

運動が始まる約200ミリ秒前なのに、対して、運動準備のための電気活動は運動が始まる約550ミリ秒前から開始していることが明らかとなった。すなわち意識できない脳活動の開始と、意識で捉えることのできる自由意志発現との間には約350ミリ秒もの遅れがあることを見いだした(Libet, B. Behavioral and Brain Sciences 8: 529-566, 1985)。

京都大学の長峯 隆(現札幌医科大学)らの研究グループは、脳活動と運動意図との関連について、さらに興味深い知見を見いだしている。長峯らは、被験者が全く自由な意志に基づいて指を動かす時に、それに先行する脳波を運動開始時点で揃えて1000回近く加算平均した。運動開始時点と時間的にランダムな関係にある背景脳波は、無数の加算平均をすることによって互いに相殺され、運動に特異的に関連した脳波成分だけを抽出することが可能になる。しかし、こうして記録されたデータを注意深く観察してみると、運動開始の約2秒～1.5秒前のアルファ帯域(8～13Hz)の脳波律動が、1000回近く加算しても全く消失せず、むしろ加算回数が増えるに従い明らかに際だって観察されることを明らかにした(未発表データ)。この観察結果は、約2秒後に発生する運動開始時点に対してアルファ波の位相が揃っていることを示しており、言い換えると、被験者は自由意志に基づいて運動開始を決めたにもかかわらず、実際の運動開始時点は、それよりも2秒近く遅った時に発生している意識によって捉えることのできない生理反応、すなわち脳波のアルファ波の特定の位相に縛られて決定されている

という事実を意味している。

さらに、マックスプランク研究所のジョン・ディラン・ヘインズらの研究グループは、fMRIによって記録された脳活動信号のデコーディング技術をもちいて注目すべき結果を報告している。彼らは、被験者に左右どちらかのボタンのうち好きな方を自由に選んで、好きなタイミングで押すように指示した。被験者は、いつどちらかのボタンを押そうと決めたかを報告するとともに、実際に好きなほうのボタンを押した。このときの脳活動をfMRIをもちいて計測して分析したところ、実際にボタンを押すよりも9秒近く前、左右どちらかのボタンを押すことを決定したと報告した時よりも7秒以上も先行した時点の脳の特定部位の信号パターンから、左右どちらのボタンを押すと決定して実際に押すかを、統計的有意に高い確率で予測できることを示した(Soon CS, Brass M, Heinze HJ, Haynes JD. Nat Neurosci. 11(5): 543-5, 2008)。

脳機能イメージングが明らかにしたこれら一連の知見は、「意識できる自由意志」が「意識できない脳機能」に支配されていることを鮮やかに描き出すことにより、これまでデカルト的意識世界や人文科学領域を暗黙的に支配してきた「自由意志信奉」と、それに支えられた「心の理解」そのものに深刻な見直しを迫るものとなっている。脳機能イメージングによつてもたらされた新しい自然科学的人間観は、意識で明瞭に捉えることのできるもの以外の存在を無視するという、デカルトの影響を強く受けた西欧近代科学の限界を超えて、脳と心の科学について新しい展望を拓いていく

上で、大きな役割を果たすことが期待される。

4 内観と客観を結ぶ

新しい科学の道具としての脳機能イメージング

ここまで述べたように、脳機能イメージングは、単に意識世界と延長世界を結ぶに留まらず、意識で捉えることのできない領域を含め、生命体としての人間をとりまく情報世界全体が、心の基盤となる脳に対して及ぼす影響を計測の対象とすることに成功した。こうした脳機能イメージングのもつ新しい独特的活性を十分に引き出すためには、研究初期の20世紀末に大きな有効性を発揮したく機能モデル探索型脳機能イメージング、すなわち人間の心理状態は自覚可能な素過程の加算的集合であるという前提のもとに、さまざまな心理実験をデザインし、そのときの脳活動をともかく計測することによって、それぞれの心理的素過程に関連した活動が脳の「どこに」観察されるかを探って、そこに「番地」を振るといった研究手法には、深刻な限界が生じていることを認めざるを得ない。こうした限界を超えて、新しい時代の心の科学に脳機能イメージングを有効に機能させていく上で重要なのは、意識で捉えることのできない世界を含めた人間の脳と心の機能を洞察も含めて包括的に捉え、偶然を遙かに超える高い確率で制御する現象学的力量に基づいた仮説形成能力にあるといえるのではなかろうか。

宗教と科学とを架橋する点で、卓抜した活動を展開しているチベット仏教の第14世ダライ・ラマ法王は、著

書「ダライ・ラマ科学への旅」の中で、「経験の現象学的な側面をきちんと扱う確固たる一人称的な方法論と、客観主義的な視点に立つ脳の研究とを組み合わせる科学的な方法論は考え得るかどうか?」という問題を提起している。これは、デカルト以来の専門分化した学問のあり方がもつ本質的な限界を克服して、知の全体性の復活を促す、根源的な問いかけに他ならない。同時に、脳機能イメージングの新たな方向性についても実に示唆に富んだ問いかけと言える。

確かに、専門分化を重ねてきた西歐的知識構造においては、好き嫌いや快不快といった情動や感情などの一人称的世界は、同じ入力に対して誰でも同じ出力をみちびきだすことのできる言語に依存した論理的推論などとは異なり、個別性が著しく、それ故に自然科学的合理主義が踏み込めない絶対不可侵な個人の自由が完全に保

障された領域と信じられてきた。その一方で、たとえば、力入に舌鼓を打たせる稀代の料理人や、時代を超えて感動を呼び起こす天才芸術家などのように、高度な普遍性をもって一人称的世界を制御することのできる現象学的活性が実在することも事実である。しかし、こうした活性の存在は、直観や洞察、伝統知や暗黙知といった、意識で明瞭に捉えることのできない力量によって支えられる部分が大きいため、これまで客観的科学の対象として適切に処理されることは極めて稀であった。

こうした一人称的世界における内観的経験を鋭く察知して有効な仮説を構築し、その仮説を外在化するとともに、客観的科学の土俵で検証するための決定的ツールとして脳機能イメージングが役立つ可能性に注目すべきだろう。この活性を駆使することができれば、自然科学のもつ強い説

得力と合意形成力のもとで新しい心の科学を展開していくことが期待される。

第14世ダライ・ラマがいうところの「経験の現象学的な側面をきちんと扱う確固たる一人称的な方法論」と「客観主義的な視点に立つ脳の研究」とを架橋するツールとして脳機能イメージングのポテンシャルを十分に引き出すアプローチは、「脳と心の科学」をデカルトの物心二元論や心脳問題の軛から解き放ち、私たちを新しい人間理解のパラダイムの開拓へと導いていくことが期待される。

◎文献◎

大橋 力: 音と文明—音の環境学ことはじめ, 岩波書店, 2003.
 本田 学, 柴崎 浩: 脳機能イメージング: 酒田英夫, 外山敬介 編集 岩波講座 現代医学の基礎 第7巻, 脳・神経の科学II 脳の高次機能, 岩波書店, pp. 205-225, 1999.
 本田 学: 計測を拒む美と快をいかに測るか～感情・感性のイメージング, 科学, 75(6): 719-725, 2005.
 ダライ・ラマ: ダライ・ラマ 科学への旅-原子の中の宇宙, サンガ, 2007.

d 肝臓疾患

肝臓疾患の主要なものに肝硬変が挙げられる。肝硬変は肝細胞の壊死を伴う肝機能不全状態である。成因の大半をウイルス性肝炎が占め(C型肝炎約60%, B型肝炎約15%), アルコール性が1割強である。

ウイルス肝炎には、A型、B型、C型、D型、E型の5種類が確認されている。A型肝炎は食物(生牡蠣など魚介類)・飲料水等からの経口感染により平均約30日の潜伏期のうち急激に発症するが、慢性化せず予後は良好である。症状は、発熱、恶心・嘔吐、腹痛、全身倦怠感、黄疸などである。

B型肝炎は血液、唾液などを通して感染し、乳幼児が感染した場合は持続感染者(キャリア)となりやすいが、成人が感染した場合慢性化することはまれとされる。かつては出産時における母子感染等が多かったこともあり、B型肝炎ウイルスキャリアは推定110～140万人いるが、昭和60年度から妊娠検診でHBs抗原検査を行い、子に対するワクチン投与などの適切な予防措置を講じたため(B型肝炎母子感染防止事業)、キャリアの数は減少している。

一方、C型肝炎は血液により感染し(輸血、入れ墨、注射器等)、感染年齢にかかわらず高率に慢性化しキャリアとなる。日本には推定200～240万人のキャリアがあり、そのうち一定の割合(6割という推定もある)が20年をかけて肝硬変に移行し、さらに肝がんへと移行する。したがって、C型慢性肝炎患者にはインターフェロンやリバビリン、ベグインターフェロンによりウイルスを駆除する治療等が必要となる。感染予防のためには、日常生活において剃刀、歯ブラシ、爪切り等の共用を避けることが重要である。

2010(平成22)年、肝炎対策推進のため、肝炎対策基本法が施行された。

(小松正子)

G 精神疾患

厚生労働省の2008(平成20)年の調査では、精神疾患の患者は323万人にのぼり、237万人の糖尿病、152万人のがんなど他の4大疾病を大幅に上回った。このような精神疾患の増加を受け同省は2011(平成23)年7月6日に精神疾患を、がん、脳卒中、急性心筋梗塞、糖尿病と並ぶ「5大疾患」と位置づけ、重点的対策を行う方針を示している。

a 気分障害(双極性障害、うつ病性障害)

気分障害は統合失調症と並ぶ内因性(現在時点でははっきりした原因がわからないが、脳の機能的障害に基づくだろうと推測されている)精神病の一つとされていた。しかし、最近はできるだけ症状に基づいた分類を行うという方針から内因性等の区別なく診断されるようになった。そのため、従来は「神経症」に分類されていた心因に基づくうつ状態も気分障害に分類されるようになった。近年のうつ病増加の原因の一つに診断基準の変化もあると考えられている。DSM-IV-TR(アメリカ精神医学会、精神科疾患の診断・統計マニュアル第4版TR)では気分障害を双極性障害とうつ病性障害(以下うつ病と略)に大別している。双極性障害は躁病(気分の高揚と活力および活動性の増加)とうつ病(気分の低下と活力および活動性の減少)のエピソードが反復するものである。生涯有病率は日本で

は双極性障害0.4～1%、うつ病(非双極性)は双極性障害よりも多く1.3～17.8%と推定されている(日本の定期／任意予防接種スケジュール(20歳未満)、国立感染症研究所、4種混合ワクチンの導入に関する方針について(裏)、厚生労働省健康局健康政策課)。うつ病は2:1の割合で女性に多く、年齢的には青春期・晩年期に多い。具体的な症状としては、抑うつ気分、気力の低下、興味・関心の喪失、注意・思考力の低下、易疲労感、不眠、食欲・性欲の減退を訴えることが多い。治療は患者に強い希望念慮(具体的な自殺方法を考えている)がある場合を除いて外来で行われることが多い。薬物療法と精神療法の一つである認知行動療法が効果的で、ほとんどの患者は完全覚解し、予後は一般に良好である。うつ病で問題となっていることに①地域社会にいるうつ病者のうち医師を訪れるのはわずかで、その中でも専門の精神科医を訪れる患者は更に少ないと(冰山現象)、②子供にはうつ病はないとの思い込みから小・中学生のうつ病が見逃されていることである。最近の報告によると、100人のうち小学生は1～2人が、中学生は4～5人が「うつ病」の可能性があるという(原田、2002)。③従来では適応障害と診断されていたと思われる自ら「うつ病」と訴えるうつ病(未熟型うつ病、回避型うつ病、逃避型うつ病；廣瀬哲也、新里うつ病など)が増加している。抗うつ薬は余り効果がなく、精神療法に導くことも困難なケースが多い。

うつ病は出現頻度が高く、経過も長いので、これが人類の健康に及ぼす影響の大きさが注目されている。世界保健機関は疾病や傷害が世界人類の健康に及ぼす負担(the global burden of disease: GBD)を計算し、2020年にはうつ病性障害が虚血性心疾患に次いで負担になるだろうと予測している。日本では中高年の自殺が増加し、自殺の背景としても注目されている。

b 統合失調症

以前 schizophrenia は「精神分裂病」と和訳されていた。この診断名はまるで「精神が分裂している病で、何をするかわからない恐ろしい病気」といった暗いイメージを一般の人に与えていたため、実際は回復可能な病気にも関わらず、患者や家族は偏見に基づく苦痛を強いられていた。また、病名に悪いイメージがあるために精神科医も病名告知をためらい躊躇となっていた。そのため患者は自分の病名を知らずに治療を継続する困難を感じ、利用可能な福祉サービスにも無頓着となっていた。そこで、2002(平成14)年に、日本精神神経学会において、本疾患の日本語の呼称を「統合失調症」と変更することが決定された。現在では、厚生労働省の諸手続きもこの病名の使用が定着している。

わが国における一般人口中における出現頻度(発生率または罹患危険率)は0.7%前後と高く、精神病院入院患者の60～70%を占めている。この出現頻度は洋の東西を問わずほぼ一致している。発生率には性差が無く、10代後半～30歳代に発症することが多い。成因は不明であるが、病的素因または中枢神経系の脆弱性があり、これが環境因(心因)を誘因として症状を形成する(脆弱性・ストレスモデル)との考え方方が有力である。症状は陽性症状、陰性症状、認知障害の3つに大別されている。陽性症状は妄想や幻覚・幻聴といった症状で、一般の人には基本的には体験できない。陰性症状は意欲の減退や喜怒哀楽の感情が乏しくなるなど、一般の人が本来持っている基本的な精神活動が減退するものである。認知の障害としては注意障害・記憶の障害・概念形成障害などが認められる。

現在では、特に薬物療法の進歩により、入院期間が短縮し、60%以上の患者が覚解・不完全覚解に至っている。しかしながら、服薬継続下の覚解であるため、服薬を中止すると社会的ストレスなどの為に容易に再発する。このように退院と再発後の再入院を繰り返す現象は回転ドア現象と呼ばれ、薬物療法の効果への過信を戒めるとともに、精神福祉の重要性を強調するものである。

c 神経症性障害、ストレス関連障害、および身体表現性障害

以前は神経症(neurosis)とよばれ、精神的要因(心因)によって精神的あるいは身体的症状が出現する状態をさす。現在は後に述べるように、この障害に心因以外の要因も関連する可能性も示唆され概念が複らいでいる。そのため、ICD-10(国際疾病分類10改訂版)では表題のように「神経症」という名称は便宜上使用されているものの、DSM-IV-TRでは「神経症」という名称はもはやない。この障害の精神症状は不安(不安障害)、強迫症状(無意味であるとわかっていても、同じ考え方や確認行為を繰り返す:強迫性障害)、各種の解離性精神症状(意識障害や催眠など:解離性(転換性)障害)などがあり、身体症状は身体的原因のない身体不調(身体表現性障害)がある。最近、特に注目されている障害は心的外傷後ストレス障害(post-traumatic stress disorder: PTSD)とパニック障害である。

PTSDは自然災害、大事故、テロ等の例外的に著しく脅威的あるいは破壊的な性質をもったストレスが心的外傷(トラウマ)となり、遅延または遅延した反応として現れる。日本では、阪神・淡路大震災でその存在を注目されてから、一般的となつた。典型的な症状は無感覚と感情鈍化、外傷を重い出させる状況を避けているのに、ストレスとなった場面が無意識に思い出されるフラッシュバック、夢の中で繰り返される外傷の再体験である。時に強い恐怖感、パニック、攻撃性が急激に生じることがある。強い驚愕反応、不眠、不安、抑うつを伴い自殺念慮を伴うこともある。

パニック障害は突然起ころる反復性の重篤な不安発作(パニック発作)を主症状とし、発作時には窒息感・動悸・めまい感・胸痛が出現して「死」の恐怖感を伴うことが少なくない。窒息感や動悸などの身体症状が呼吸促迫を起こして二次的に過呼吸症候群を生じ、四肢のしびれ感、冷感、苦悶感も加わることがある。不安発作は概ね数分間で治まるが、また同じような発作が起ころるのではないかという不安(予期不安)に苛まれ、日常生活に支障をきたすこともある。乳酸ナトリウムの注射が患者のパニック発作を誘発することから心因だけではない生物学的な要因も関与すると考えられている。

d 薬物依存

精神作用物質使用による精神障害および行動の障害には、アルコール、アヘン類、マリファナのような大麻類、鎮痛剤や催眠剤、コカインや他の覚せい剤、タバコや抑制性溶剤などの使用により起ころる障害が含まれる。その状態は、中毒、有害な使用、依存症や精神病性障害を含んでいる。有害な使用とは、身体あるいは精神面の健康に害を及ぼすときに使用される。依存は「薬物の使用による快楽を得るため、あるいは離脱(薬物の使用を中止すること)による不快を避けるために、有害であることを知りながらその薬物を続けて使用せずにはいられなくなった状態」をさし、薬物の反復摂取は報酬系を中心とした脳の機能変化を引き起こすと考えられている。

世界的に最も広く使用されている精神作用薬物はたばことアルコールであるが、これらについては他項(喫煙・飲酒)を参照されたい。わが国では、覚せい剤と有機溶剤の乱用が多く、特に覚せい剤は1995年から第3次乱用期に入っている。これは、一部外国人による密売の増加、乱用の低年齢化、インターネットなど新しい通信技術の悪用などの特徴を持ち、対策が困難となつてゐる。また、覚せい剤は単に依存を形成するだけでなく、統合失調症に酷似した症状をもつ覚せい剤精神病を引き起こす危険性があるので、特に注意が必要である。精神作用薬物は覚せい剤取締法などの法律によって厳しい規制が行われているが、最近は「合法あるいは脱法(法の規制を受けていない薬物:ある種の「ハーバー

ブ」など)が簡単に入手でき、若者を中心に乱用が増加し、社会問題となりつつある。中には使用で死亡する事もあり、精神のみならず生命にも危険を及ぼす。

H 自殺、不慮の事故、虐待、暴力

a 自殺

自殺は世界的には15～34歳の年齢群で死亡原因の上位3位にあり、世界公衆衛生上の重大な問題となっている。自殺率は10万人につき15.1人とされ、老年期を除き圧倒的に男性に多い(男：女3.5:1)。日本では、警察庁生活安全局の報告によると、中高年の自殺の増加に伴い、2003(平成15)年の自殺既遂者は34,000人を越えてピークとなり、以後32,000～33,000人前後で推移している。自殺未遂者は自殺既遂者の20倍以上になるといわれ、日本でも大きな社会問題となっている。同局の報告によると2010年度の自殺の原因・動機としては、「健康問題」が最も多く、「経済・生活問題」、「家庭問題」がこれに続いている。精神障害による自殺のなかでは、うつ病が最も多く(Pokorny, 1964, 2010年生活安全局統計)、その自殺は繰り返される傾向がある。統合失調症、薬物依存などの精神疾患も原因となっている。

自殺予防の1つとして、自殺の危険性が高い精神疾患であるうつ病の有無を明らかにして、治療に結びつけることが挙げられる。うつ病は治る病気であることから、家族や職場でうつ病に関する教育を行い、うつ病の場合には早急に治療を受けさせるようにすることが重要である。「仕事の失敗から」、「借金を苦にして」、「人間関係に疲れて」などによるとされる自殺のかなりの部分は、適切な医療を受ければ治癒し得るうつ病によるものと考えられている。老年期の自殺予防には孤独感や疎外感をもたせないこと、何らかの役割をもたせる事が有効とされている。また、一度自殺企図を行った人は、繰り返す傾向があるので充分な注意が必要である(一度自殺を図って助かった人は二度と自殺しないというのは間違いである)。

b 不慮の事故

不慮の事故とは言葉通り「思いがけずに」遭遇する事故を指し、具体的には交通事故、窒息、転倒転落、溺死、火災・中毒に分類されている。厚生労働省の平成21年度「不慮の事故死亡統計」によると、1969～1972(昭和44～47)年の42,000～43,000人をピークに急激に減少し、1988(昭和63)年の28,000人で減少のピークを迎えて再び増加し、1995(平成7)年の阪神・淡路大震災で一時45,000人に急増したが、1996(平成8)年以降2008(平成20)年までは37,000～40,000人台で推移している。大震災が起こるとピンポイント的に増加するので東日本大震災のあった2011(平成23)年の統計数は一過性に急増すると予想される。

さて、2008年の不慮の事故で最も多かったのは窒息9,419、次いで交通事故7,499、転倒転落7,170、溺死6,464が続いている。窒息は乳幼児と65歳以上の高齢者に多く、乳幼児では吐物や異物が高齢者では餅などの食物が原因になることが多い。交通事故は年々減少しているが、10～20歳と高齢者に多く、両者共に交通安全の徹底が重要と考えられている。高齢者は聴力・反応速度の低下など加齢による身体能力の低下が原因になる事が多い。転倒転落や溺死も高齢者に多く、少子高齢化に伴い高齢

者の不慮の事故は増加する傾向がある。

c 虐待、暴力

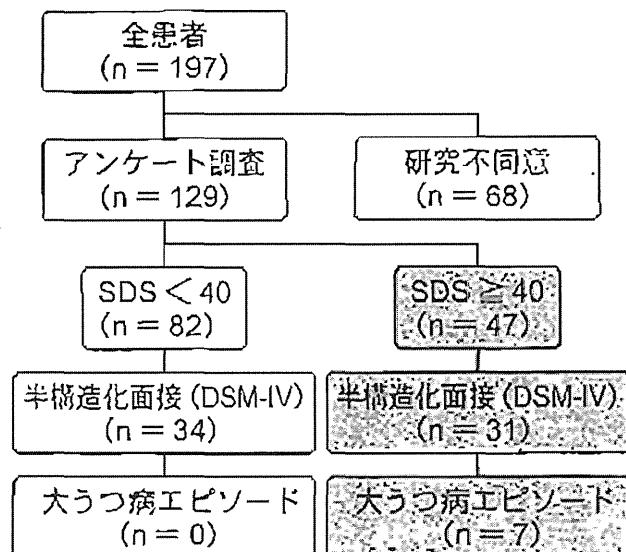
暴力は哲学的・心理学的・社会学的・政治的にも盛んに議論されており、厳密な定義は難しいが、「個人(または集団)の力を他者の意思に反して強制的に加える事」という認識は共通している。戦争・テロリズムなど事象は多岐にわたり、後に述べる虐待も暴力の一つである。

虐待とは自分の保護下にある者(ヒト、動物など)に対して、長期間にわたり暴力を加えたり、日常的に嫌がらせや無視をするなどの行為を行うことをいう。虐待の内容により殴るけるなどの身体的暴力を加える身体的虐待、バカ・ブスなど心理的な暴力を加える心理的虐待、性的暴力を加える性的虐待、無視や責任を放棄するネグレクト、金銭を与えないなどの経済的虐待に分類される。虐待の対象による分類である児童・配偶者・高齢者虐待という言葉は残念ながら日常でもよく聞かれる。厚生労働省によると2006(平成18)年度の児童虐待相談件数は統計を取り始めた1990(平成2)年の1,101件から急激に増加し、2006年は37,323に達し、深刻な社会問題となっている。虐待は世代間連鎖されることが少なくなく、自らの被虐待経験を綴った「"It" (それ)とよばれた子」(ディープ・ベルサー著)のなかでも自分を虐待する母もまた祖母に虐待されていた事実を知り、虐待の連鎖を断ち切る苦悩を述べている。一方、幼少期に虐待を受けると成長して境界性人格障害や多重人格に発展する危険性がある。

(吉田 寿美子)

糖尿病とうつ

吉田寿美子


欧米諸国では糖尿病患者にうつ病が多いことが知られている。糖尿病患者は非糖尿病患者の2倍以上うつ病になりやすい^{1, 2)}。また、抑うつ的な糖尿病患者は血糖コントロールが悪く、活動性が低く、より肥満になること^{3, 4)}も報告されている。以上から、うつ病は糖尿病管理に非常に重要な要因と考えられている。

今日まで、①社会人口統計学的要因として女性²⁾・若年^{2, 5)}・非婚^{2, 6, 7)}・低い教育歴^{5, 7)}・社会的支援の欠如⁸⁾、②健康関連要因として低い全般的健康感⁹⁾・疼痛¹⁰⁾、③糖尿病の要因として糖尿病罹患期間¹¹⁾・不良な血糖コントロール^{3, 6)}・糖尿病の治療方法（インスリン注射の有無）・糖尿病合併症^{7, 11)}・神経障害¹²⁻¹⁴⁾・網膜症^{8, 15)}——がうつに関連していると報告されている。しかし、これらの報告は、想定できる交絡因子を十分に統制できていない。抑うつと糖尿病の基盤となる共通の要因はあるのだろうか。

現在までに熟練した精神科医による DSM-IV (Diagnostic and Statistical Manual of Mental Disorder 第4版)¹⁶⁾ 診断を用いた日本人糖尿病患者の大うつ病エピソードの出現頻度の報告は見当たらない。さらに日本を含めたアジア諸国でも、糖尿病患者における抑うつの関連要因に関する報告は少ない。そこで我々は想定できる交絡因子を統制して、日本人糖尿病患者において抑うつに関連する独立因子を特定した。

▷対象と方法

東北大学病院糖尿病代謝科における2003年11月の糖尿病外来患者全197人のうち129（タイプ1：24、タイプ2：105）人が、社会人口統計学的変数と健康関連変数に関するアンケート調査を受けた。Zung Self-Rating Depression

※ SDS ≥ 40 の患者のうち、16名は面接を拒否

図1 研究デザイン

東北大学病院糖尿病代謝科の2003年11月受診糖尿病外来患者197人中、アンケート調査に同意した129人（タイプ1：24人、タイプ2：105人）について、SDSを用いて抑うつのスクリーニングを行い、熟練精神科医がDSM-IV診断を行った。

SDS: Zung Self-Rating Depression Scale

DSM: Diagnostic and Statistical Manual of Mental Disorder (精神障害の診断と統計マニュアル)

Scale (SDS) を用いて抑うつのスクリーニングを行った後に、熟練した精神科医が半構造化面接による DSM-IV 診断を行った。

▷結果

47人(36.4%)の患者に症候学的な抑うつが認められた。47人中31人が熟練した精神科医の半構造化面接を受け、31人中7人（タイプ1：3人、タイプ2：4人）が大うつ病エピソードと診断された。SDS 得点が40点未満の対象34人には大うつ病エピソードと診断された者はいなかった。

以上から、大うつ病エピソードの1カ月間の期間有病率は7.9%と推定され、SDSにおける40点のカットオフポイントはDSM-IVの大うつ病エピソードの検出に良好な感度(100%)と控えめな特異度(59%)を示した。抑うつを持つ患

者は、抑うつを持たない患者に比べて、神経障害・網膜障害・疼痛を伴いやすく、全般的健康感が低く、社会的支援が少なかった。しかし、年齢、性別、婚姻状況、糖尿病のタイプ、インスリンの使用、糖尿病罹病期間、HbA1c（グリコヘモグロビン A1c）、腎障害には差異が認められなかった。多変量ロジスティック回帰分析では、疼痛（オッズ比（OR）：3.26, 95%信頼区間（CI）：1.31-8.08）と微小血管合併症（OR：2.81, 95%CI：1.13-6.98）が独立して抑うつに関連していた。特に糖尿病性神経障害（OR：3.10, 95%CI：1.17-8.22）は年齢、性別、婚姻状況、社会支援、QOL（quality of life）、糖尿病のタイプ、糖尿病罹病期間、HbA1c、インスリンの使用とは独立して抑うつと関連していた。

▷ 結論

糖尿病合併症、特に神経障害は、糖尿病患者の抑うつに独立して関連する。今回の結果は糖尿病の抑うつと糖尿病性神経障害の両者に共通する生物学的な基盤を究明する必要性を示唆している。

◇ 文 献 ◇

- 1) Anderson RJ, Freedland KE, Clouse RE, et al : The prevalence of comorbid depression in adults with diabetes : a meta-analysis. *Diabetes Care* 24 : 1069-1078, 2001.
- 2) Egede LE, Zheng D, Simpson K : Comorbid depression is associated with increased health care use and expenditures in individuals with diabetes. *Diabetes Care* 25 : 464-470, 2002.
- 3) Lustman PJ, Anderson RJ, Freedland KE, et al : Depression and poor glycemic control : a meta-analytic review of the literature. *Diabetes Care* 23 : 934-942, 2000.
- 4) Caruso LB, Silliman RA, Demissie S, et al : What can we do to improve physical function in older persons with type 2 diabetes? *J Gerontol A Biol Sci Med Sci* 55 : M372-M377, 2000.
- 5) Katon W, von Kroff M, Ciechanowski P, et al : Behavioral and clinical factors associated with depression among persons with diabetes. *Diabetes Care* 27 : 914-920, 2004.
- 6) Poyrot M and Rubin RR : Persistence of depressive symptoms in diabetic adults. *Diabetes Care* 22 : 448-452, 1999.
- 7) Hanninen JA, Takala JK, Keinanen-Kiukaanniemi SM : Depression in subjects with type 2 diabetes. Predictive factors and relation to quality of life. *Diabetes*

Care 22 : 997-998, 1999.

- 8) Peyrot M, Rubin RR : Levels and risks of depression and anxiety symptomatology among diabetic adults. Diabetes Care 20 : 585-590, 1997.
- 9) Miyaoka Y, Miyaoka H, Motomiya T, et al : Impact of sociodemographic and diabetes-related characteristics on depressive state among non-insulin-dependent diabetic patients. Psychiatry Clin Neurosci 51 : 203-206, 1997.
- 10) Jacobson AM, de Groot M, Samson JA : The effects of psychiatric disorders and symptoms on quality of life in patients with type I and type II diabetes mellitus. Qual Life Res 6 : 11-20, 1997.
- 11) Bair MJ, Robinson RL, Katon W, et al : Depression and pain comorbidity : a literature review. Arch Intern Med 163 : 2433-2445, 2003.
- 12) Padgett DK : Sociodemographic and disease-related correlates of depressive morbidity among diabetic patients in Zagreb, Croatia. J Nerv Ment Dis 181 : 123-129, 1993.
- 13) Takahashi Y, Hirata Y : A follow-up study of painful diabetic neuropathy : physical and psychological aspects. Tohoku J Exp Med 141 : 463-471, 1983.
- 14) Winocour PH, Main CJ, Medlicott G, et al : A psychometric evaluation of adult patients with type 1(insulin-dependent)diabetes mellitus : prevalence of psychological dysfunction and relationship to demographic variables, metabolic control and complications. Diabetes Res 14 : 171-176, 1990.
- 15) Viinamäki H, Niskanen L, Uusitupa M : Mental well-being in people with non-insulin-dependent diabetes. Acta Psychiatr Scand 92 : 392-397, 1995.
- 16) Black SA : Increased health burden associated with comorbid depression in older diabetic Mexican Americans. Results from the Hispanic Established Population for the Epidemiologic Study of the Elderly survey. Diabetes Care 22 : 56-64, 1999.

Study on Sound Structure of Traditional Georgian Polyphony (1): Analysis of Its Temperament Structure

KAWAI Norie¹, MORIMOTO Masako²,
HONDA Manabu², ONODERA Eiko³,
NISHINA Emi^{3,4} & OOHASHI Tsutomu¹

1. Introduction

Traditional Georgian polyphony, one of the world's greatest musical treasures, is characterized by specific vocalization, singing style, and musical composition. Its harmonics are generated by its characteristic temperament structure. Although well known among researchers and practitioners of Georgian music, the structure of its temperament differs markedly from that of equal temperament and the musical notation of the five-line staff widely used in Western European music. Comprehensive, quantitative analyses of the temperament structure of Georgian polyphony and studies on the effect it has on listeners from the viewpoint of human science have yet to be carried out. One reason for this lacuna is that no music source suitable for pitch analysis has been available. To accurately analyze the pitch of musical tones, the sound source subjected to analysis should be in monotone, since it is otherwise difficult to analyze the precise pitch of each tone contained in the harmonics. However, since prevailing recordings of traditional Georgian polyphony routinely combine multiple parts of the polyphony, it has been extremely difficult to separate the precise pitch of individual tones.

Under such circumstances, we were very fortunate that among our collaborators Professor Anzor Erkomaishvili, President of the International Center of Georgian Folk Song, kindly provided us with a compact disk (CD) suitable for our research. On this CD entitled "*Teach Yourself Georgian Folk Songs - Megrelian Song*", published by the International Center of Georgian Folk Song [1], each voice of three vocalists, in groups of each singing one of three parts of a polyphony, has been separately recorded on an independent recording track. This digitally recorded sound source enabled us to accurately analyze the pitch of each tone of each vocal part separately, and then to compare these tracks with other temperaments, and even allowed us to shift the pitch of each tone individually.

Affording ourselves of this opportunity, we have undertaken this study to reveal the temperament structure specific to traditional Georgian polyphony and to measure its effect on

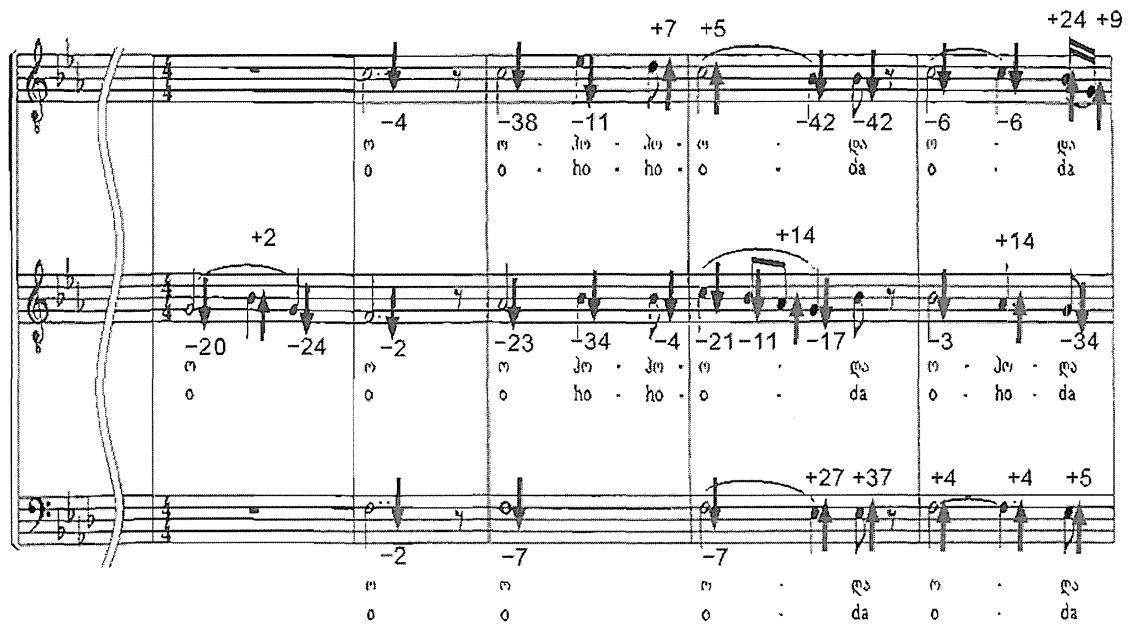
¹ Foundation for Advancement of International Science, Tsukuba, Japan. ² National Center of Neurology and Psychiatry, Tokyo, Japan. ³ The Graduate University for Advanced Studies, Chiba, Japan. ⁴ The Open University of Japan, Chiba, Japan.

Corresponding author: Prof. Tsutomu Oohashi, E-mail: oohashi@aqua.nifty.jp

listeners. In doing so, we first quantitatively compared the temperament of a certain traditional Georgian song with various other temperament structures, including equal temperament. Furthermore, we developed a special sound source in which the pitch of each tone of a Georgian song was electrically transformed into the pitch matching that of equal temperament. Using this sound source, we then examined, by means of a psychological evaluation, the subjective impression that traditional Georgian polyphony makes on listeners.

2. Analysis of the temperament structure of traditional Georgian polyphony

Methods


We chose a vocal composition entitled “O da” from the CD “*Teach Yourself Georgian Folk Songs - Megrelian Song*” as the subject of the present study. As mentioned above, this CD contain tracks on which three parts have been simultaneously recorded and three tracks on which each one of three vocal parts is separately recorded. Uploaded to a personal computer, the recording data of each part was analyzed with the software “Melodyne” (Celemony Software GmbH, München, Deutschland) to detect the pitch of individual monotones. This software enabled us to continuously detect the pitch of the fundamental tones. Since this software can also detect frequency changes due to vibrato and pitch fluctuation, the time width corresponding to a single musical note should be determined based on the song’s musical score. Thus, the averaged frequency of a fundamental tone within the time width of each single musical note was taken as the pitch of that particular note.

Equal temperament, which can easily handle the pitch of a tone in a quantitative way, was employed as the assumed reference by which to express the pitch of individual tones. Each musical tone of the Georgian polyphonic composition was tentatively described using the nearest musical note in the assumed reference according to equal temperament. The pitch deviation of the original tone from the corresponding assumed reference tone was indicated by an upward or downward arrow and its values rendered in cents. The temperament of traditional Georgian polyphony was likewise compared to various other temperaments [2], such as just intonation (pure temperament), Pythagorean tuning and meantone temperament.

Results

Figure 1 shows a segment of the results of the “O da” pitch analysis. The direction of each arrow represents the direction of pitch deviation of the original “O da” tone from each corresponding reference tone according to equal temperament. Each value represents the degree of pitch difference, rendered in cents, between an original “O da” tone and each corresponding

reference tone. Most of the original tones exhibited pitch deviation of several or several tens of cents between each corresponding reference tone. Importantly, even when corresponding reference tones were the same in equal temperament, the degree and direction of pitch deviation of the original tones from the reference tone varied significantly depending on the vocal environment. All the data for our analysis will be presented elsewhere at a later date.

(Score cited from "Teach Yourself Georgian Folk Songs - Megrelian Song" [1])

Fig. 1 Results of pitch analysis of "O da" (segment)

Pitch analysis results for the whole epoch of "O da" were then summarized for each and every reference note and then shown in comparison with individual tones in equal temperament. Specifically, the mean and variation of pitch deviation of the original tones from the corresponding assumed reference tones were calculated for each and every assumed reference tone across the whole epoch of "O da". In Fig. 2, each box and error bar represents the averaged pitch shift with its standard deviation, respectively, from corresponding reference tone according to equal temperament. In order to reconcile the systematic difference in pitch between "O da" temperament and equal temperament, the whole scale was standardized relative to the tone of *ti*. This result shows that the pitch of individual "O da" tones deviated significantly from their corresponding reference tone according to equal temperament in varying degrees, suggesting that the temperament structure of traditional Georgian polyphony differs markedly from that of equal temperament.

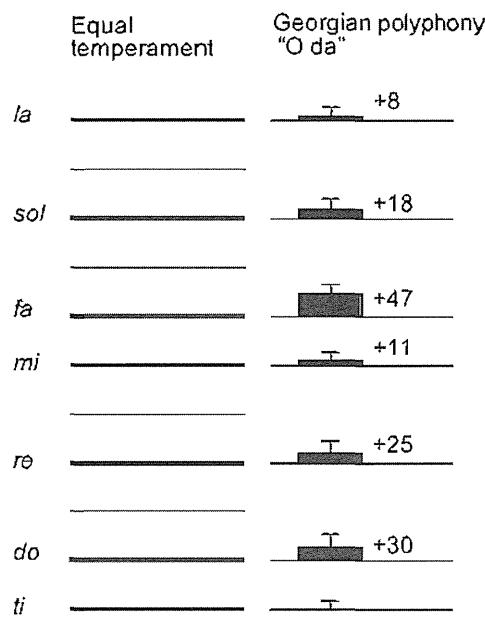


Fig. 2 Averaged pitch shift of "O da" from corresponding reference tone based on equal temperament

The temperament of the above song was then compared to various other temperaments to examine whether that used in "O da" was concordant. Figure 3 shows how each note of the various temperaments deviated relative to the mean pitch of each corresponding "O da" tone.

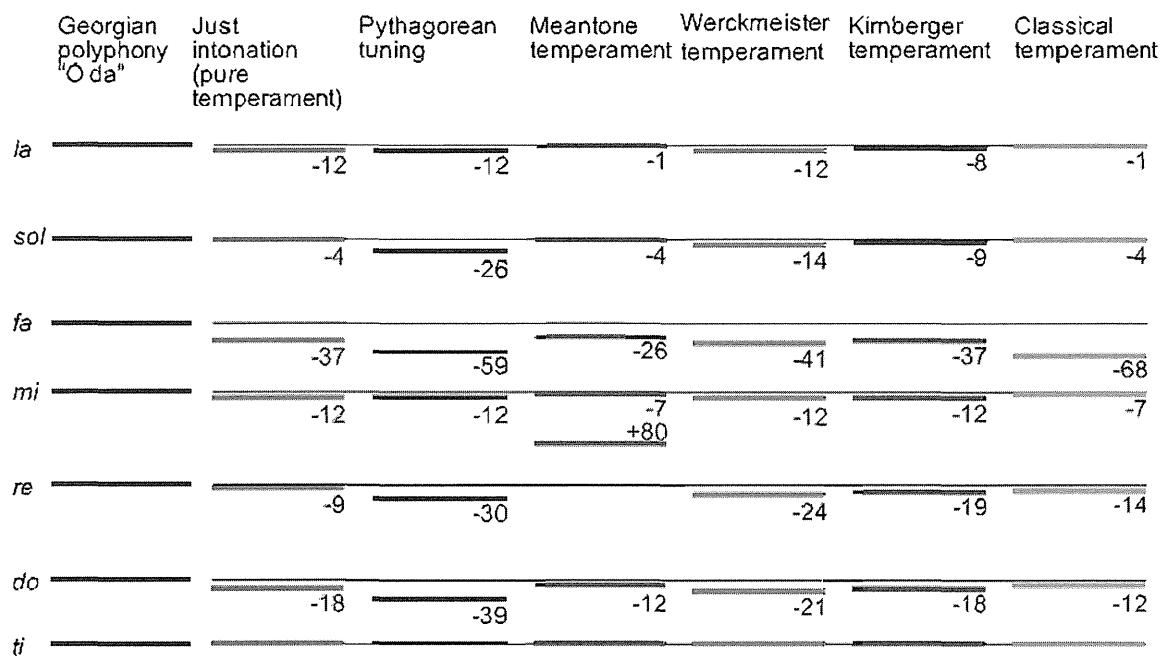


Fig. 3 Deviation with other temperaments in comparison to "O da" Temperament

Notably, the temperament of “O da” does not fully correspond to any other temperament, suggesting that the temperament structure of traditional Georgian polyphony exhibits unique characteristics, distinguishing it from all other existing temperaments. Interestingly, although the temperament of “O da” was relatively close to just intonation (i.e., pure temperament), it exhibited considerable pitch deviation at semitonic differences (e.g., *do* and *fa*).

3. Psychological effect of the temperament of traditional Georgian polyphony on listeners

Methods

The analysis above suggests that Georgian polyphony can be characterized as having a unique temperament structure. Based on a new approach, we proceeded to examine how its specific temperament affected listeners. Using state-of-the-art technology for electrical acoustic processing, we developed a sound source in which only the pitch of each note of original music shifts with no change in any other factor relative to sound quality. We then compared the pitch-shifted sound source with the original music in terms of a listener’s psychological response.

The pitch of each “O da” tone was independently shifted to the nearest tone of equal temperament. Pitch shift was separately performed for each of the three parts of “O da” using “Melodyne” software on a personal computer. First, the direction and degree of pitch shift of each “O da” tone were determined by the above-mentioned analysis so as to correspond to equal temperament. The number of waves of the corresponding sound signal was electrically increased for upward pitch shift, and electrically decreased for downward pitch shift. Then the processed data were elongated or shortened in time so that the temporal length of the generated data corresponded to that of the original music tones.

Since this processing might significantly change the tone color, or timbre, various parameters regarding tone color were extracted beforehand. Using such parameters, tone color was carefully adjusted at the final stage of the pitch shift process. The three pitch-shifted parts produced in this process were subsequently mixed and downloaded to a CD. This digitalized recording is referred to as “O da” Pitch-Shifted Into Equal Temperament. Similarly, the three parts of the original “O da” were mixed and downloaded to a CD, which then served as the original “O da”. We then evaluated the differences in effect on listeners between the pitch-shifted “O da” and the original “O da”. Below we report our findings from a psychological experiment with results obtained on a questionnaire.

Nineteen subjects participated (8 male and 11 female; mean age, 44.9 y.o.) in this experiment. The original “O da” and the pitch-shifted “O da” were presented serially. The

subjects filled out a questionnaire to rate the sound quality in terms of 21 elements, each identified by a pair of contrasting Japanese terms (e.g., "natural" vs. "artificial"). Each element of each contrasting pair of terms was graded on a scale of 1 to 5. After a short interval, the two sound sources were presented in reverse order. The order of presentation was alternated among subjects.

The two sound sources were presented to subjects with identical sound presentation systems consisting of a CD player (HSCD-20, Action Research Inc., Tokyo, Japan), mixing console (9098i, AMEK, Potters Bar, UK), power amplifier (P-1000, Accuphase Laboratory Inc., Yokohama, Japan) and speakers (OOHASHI MONITOR, a special speaker developed by Prof. Tsutomu Oohashi).

Results

Compared to the "O da" Pitch-Shifted Into Equal Temperament, the original "O da" with the specific temperament of traditional Georgian polyphony was judged as more pleasant with statistical significance in terms of the following three elements of sound quality: "clear and limpid", "feel at ease" and "likable" (Fig. 4). Among other evaluation elements, there was also a tendency for the original "O da" to be more positively perceived by listeners than the "O da" Pitch-Shifted Into Equal Temperament.

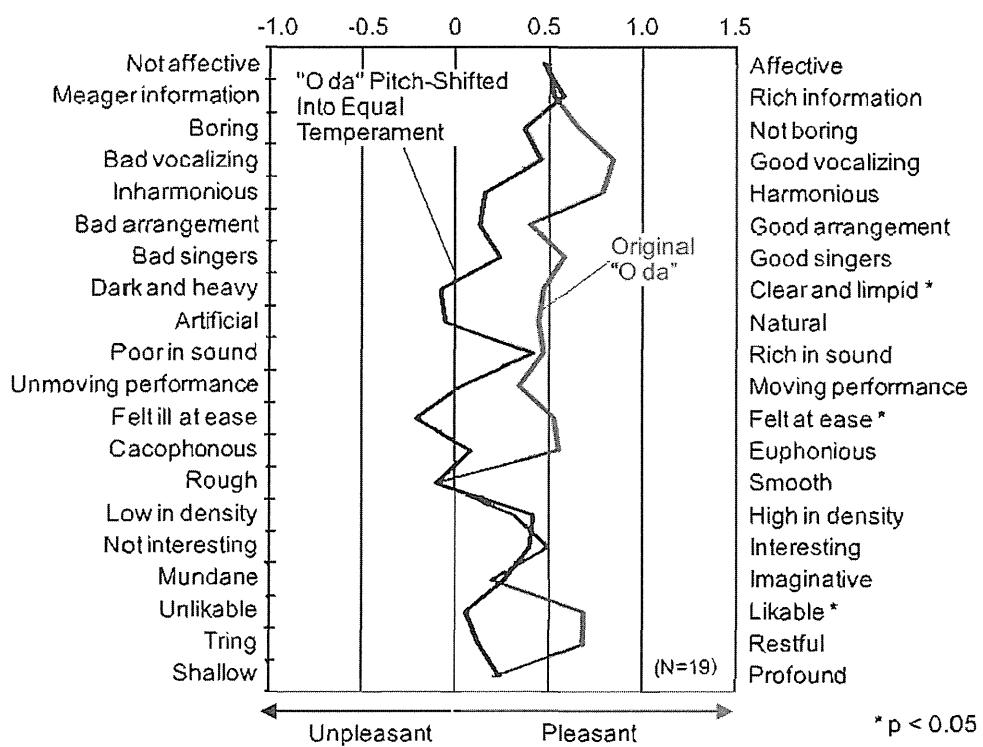


Fig. 4 Subjective impressions of Original "O da" and "O da" Pitch-Shifted Into Equal Temperament

4. Discussion

The present study shows that each tone of the temperament of traditional Georgian polyphony differs in various ways from that of equal temperament. Its temperament also differs from any existent temperaments including just intonation (i.e., pure temperament). Additionally, although the temperament of traditional Georgian polyphony somewhat corresponds to just intonation, it shows significant differences in pitch from just intonation at portions with a semitonic difference.

It is noteworthy that the pitch of each tone of traditional Georgian polyphony does not have a fixed relationship with equal temperament but varies considerably depending on the situation. This finding suggests the existence of a surprising mechanism: the structure of Georgian polyphony temperament, namely, its unique harmonic structure and temporal sequence of tones, exhibits the flexibility to appropriately adjusted within a certain range the pitch of each tone, depending on its mutual relationship with other voices simultaneously singing other parts. Psychological evaluation revealed that, with statistical significance, the temperament of Georgian polyphony having such characteristics is more “clear and limpid”, “feel at ease” and “likable” than equal temperament. This suggests that the specific temperament structure of traditional Georgian polyphony contributes to strongly inducing a positive emotional response in listeners.

5. Conclusion

The temperament of traditional Georgian polyphony is shown to significantly differ from any other existing temperaments including equal temperament. The specific temperament structure of traditional Georgian polyphony thus seems to play an important role in generating its attractive acoustic characteristics. In pursuing this study, we make note of the attractiveness of Georgian polyphony through a scientific approach.

6. References

- [1] The International Centre for Georgian Folk Song, CDs “*Teach Yourself Georgian Folk Songs - Megrelian Song*” (Collection of sheet of music and Four Compact Discs), Publishing House Sakartvelos Matsne, 2005.
- [2] Barbour, J. M., “Tuning and Temperament - A Historical Survey”, Michigan State University Press, 1972.

Study on Sound Structure of Traditional Georgian Polyphony (2): Quantitative Analysis of Its Fluctuation Structure

MORIMOTO Masako¹, HONDA Manabu¹,
NISHINA Emi², KAWAI Norie³ &
OOHASHI Tsutomu³

1. Introduction

The Western European concept of music that provides the foundation for conventional music and audio theory regards an articulated musical tone having a stationary sound signal structure as the basic musical component. By way of contrast, in applying the sound communication model in the communication science domain, we postulate a biological concept of music in which music is defined as follows: music is an artificial sound system activating a neuronal auditory system and reward-generating system endowed with an informational structure that, at the macro-temporal level, provides sustaining patterns encoded by genes and cultures while at the micro-temporal level, continuously changes and is thus non-stationary [1-3]. This definition of music as being essentially non-stationary in character and thus offering a continuously changing informational structure at the micro temporal level is therefore quite at odds with the Western European concept of music, which regards stationary “musical tones” as the constituent musical component.

We previously examined the hyper-symbolic sound structure of traditional Georgian polyphony and compared it with singing voices from other cultures by using the maximum entropy spectral analysis method (MESAM) to visualize and observe the spectral fluctuation at the micro-temporal level. We discovered that the sound structure of traditional Georgian polyphony contains rich temporal fluctuation of power spectra at the micro-temporal level. Our previous method of analysis, however, was simply based on a qualitative inspection of the spectral array without providing any quantitative information regarding the complexity or degree of spectral fluctuation. Therefore, in the present study, we have developed an index that makes it possible to quantitatively evaluate the complexity of the fluctuation of the sound spectrum.

¹ National Center of Neurology and Psychiatry, Tokyo, Japan. ² The Open University of Japan, Chiba, Japan. ³ Foundation for Advancement of International Science, Tsukuba, Japan.
Corresponding author: Prof. Tsutomu Oohashi, E-mail: oohashi@aqua.nifty.jp

2. Methods

We analyzed two traditional Georgian songs: *Chakrulo* (solo) and *Khasanbegura* (trio). These were recorded with a 4939 microphone (Brüel & Kjær, Nærum, Denmark) and Y. Yamasaki's high-speed sampling, one-bit coding signal processor. This recording system has a sampling frequency of 3.072MHz and a good response over 100kHz. For the comparison, we also analyzed an operatic solo recorded in DVD-audio [4].

Power spectral analysis at a micro-temporal level was carried out by MESAM, applying the mathematical formulae of the maximum entropy method and the power spectral estimation from the autoregressive model [2,3]. First, we digitally sampled the recorded singing voice data using DAQ Card-6062E and the device's software (National Instruments Co., Austin, TX, USA) with a sampling frequency of 250 kHz. The power spectrum of the sound data was calculated for every 20-msec epoch with an overlap of 10 msec by the maximum entropy method, which is known to be suitable for precise spectral estimation from a short period of data. The frequency resolution was 500 Hz. The estimated power spectra were displayed in a three-dimensional array. The spectral estimation and three-dimensional display were made by MATLAB (The MathWorks, Inc., Natick, MA, USA).

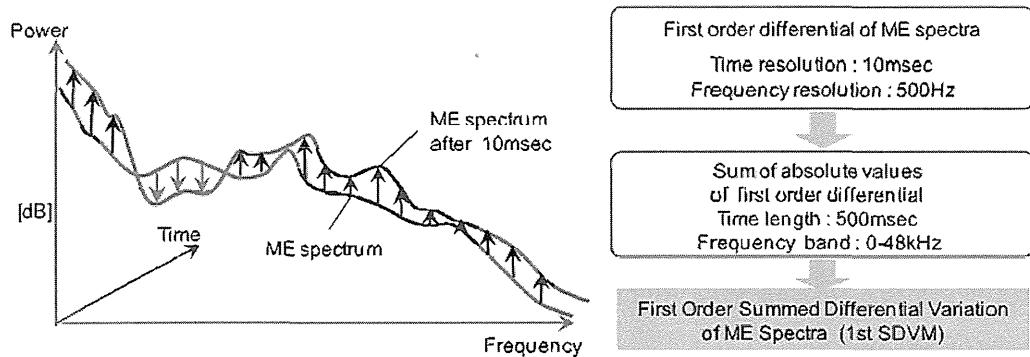


Fig. 1 The first Order Summed Differential Variation of ME Spectra (1st SDVM)

We then developed two indices by which we could quantitatively evaluate the complexity of the fluctuation of the sound spectrum. The first index, The First Order Summed Differential Variation of ME Spectra (1st SDVM) Index (Fig. 1), quantifies the degree of temporal fluctuation of the ME spectra. The ME spectra, drawn in 10 msec intervals with a frequency resolution of 500 Hz, were differentiated in a temporal direction. That is to say, the first order differential between a certain power spectrum and the next power spectrum at each frequency was calculated in dB. Absolute values of the calculated first differentials, namely, the