus a platinum agent with or without docetaxel or anthracyclines, of only 1 year [2–7]. Trastuzumab, a humanized monoclonal antibody that targets epidermal growth factor receptor 2 (HER2), has recently been shown to improve the prognosis of HER2-positive AGC [7], but these cases account for fewer than 20% of all AGCs. The development of novel anticancer agents for the treatment for AGC is thus urgently required.

The most important issue in the development of new agents for AGC is their ability to prolong survival with acceptable toxicity. This is conventionally evaluated in phase III trials, in which the primary endpoint is usually overall survival (OS). For practical reasons, however, the

K. Shitara (✉) · J. Ikeda · T. Yokota · D. Takahari · T. Ura ·
K. Muro
Department of Clinical Oncology, Aichi Cancer Center Hospital,
1–1 Kanokoden, Chikusa-ku,
Nagoya 464–8681 Aichi, Japan
e-mail: Kouheis0824@yahoo.co.jp

K. Matsuo
Division of Epidemiology and Prevention, Aichi Cancer Center
Research Institute,
Nagoya, Japan

use of OS as a primary endpoint may be problematic. In particular, several recent reports have suggested the efficacy of second-line chemotherapy for AGC [8–10], which would potentially lead to underestimation of the effect of new first-line treatment [11]. The potential for other clinical endpoints to replace OS as the primary endpoint in randomized trials is therefore of interest: a validated shorter term surrogate endpoint would likely both reduce drug development costs and facilitate the assessment of efficacy.

Progression-free survival (PFS) and time to progression (TTP) have been evaluated as surrogate endpoint of OS in several types of cancers [12–16], and are considered acceptable surrogate endpoints for colorectal cancer and breast cancer [17]. To our knowledge, however, their use in the evaluation of new agents for AGC has not been investigated.

Here, we conducted a comprehensive analysis to determine whether PFS and TTP are correlated with OS in AGC, and whether improvements in PFS and TTP are associated with improvements in OS.

Materials and methods

Search for studies

We conducted a literature search for trials through computer-based searches of the Medline database (January 1966 and June 2010) and of abstracts from conference proceedings of the American Society of Clinical Oncology (1995–2010) and European Cancer Conference and European Society for Medical Oncology (1995–2009). To avoid publication bias, both published and unpublished trials were identified. Search keywords included: “gastric cancer,” “randomized” “advanced or metastatic,” and “chemotherapy.” The search was also guided by a thorough examination of reference lists of original and review articles. No limitation based on language was defined. We included abstracts or unpublished data if sufficient information on study design, characteristics of participants, interventions and outcomes was available.

Procedures

Two investigators (KS and KM) abstracted the data in accordance with the Quality of Reporting of Meta-analyses (QUORUM) guidelines [18]. Randomized trials of systemic chemotherapy for patients with histologically confirmed advanced or recurrent gastric cancer (metastatic disease or unresectable locally advanced disease) of the stomach or gastroesophageal junction were included in the analysis. Trials which compared chemotherapy with best supportive care were also included, as were those which included

patients with adenocarcinoma of the distal esophagus. Eligibility was limited to trials which reported data on OS with either or both PFS and TTP.

Exclusion criteria included trials designed to assess combined modality treatments, including radiotherapy and surgery (neoadjuvant or adjuvant chemotherapy); those in which patients were pretreated with chemotherapy; and, to evaluate the risk reduction with chemotherapy for PFS/TTP or OS, those which did not report either hazard ratios (HRs) or Kaplan-Meier survival curves.

For each trial, the following information was extracted: first author’s name; year of publication or report; trial design (randomized phase II or phase III); trial area; number of enrolled patients; and treatment regimens. The following was also extracted if reported: HR and 95% CI for clinical outcome (PFS/TTP and OS); proportion of patients with metastatic disease; proportion of patients with measurable lesions; and proportion of patients who received post-protocol chemotherapy.

All data were checked for internal consistency. Disagreements were resolved by discussions among the investigators. The reference arm in each trial was determined by consensus among three investigators (KS, DT, and TY) if not indicated; all other arms were considered investigational. For trials with more than two treatment arms, we constructed multiple pairs of each investigational arm and the reference arm.

Statistical methods

For each trial, median PFS, TTP, OS, and HR with 95% confidence intervals (CI) were abstracted. If the HR was not provided, we estimated HR and 95% CI as relevant effect measures directly or indirectly from the given data [19]. The nonparametric Spearman rank correlation coefficient (ρ) was used as a measure of correlation between the median PFS/TTP and OS and correlation between HR of PFS/TTP and HR of OS. As the number of subject studies was limited, we applied bootstrap resampling [20] using 10000 bootstrap samples to estimate 95% confidence intervals for correlation coefficients.

To investigate possible reasons for heterogeneity, subgroup analyses were conducted according to test variables (PFS or TTP), trial area (Asian or non-Asian), reported data (before 2006 or after 2006), number of patients (<200 or ≥ 200), registration trial with investigational agents (yes or not), number of chemotherapeutic agents in treatment arm (more agents vs. few agents or same number of agents), or proportion of measurable disease, and proportion of patients who received second-line chemotherapy. In the case of global trials, data were classified as both Asian and non-Asian unless suitable subset analysis results were provided.

Statistical analyses were performed using STATA ver. 10 (Stata Corp LP, College Station, TX, USA). All tests were

two-sided, and P -values less than .05 were considered statistically significant.

Results

Selection of studies

A total of 826 potentially relevant reports were identified, of which 717 were initially excluded (Fig. 1). After review of the remaining studies, 36 trials with sufficient data were identified as eligible for this meta-analysis, with a total of 83 treatment arms and 10,484 patients [2–7, 21–50].

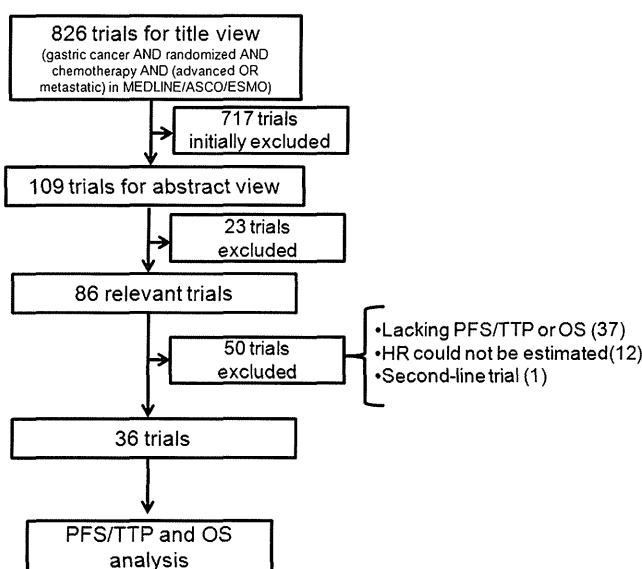
Table 1 shows the characteristics of each trial. Eleven were randomized phase II trials and 25 were phase III. By region, 4 were conducted in North or South America, 13 in Europe, 2 in America and Europe, 13 in Asia, and 1 in Australia, while 3 were global. Six trials were registration trial [2, 5–7, 38, 46]. Seventeen trials compared combination chemotherapy with different number of agents (2 or more) and few agents (1 or 2).

Most trials were for metastatic disease, and the median proportion of patients with measurable lesions was 95% (47–100%). More studies reported PFS than TTP, while no trial reported both PFS and TTP. Information on second-line chemotherapy was available in 18 trials [2–7, 28, 30–33, 36, 37, 39, 42, 44, 46, 49]. Subset analysis according to area was reported in one global trial (AVAGAST) [46], and these subset data were accordingly included in analyses which focused on comparing Asian and non-Asian trials.

Correlation between PFS/TTP and OS

A moderate correlation was seen between median PFS/TTP and OS, with a ρ value of 0.70 (95% CI, 0.59 to 0.82; P <0.001; Fig. 2). Correlations in non-Asian ($\rho=0.79$; 0.69–0.89) and Asian trials ($\rho=0.75$; 0.54–0.95; Fig. 3) were similar.

Correlation between HR for PFS/TTP and OS


A total of 50 pairs of HRs for PFS/TTP and OS between treatment arms were available from the 36 trials, being reported in 19 trials and estimated in 17. A close correlation between HRs for PFS/TTP and OS was seen, with a ρ value of 0.80 (95% CI, 0.68 to 0.92; P <0.0001; Fig. 4). No difference in correlation was observed between reported ($\rho=0.80$; 0.60–1.00) and estimated HRs ($\rho=0.82$; 0.67–0.99). Correlation tended to be higher in Non Asian ($\rho=0.80$; 0.61–0.98) than Asian trials ($\rho=0.67$; 0.39–0.94; Fig. 5), higher with registration trials ($\rho=0.94$; 0.60–1.00) and no-registration trial ($\rho=0.79$; 0.64–0.93), higher with comparison of treatment with same number of agents ($\rho=0.89$; 0.76–1.00) than comparison of different number of agents ($\rho=0.75$; 0.54–0.95), higher in trials reporting PFS ($\rho=0.85$; 0.72–0.97) than in those reporting TTP ($\rho=0.60$; 0.24–0.97), and higher in trials in patients with measurable lesions only ($\rho=0.91$; 0.77–1.00) than in those including non-measurable lesions ($\rho=0.71$; 0.50–0.93), albeit that none of these differences was significant. In also, no differences were observed between trials before 2006 ($\rho=0.73$; 0.45–1.00) and after 2006 ($\rho=0.83$; 0.68–0.98), or trials with less than 200 patients ($\rho=0.85$; 0.67–1.00) and with more than 200 patients ($\rho=0.70$; 0.50–0.90).

Discrepancy in HRs for PFS/TTP and second-line chemotherapy

Among the 18 studies with information on second-line chemotherapy, the ratio of the HR of PFS/TTP to that of OS deviated from 1 as the proportion of patients who received second-line chemotherapy increased ($\rho=-0.40$; $P=0.04$; Fig. 6).

Discussion

To our knowledge, this is the first study to evaluate whether PFS and TTP can be used as surrogate endpoints for randomized studies of first-line chemotherapy for AGC. Our results showed that an improvement in PFS/TTP was closely associated with an improvement in OS. Although no consensus on what defines a valid surrogate endpoint has yet been reached, any candidate must correlate to the

Fig. 1 Selection process for trials

Table 1 Baseline characteristics of patients in the 36 included trials

Author	Year	Phase	Region	Treatment arms	No. of patients	Origin	Metastatic disease (%)	Measurable disease (%)	Endpoint (TTP/PFS)	Information on second-line treatment
Cullinan [21]	1985	III	Am	FU vs FU+ADM vs FU+ADM+MMC	151	G	NR	47	TTP	NR
Kim [22]	1993	III	A	FU vs FAM vs FU	324	G	NR	56	TTP	NR
Cullinan [23]	1994	III	Am	FU vs FAP vs FAMe vs FEMe+TZT	252	G	NR	84	TTP	NR
Loehrer [24]	1994	III	Am	FU vs epirubicin vs FU+epirubicin	165	G	63	69	TTP	NR
Pyrhonen [25]	1995	III	E	BSC vs FAMTX	41	G	71	NR	TTP	NR
Kondo [26]	2000	III	A	FU vs Doxifluridine	86	G	NR	NR	TTP	NR
Vanhoefc [27]	2000	III	E	ELF vs CF vs FAMTX	399	G	84	63	PFS	NR
Ohtsu [28]	2002	III	A	FU vs CF vs UFTM	280	G	86	96	PFS	Yes
Ross [29]	2002	III	E	ECF vs MCF	574	E,GEJ,G	57	95	PFS	NR
Tebbutt [30]	2002	III	E	FU vs FU+MMC	254	E,GEJ,G	57	94	PFS	Yes
Bouché [31]	2004	II	E	FU+FA vs CF+FA vs FU+FA+irinotecan	134	G	100	100	PFS	Yes
Pozzo [32]	2004	II	E	FU+FA+irinotecan vs irinotecan+CDDP	146	GEJ,G	94	90	TTP	Yes
Ajani [33]	2005	II	Am	DC vs DCF	155	GEJ,G	95	79	PFS	Yes
Mochler [34]	2005	II	E	ILF vs ELF	114	GEJ,G	100	100	PFS	NR
Thuss-Patience [35]	2005	II	E	DF vs ECF	90	G	98	96	TTP	NR
Van custem [2]	2006	III	E, Am	CF vs DCF	445	GEJ,G	97	100	TTP	Yes
Chin [36]	2007	III	A	S1 vs S1+irinotecan	315	G	NR	57	PFS	Yes
Cunningham [3]	2008	III	E	ECF vs ECX vs EOF vs EOX	1002	E,GEJ,G	74	100	PFS	Yes
Al-Batra [37]	2008	III	E	FLP vs FLO	220	GEJ,G	94	89	PFS	Yes
Dank [38]	2008	III	E	CF+FA vs ILF	333	GEJ,G	96	NR	TTP	NR
Ikeda [39]	2008	II	A	CF vs S1+DOC	49	G	100	100	PFS	Yes
Jeung [40]	2008	II	A	DOC+CDDP vs S1+DOC	80	G	79	100	PFS	NR
Koizumi [4]	2008	III	A	S1 vs S1+CDDP	305	G	100	63	PFS	Yes
Lee [41]	2008	II	A	S1 vs Capecitabine	91	G	100	100	TTP	NR
Park [42]	2008	II	A	ILF vs PILF	91	G	100	100	PFS	Yes
Ridwelski [43]	2008	III	E	DOC+CDDP vs FLC	270	G	90	100	TTP	NR
Boku [44]	2009	III	A	FU vs S1 vs irinotecan+CDDP	704	G	NR	75	PFS	Yes
Kang [5]	2009	III	A, E, Am	FP vs XP	316	G	100	100	PFS	Yes
Lee [45]	2009	III	A	FP vs Haptoplatin+FU	174	G	94	90	TTP	NR
Ajani [6]	2010	III	E, Am	FP vs S1+CDDP	1053	GEJ,G	96	96	PFS	Yes
Bang [7]	2010	III	A, E, Am	XP vs XP+trastuzumab	584	GEJ,G	96	90	PFS	Yes
Kang [46]	2010	III	A, E, Am	XP vs XP+bevacizumab	774	GEJ,G	96	79	PFS	Yes
Kishimoto [47]	2010	II	A	S1+paclitaxel vs S1+irinotecan	102	G	100	100	PFS	NR
Sawaki [48]	2010	III	A	S1 vs FU+FA	177	G	100	100	PFS	NR
Mochler [49]	2010	II	E	XP vs XI	118	E,GEJ,G	100	NR	PFS	Yes
Tebbutt [50]	2010	II	Australia	wTCF vs wTX	116	E,GEJ,G	93	98	PFS	NR

Am America; A Asia; E Europe; FU 5-fluorouracil; ADM doxorubicin; MMC mitomycin C; CDDP cisplatin; FAM FU+ADM+MMC; FAP FU+ADM+CDDP; FAME FU+ADM+methyl lomustine; TZT triazinate; Epi epirubicin; BSC best supportive care; FAMTX FU+ADM+methotrexate; ELF etoposide+leucovorin+FU; CF CDDP+FU; UFTM uracil/tegafur+MMC; ECF epirubicin+CDDP+FU; MCF MMC+CDDP+FU; FA folinic acid; DC docetaxel+CDDP; DCF docetaxel+CDDP+FU; ILF irinotecan+leucovorin+FU; ELF epirubicin+leucovorin+FU; DF docetaxel+FU; ECX epirubicin+CDDP+capecitabine; EOF epirubicin+oxaliplatin+FU; EOX epirubicin+oxaliplatin+capecitabine; FLP FU+LV+CDDP; FLP FU+LV+oxaliplatin; DOC docetaxel; PILF,CDDP+ILF; FLC FU+LV+CDDP; FP CDDP+FU; XP capecitabine+CDDP; PTX XI, capecitabine+irinotecan; wTCF weekly docetaxel+CDDP+FU; wTX weekly docetaxel+capecitabine; G gastric; GEJ gaoesophageal junction; E esophagus; NR not reported; TTP time to progression; PFS progression-free survival