lobar degeneration,

Alzheimer’s disease (AD), the leading cause of
dementia in the eldetly, is an irreversible, pro-
gressive neurodegenerative disorder clinically
characterized by memory loss and cognitive
decline {11, leading invariably to death, usually
within 7-10 years after diagnosis. AD accounts
for 50-70% of dementia cases [2), followed by
frontotemporal lobar degeneration (FTLD),
which is responsible for 10-20% of ca:
At present, patients exhibiting signs of desmicatia
are diagnosed based on clinical and neuropsy-
chological examination; however, FI1D) isa
syndrome that can be clinically difficult o dis-
tinguish from AD, especially in he carly stages
of the disease. Still to:dav, defint
these neurodegeneretive condit
established after post-rioricin examination of the
human brain.

Genetic, pathological. biochemical and cel-
lular evidence implicating the amyloid pre-
cursor protein and its proteolytic product
B-amyloid (AP) as being central to AD etiol-
ogy still remains contentious [5). Human post-
mortem studies have shown that while soluble
AB oligomers and the density of neurofibrillary
tangles (NFTs) strongly correlate with neuro-
degeneration and cognitive deficits, the density
of AB insoluble plaques does not [6-11], and A
burden, as assessed by PET, does not strongly
correlate with cognitive impairment in AD
patients [1213]. Cortical NFTs are not observed
in cognitively unimpaired individuals, in con-
trast to Af plaques, which appear abundantly
in some nondemented people [12,14-16]; higher

28 (7]
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In vivo imaging of tau pathology will provide new insights info fau deposifion In
the human brain, thus facilitating research info causes, diagnosis and treatment
of major dementias, such as Alzheimer’s disease, or some variants of frontotempc
in which ftau plays a role. Tau imaging poses several
challenges, some related fo the singularities of fau aggregation, and others
related to radiofracer design. Several groups around the world are worki
the development of imaging agents that will allow the in vivo assessment of tau
deposition in aging and in neurodegeneration. Development of a tou
fracer will enable researchers to noninvasively examine the degres and axtent
of tau pathology in the brain, quantify changes in tau depositic
evaluate its relation to cognition and assess the efficacy of orfi-tau
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brain AP burdva is t+pically «cen in heredirtary
forms of cerebicl amyloid angiopathy, without
accompanying NI'T formation. The lack of a
strong assuciation between AP deposition and
measurvs of cognition, synaptic activity and
ncuiodegenicration in AD, in addition to the
evidence of AP deposition in a high percentage
of asymptomatic healthy controls, suggests that
AP is an early and necessary, although not suffi-
ziznt, cause for cognitive decline in AD 17). This
points to the involvement of other downstream
mechanisms, such as NFT formation, leading
to synaptic failure and evenrually neuronal loss.
The physiological function of tau is to bind to
tubulin to stabilize microrubules, which is criti-
cal for the axonal support of neurons. Based on
the number of tubulin-binding repeats within
the protein, six tau isoforms have been iden-
tified (18]. While the underlying mechanisms
leading to tau hyperphosphorylation, misfold-
ing and aggregation remain unclear, tau aggre-
gation and deposition follows a stereotyped
spatioternporal pathway both at the intraneu-
ronal level (19,20] as well as in its topographical
and neuroanatomical distribution in the brain
[21-25). Mutarions have been identified within
the tau gene (MAPT) leading to frontotemporal
dementia with Parkinsonism linked to chromo-
some-17 [26], providing solid evidence that tau
malfunction triggers neurodegeneration and
dementia. v
Neurodegenerative diseases characterized
by pathological tau accumulation are termed
‘tauopathies’. Along with AD and some variants
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of FTLD, other tanopathies include Down’s syn-
drome, Guam Parkinsonism—dementia complex,
dementia pugilistica, frontotemporal dementia
with Parkinsonism linked to chromosome-17,
corticobasal degeneration (CBD), progressive
supranuclear palsy (PSP) and chronic traumatic
encephalopathy ©24,27-30]. While these conditions
share tau immunoreactivity in post-mortem
analysis, they can be composed of different tau
isoforms and show distinct histopathological and
ultrastructural differences 28,31]. For example,
a diversity of tau deposits can be recognized
histologically in these diseases, either as NFTs,
neuropil or glial threads, Pick bodies, dystrophic
neurites in plaques, astrocytic plaques or coiled
bodies, among others [24.25).

The notion that tau deregulation could be a
key mediator of neurodegeneration [26,32-34) has
stimulated the development of therapeutics for
the treatment of AD and non-AD rtauopathies.
Inhibition of abnormal tau hyperphosphoryla-
tion, its aggregation or direct stabilization of
microtubules, appears to be a promising thera-
peutic strategy that may cure or retard the devel-
opment of these diseases [35-43). Given that these
treatments are currently being developed, a non-
invasive method of determining both the tau load
and its regional cerebral patterns would not only
assist in the early and differential diagnosis of
AD and non-AD rauopathies, but also facilitate
monitoring the cificacy of such new treatments.

Modern molecular imaging procedures may
overcomne the need for a neuropathological exam-
ination of brain tissues by noninvasively identify-
ing the underfying pathology of these diseases,
rather than relying solely on clinical symptoms
and snenropsychological assessments. In recent
vears, considerable effort has been focused on
imaging agents for the early diagnosis of neu-
rodegenerative diseases such as AD. So far, the
main focus has been placed on the development
of novel AP ligands that are permitting early
detection of AR deposition [12,44). Among these
tracers, *F-FDDNP was claimed to not only
bind to AP deposits but to also bind to NFTs
w4s). Furthermore, in vitro studies using tracer
concentrations similar to those achieved during
a PET scan (~1 nM) showed that SE-FDDNP
failed to bind to NFTs and that it binds weakly to
AP plaques [46]. Therefore, the development of a
selective and specific imaging agent for tau imag-
ing is critical for developing a more profound
understanding of the pathophysiology of AD,
FTLD and other neurodegenerative conditions,
but will also lead to improvements in differential
diagnostic accuracy and also accelerate treatment

discovery and monitoring of therapeutics.

Tau imaging poses several challenges, some
related to tau aggregation and deposition and
others related to radiotracer design (Box 1).
Challenges related to tau ds an imaging
target
Tau is a phosphoprotein and the degree of phos-
phorylation determines its binding abilities to
microtubules. tau hyperphosphorylation leads
to weaker microtubule binding and an increase
of unbound phospho-tau concentration in the
cytosol (+7). This accumulation leads to the for-
mation of filaments that form the pathologic tau
aggregates in the form of filamentous inclusions,
48] found i neurcns, astrocytes and oligoden-
droglia [49].

Intraceifuiar location

Tau aggregates are mainly intracellular although,
to a much lesser degree, they are also found extra-
cellularly when, as neurons die, the intracellular
tau deposits become extracellular (i.c., ‘ghost tan-
gles’ found in AD). The intracellular location of
tau aggregates means that a neuroimaging radi-
otracer not only has to be able to cross the blood~
brain barrier (BBB) bur also has to cross the cell
membrane, either by active transport or passive
diffusion, to reach its target. This posits an extra
set of constraints in tracer design in terms of
lipophilicity as well as molecular size. There are
several examples showing that the challenge of
imaging intracellular targets is achievable just as
illustrated by the imaging of vesicular transport-
ers either for acetylcholine [s0) or monoamines
[s1.52) or imaging the aromatase responsible for
converting androgens into estrogens {53.54].

Six isoforms leading to different
phenotypes

Notall tau aggregates are the same. In the human
brain, alternative mRINA splicing of a single gene
transcript generates six tau isoforms, and their
presence or absence lead to different phenotypes
(55.56]. These isoforms differ in whether they
contain exon 2, exon 3 and exon 10, manifested
in the presence or absence of the fourth micro-
tubule-binding domain (coded for in exon 10)
and the presence or absence of one (exon 2) or
two (exons 2 and 3) N-terminal inserts (Ficure 1)
(57). Based on the number of microtubule bind-
ing domains these tau isoforms have been clas-
sified into two functionally different groups:
those with three microtubule binding domains,
called three repeat tau (3R), and those with four
microtubule binding domains, called four repeat
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tau (4R) (55). Normally there is an equal ratio of
three repeat tau/four repeat tau, and it has been
proposed that changes to this ratio might lead
to neurodegeneration (9] Based on the isoform,
these abnormal intracellular rau inclusions adopt
different morphologies (31.60). For example, when
examined under the light microscope, tau inclu-
sions are found as NFTs in AD, (Ficure 1B) [31,61]
astrocytic plaques in CBD [62] or Pick’s bodies
in Pick’s disease (Taee 1) [63}. Ultrastructurally,
these aggregates are either paired helical (PHE),
straight (SF), or randomly coiled filaments (RCF)
(Tapie 1) [28,31,64) . Polymorphism is the rule, with
the same rau isoform adopting multiple confor-
mations, and different isoforms adopting similar
ultrastructural forms (Pevrs 1C) [63] . PHF is the
predominant form found in NFT5, and despite
certain controversy, /7 vilro experiments with
PHFs suggest a B-sheet-structured core similar
to the characteristic B-sheet strucrure adopted
by AP and ot-synuclein fibrillar aggregates (66.67).
The brain distribution of these tau aggregates
is different in the different phenotypes. While
this might be an advantage for the differential
diagnosis of taucpathies, it assumes that the same
tau ligand binds equally to the whole spectrum
of tau polymorphism; however, this is unlikely.

Multiple variants of post-transiational
modifications

To make matters worse, there are several past-
translational modificarions that might change the
conformation of the aggregates. The most com-
mon of these modifications is phosphervlarion
that leads to dissociation from the microtubules
followed by aggregation. But there are several other
post-translational medifications, such as acetyla-
tion, glycosylation, glycation, prolyl-isomerization,
nitration and ubiquitination (for review see (68)),
which might affect the conformarion of the aggre-
gates and thus the ability of specific tracers to bind
to tau. This has been extensively shown to be the
case with AP aggregates where conformational
changes have an effect on tracer binding. For
example, nonhuman primares produce and accu-
mulate AP with an identical amino acid sequence
to human AP but they neither present the full
phenotype of AD nor do they show Pictsburgh
Compound B (PiB) binding despite the presence
of plaques (65,70} Understanding the polymor-
phism of these tau aggregates might help develop
more specific imaging agents.

Tau aggregates in white matter
Not only are there typical rau aggregares in pre-
dominantly white marter regions as observed in
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the brainstem of PSP and CBD parients (62,71],
but substantial abnormal tau aggregate levels
have also been shewn in subcortical white mat-
ter in AD [72-74], TPick’s disease [75], or even in
some cases of sporadic FTLD (7). In contrast to
AP imaging, in which white matter binding has
been shown to be nonspecific 7], these reports
highlight the fact that some degree of specific
white matter binding by tau imaging com-
pounds should be expected. Additionally, given
the ~50% lower regional cerebral blood flow
in white matter compared with the neocortex
[78,79), it might not be an easy task ro discrimi-
nate between specific and nonspecific binding,

In AD, tau aggregates are coexistent with
AB deposits

Another issue to be considered is the coexist-
ence of other misfolded proteins sharing the
same B-sheet secondary structure, as in the case
of AD where tau and AP are both colocalized
in gray matter structures. This issue goes to the
core of binding selectivity, affecting tracer design
strategies. AP imaging agents, such as PiB, show
a distinct selectivity for fibrillar AP deposits (80]
over tau (81,82) and o-synuclein [83.84]. A similar
binding profile, with high selectivity for tau over
AP and a-synuclein is paramount for a success-
ful tau imaging agent.

in AD, there are lower concentrations of
tau than AB

In AD, the issue of selectivity is further compli-
cated by the disparity between the brain con-
centrations of rau and AP aggregates, where the
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Figure 1. TITLE. (A) Schematic representation of the six different tau isoforms found in the human
brain. Isoforms are characterized by the presence or absence of exon 10 resulting in either 3 (3R) or 4
(4Rj repeats of the microtubule binding domain. Different combinations of these isoforms manifest
as different phenotypes. For example PSP and CBD are characterized by presenting 4R tau, while
Pick's disease is a 3R tauopathy. In AD, both 3R and 4R are present. (B) Immunohistochemical
analysis depicting pathological tau deposits in the hippocampus of an Alzheimer’s disease patient:
microscopy images show numerous neurofibrillary tangles (#), dystrophic neurites (%), numerous
neuropil threads (€), and a ghost tangles (¥). Sections are immunostained with tau polyclonal
antibody (DAKO). (B) Scale bar = 50 pm. (C) Variable tau fibril morphology evidenced by electron

microscopy. Electron micrographs of recombinant tau constructs showing tau fibrillar polymorphism.
Recombinant tau construct K18AK280 (top) comprising the four repeats in the microtubullar domain
with deletion at K280 and recombinant tau construct KISY310W (bottom) comprising three repeats
in the microtubullar domain with the tyrosine 301 mutated into tryptophan. (C) Scale bars = 50 nm.

CBD: Corticobasal degeneration; PSP: Progressive supranuclear palsy.

{A) Adapted from 18,55].

concentrations of tau aggregates are ~5—20-times
lower than those of AB. As in any other PET tech-
nique, tau imaging is predicated on measuring
the concentration of bound tracer within a brain
region. Based on the results by Naslund and col-
leagues (85}, the AB,_,; and AB,_,, brain concen-
trations in AD range between 400~1900 pmol/g
wet tissue, while the reported concentrations for

PHF-tau in the same areas range between 50 and
200 pmol/g wet tissue (Fieuze 2) (73], Despite this
imbalance, there is a distinct regional partern of
AP and tau distribution in the neocortex. While
the highest concentrations of AP deposits are
found in the frontal cortex, the highest concen-
trations of PHF-tau are found in the temporopa-
rietal cortices (Ficure 3) [73,85).
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Tau isoform Light microscope Electron microscope

Type Pathology
| Alzheimer’s disease 3R and 4R Neurofibrillary tangles PHF and SF
) Down’s syndrome 3R and 4R Neurofibrillary tangles PHF and SF
I Corticobasal degeneration 4R Astrocytic plaques SFand TF
Progressive supranuclear palsy 4R Globose tangles; Tufted astrocytes SFand TF
n Pick’s disease 3R Pick’s bodies RCF and SF
1\ Myotonic dystrophy Short 3R Neurofibrillary tangles N/A

N/A: Not available; PHF: Paired helical filaments; RCF: Random coil filaments; SF: Straight filaments; TF: Twisted filaments.

Adepled from (64]. .

Another issue that might be raised is in regard
to the actual concentration of tau aggregates and
whether this concentration is sufficient to allow
imaging. As detailed above, the tau concentra-
tions in gray matter are at least an order of mag-
nitude higher than the concentration of many
receptors successfully assessed by PET (86.87].

Challenges reiated to radiotracer desigh
For a radiotracer to be useful as a neuroimag-
ing probe, a number of key general properties
are desirable: they should be nontoxic lipophilic
molecules of low molecular weight (<450) that
cross the BBB, with rapid clearance from blood
and preferably not metabolized, whilst revers-
ibly binding to its target in a specific and selec-
tive fashion [88-91). Overall, binding affinity and
lipophilicity are the most crucial properties for
in vivo radioligands. Furthermore, low nonspe-
cific binding is desirable (Box 1).

Easily labeled with isotopes with iong
decay half-lives

The 20-min radioactive decay half-life of car-
bon-11 (!C) limits the use of "C tracers to cent-
ers with an on-site cyclotron and "'C radiochem-
istry expertise, making the access to these tracers
restricted and with costs prohibitive for routine
clinical applications {521. To overcome these
limitations, tau tracers should ideally be labeled
with isotopes with longer half-lives, such as fluo-
rine-18 (**F; half-life of ~2 h) or copper-64 (**Cu;
half-life of ~13 h) for PET, or technetium-99m
(half-life of ~6 h) or iodine-123 (***I; half-life
of ~13 h) for single photon emission computed
tomography, which allows centralized produc-
tion and regional distribution, as currently
practiced worldwide in the supply of *FDG or
technetium-99m generators/radiopharmaceuti-
cals for clinical use [93-95).

High binding pofential
Usually, the overall binding of a tracer can be
predicted by the ratio of the total number of

available binding sites (B ) over the affinity
(K) for the target. At steady state, this ratic is
denominated the binding potential (BP) 9¢]. In
the case of AD where the target protein {tau) is
surrounded by another more abundant protein
(AP), which shares a similar secondary §-shect
structure, the BP for PHF-tau should be higher
than for AB. This can either be achieved by
a tracer that binds to more sites (higher B )
or, most likely, a tracer with higher affinity for

Control

Figure 2, Regional brain concentrations of Ap_,, AB, .. and paired helical
filament-tau in Alzheimer’s disease. B-amyloid concentrations are substantially
higher than PFH-tau. While AB concentrations are higher in the frontal cortex than
in temporal or parietal cortices, PHF-tau concentrations in temporal or parietal
cortices are higher than in frontal cortex.

PHF: Paired helical filament.

Data taken from (73.85].

f§8 future science group

www.futuremedicine.com 5



Stage | and Ii

Stage ll and IV

Stage V and Vi

Figure 3. Different stages of tau deposition in Alzheimer’s disease. Esfliest area of tau
deposition is usually found in the enthorinal cortex and hippocarpal forraation. Cognitive
impairment becomes apparent when tau deposition involves cortical polymodal associations areas

(Braak Stages IV-V1).
Adapted from [21,25).

PHF-tau (lower K). While selective tau tracers
with higher 7n vitro BP for PHF-tau than for A
have afready been described (97981, their higher
BP might not be enough to overcome the higher
A concentrations i vivo. Lipophilicity is one of
the major determinants of bindivng affinity and
tracer kinetics, where higher affnities are usu-
ally associated with slower kinetics and therefore,
longer scanning times. “While radioligands with
lower binding affinity normally display faster
i vive brain kinetics, at the same time they
exhibit insufficient specific binding. Therefore,
finding the optimal lipophilicity is a keystone in
the design of tau radioligands.

High seiectivity for tau over Ap

The sclectivity required for a particular neuroim-
aging radiotracer depends on the concentration
of available binding sites 89]. As mentioned
before, in AD there are higher cortical concentra-
tions of AP compared with PHF-tau. Therefore,
exquisite selectivity is required for a tau radio-
ligand. One way of testing this is, as already
described, is by designing ligands with a high
in vitro tau~BP/AP—BP ratio. Another way to
ascertain high selectivity is through # virro auto-
radiography (ARG) studies of AD brain sections,
where both AB and PHF-tau are present. The
advantage of ARG is that it can be performed at
very low concentrations of the tracer (~1 nM),
similar to those achieved during a PET scan, and
simultaneously in several brain regions or differ-
ent neurodegenerative conditions allowing the
screening of different compounds against a wide
spectrum of targets [99]. Whole hemisphere ARG
also allows the examination of several regions

of the brain with a different AB/PHF-tau ratio.
T vitro as well as ex vivo ARG studies also pro-
vide some information with regard to signal-to-
noise ratio of the specific signal by allowing the
examination of the nonspecific binding in the
surrounding tissues (100). While in vitro reports
have already shown that based on Ky alone, a
3-12-fold selectivity for PHF-tau is attainable
[97101,102), simulation studies estimate that a
20-50-fold selectivity for PHF-tau over AP will

be required to tmage PHF-tau iz vivo j103].

High BBB permeability

Most successful neuroimaging radiotracers show
an initial brain uptake above 5% of the injected
dose at 2 min after intravenous injection [20].
This brain uptake depends on several factors such
as cerebral regional blood flow, BBB permeability,
plasma radiotracer concentration and free frac-
tions of the radiotracer in plasma and in the brain
l90]. Lipophilicity is one of the most important
physicochemical properties for neuroimaging
radiotracers owing to its direct relationship to
membrane permeability, solubility in water and
entropic contribution to binding [104]. It is well
known that lipophilic drugs can readily cross the
BBB, although other drug parameters, includ-
ing the number of hydrogen bonds, molecular
weight, polar surface area and molecular ‘bulki-
ness’ are liable to passive transport. Lipophilicity
is a parameter commonly used in the design of
radioligands. It is usually expressed as the log
octanol/water coefficients (LogP__,), the par-
tition coefficient for nonionized compounds
between octanol and water. Ideally a ligand
sufficiently lipophilic to adequately cross the

Future Neurol. (2012) 7(4)
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BBB should exhibit LogP . values between 0.9
and 3.0 [105). Within this optimal range, more
lipophilic radioligands will display faster accu-
mulation of radioactivity in the brain than less
lipophilic ones. Conversely, compounds that are
too lipophilic will be bound by plasma proteins
and usually undergo fast metabolism, thus dis-

playing a lower CNS uptake.

Low nonspecific binding

High brain penetration alone is not enough.
What is relevant in imaging is the ratio of specific
to nonspecific binding (89]. Most importantly,
lipophilic radioligands display higher nonspe-
cific binding. Therefore, the less lipophilic of
two or more radiotracers with similar physico-
chemical profiles should exhibit a higher BP. The
lowest possible lipophilicity is desirable for mini-
mizing the nonspecific binding of a radioligand
189]. Low lipophilicity is especially important if
the values of the specific and nonspecific dis-
tribution volumes are comparable 106). Ligands
with a similar K) may display quire different
association (k_ ) and/or dissociation (k) rates
from the target. While a higher k . reflects faster
clearance, a higher association rate corresponds
to faster i vivo uptake. Commonly, high-affin-
ity neuroimaging ligands are characterized by
alow k . while lower affinity ligands exhibir a
higherk 107, In order to obtain a good signal-
to-background ratio a neuroimaging radiotracer
also needs fast clearance from nonspecific areas.
A good index of the clearance of the rracer from
nonspecific areas can be inferred from the brain
2 min over 30-min or 60-min ratio rario in wild-
type mice or nonhuman primate biodiscribu-
tion/imaging studies. Most successful neuroim-
aging radiotracers present with high 2-30-min
ratios (>8-10), reflecting  fast clearance from
regions that do not contain the target.

No or low metabolism

Ideally, 2 PET radiotracer should readily enter
the brain and selectively bind to its target in
the absence of radiolabeled metabolites [90].
Neuroimaging radiotracers are usually imme-
diately exposed to a wide spectrum of metabo-
lizing enzymes in the blood and other tssues
as soon as they are injected. Most radiotracers
exhibit significant degradation just minutes
after injection, and the blood concentration
of the unmetabolized fraction of the original
radiotracer declines very rapidly. Given that
PET has no means to distinguish between the
chemical sources of detected radioactiviry, the
fate of the radioactive isotope is paramount,

The challenges of fau imaging Review :

especially if radiolabeled metabolires cross the
BBB and either remain unbound or bind o a
different target [(90]. In most cases these radi-
olabeled metabolites are less lipophilic than the
original radiotracer and therefore less likely to
enter the brain. Defluorination, leading to bone
accumulation of ¥F, is another issue observed in
"¥F-labeled radiotracers. A way to reduce poten-
tial metabolism and defluorination can some-
times be addressed at the radiotracer design stage
(for review see (90]).
- Strategies for developing tau imaging
fracers
Most of the research efforts are focused on imag-
ing tracers for PHF-tau that is the ultrastructural
form that tau aggregates adopt in AD. Tt is not
clear at this stage if or how well these rracers bind
to the other conformarions of rau aggregates
present in non-AD tauopaihies, The polymor-
phism of tau aggregates might be an important
aspect to be consider=d in iracer design. It is
important t¢ keep in s:ind thae different confor-
mations of tau deposits in the brain, as is the case
with A (69), may affcct the binding characteris-
tics of the tracers because they may not recognize
all types of rau pathologies with the same degree
of sensitiviry. The relevance of the conformation
of the aggregates is clear in AP imaging stud-
ics where in some cases of familial autosomal
dominant forms of AD [108,109) or early stages
of AP deposition (110}, when the aggregates lack
the typical fibsillar AP conformation seen in
sporadic, late-onset AD, there is little PiB bind-
ing. Furthermore, nonhuman primates produce
and have AP deposits that are identical in amino
acid sequence to human A, but none of them
exhibit the full AD phenotype, and most impor-
tantly, they do not bind PiB even in the presence
of plaques {70}, and transgenic mice producing
human AP exhibit considerably less AB bind-
ing sites in the mouse brain than in the human
AD brain (s4). This illustrates the importance
of polymorphism in regards to ligand binding.

After the success of AR imaging with PiB [111],
there is a renewed international effort to develop
selective tau ligands. Most research groups pro-
posing PHF-tau imaging tracers are groups work-
ing on therapeutic tau anti-aggregation or defi-
brillization strategies (101.112,113,201], while some
others are focused on screening novel or avail-
able chemical libraries in order to idenrify high-
affinity selective PHF-tau compounds amenable
to radiolabeling (202-204).

One group based in Hamburg, Germany
is exploring differential binding selectivity
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for tau and AP, fibrils based on the struc-
ture activity relationship of N'-benzylidene-
benzohydrazides. Assessment of target selec-
tivity is based on the anti-aggregating acrivity
and fluorescent staining profile achieved with
amphiphilic compounds. Based on these
results, a strategy for target selectivity was
proposed, where selectivity towards PHEF-
rau is achieved by incorporating into these
amphiphilic ligands bulky hydrophilic groups
not tolerated by AP fibrils. Thus, some com-
pounds (e.g., BSc4000) exhibited selective
PHF-tau staining, while others (e.g., BSc3994)
presented with selective AP plaque staining
t112]. Efforts to customize and radiolabel these
derivatives to make them viable for PHF-tau
imaging with PET are ongoing.

Focused on PHF-tau therapeutics (42.114), a
group based in Aberdeen, Scotland, also assessed
benzothiazole, imidazothiazole and pyrimida-
zole derivatives in displacement studies with
primuline and in fluorescent studies in human
and tau transgenic mouse brains {zt3). Onc of
these compounds, SKT04-137, was radiola-
beled with "F for biodistribution studies in
mice, where it showed sufficient brain uptake
but slow clearance from the brzin (2 min over
60-min ratio) [201).

Percentage ID/g (%)
o o © o =
n £ (9] (s Q

I
=]

One group from Ohio (USA), is proposing to
achieve PHF-tau selectivity through structure
activity relationship and tracer docking simula-
tion studies with 2-aryl benzothiazole derivatives
showing distinct binding profiles by altering the
side chain composition of the compounds, as a
way of addressing differences in protein composi-
tion and structural polymorphism [101,115).

A team of researchers from Santiago, Chile,
proposed the use of the benzimidazole deriva-
tives astemizole and lansoprazole as potential
PHF-tau imaging agents based on their ability
to bind AP #n v#70 and recombinant tau fibrils,
as well as PHF-tzu isolated from AD brains.
While astemizole K, was similar for PHF-tau
and AP, the respeciive B were different yielding
higher BP for PHF-tau than for AP (3.0 vs 0.06,
respectively). While no 2-min data is available
in the reported pharmacokinetic studies, both
compounds seem to show very slow uptake and
clearance profiles 98).

Using 7n vitro autoradiography, a group from
Siemens (California, USA), has identified several
novel benzimidazole pyrimidines that bind to
human PHF-tau. Two of the best candidates, ¥ F-
T777 and *F-T808, with a K, of 19 and 22 nM,
respectively, show >25-fold selectivity for PHF-
tau over Af [203).

n.s. n.s.

Y
p < 0.0001 p < 0.0001
- Y Y

APP/PS1

WT rTg4510 WT
(rTg4510) (APP/PST)

Figure 4. Preclinical evaluation of 18F-THK523 a novel tau imaging radiotracer. (A) Representative 18F-THK523 fusion microPET/
CTimages of tau and AB transgenic mice at 30-min postinjection. rTg4510 mice (top, left) exhibited higher 18F-THK523 brain retention
compared to their wild-type (WT) littermate (bottom, left). Low 18F-THK523 retention was observed in APP/PST (top, right) versus their
wild-type littermates (bottom, right). (B) Bar graphs showing 18F-THK523 microPET retention in the brain of rTg4510, APP/PST and their
respective wild-type mice at 30 min postinjection. Brain 18F-THK523 retention was significantly higher in rTg4510 mice compared to
APP/PS1 mice and their respective wildtype littermates.
Adapted from Fodero-Tavoletti et al. 97).
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Since 2002, the Tohoku University group in
Japan has been designing and screening ben-
zoxazole, benzimidazole, quinoline and other
derivatives targeting f-sheet structures in brain
sections (102,116,202,204]. Recently published results
on one of these derivatives, *F-THK523 is prob-
ably the most advanced PHF-tau imaging agent
reported in the literature to date, with a 20-fold
higher BP for PHF-tau compared with A _,,
{97]. Further evidence of *F-THK523 PHF-tau
selectivity was demonstrated by autoradiogra-
phy and in fluorescence studies where even at
concentrations 10,000-fold higher than those
typically achieved under PET studies, THK523
failed to highlight AB plaques, colocalizing with
tau pathology in human AD hippocampal sec-
tions. MicroPET studies showed significant
higher rerention in rTg4510 tau transgenic mice
brains compared with AB (APP/PS1) transgenic
mice or their corresponding wild-type litrermates
(F1GURE 4) [97].

Conclusion

There are several challenges on the horizon for
tau imaging. In AD, a tau radiotracer needs to
be highly selective to overcome higher A con-
centrations, Different conformations, either due
to specific tau isoforms or different post-trans-
lational modifications, might mean that a radi-
otracer that is able to identify PHF-tau might not
be able to bind other known tau ultrastruciura!l
conformations.

There are also challenges in the design of
a tau imaging radiotracer. The candidate tau
radiotracer should be amenable for high spe-
cific activity labeling with '*F or other long-lived
radioisotopes to allow a wider and more cost-
effective application of the technique. It should
be a lipophilic, nontoxic small molecule with a
high specificity and selectivity for tau, with no
radiolabeled metabolites that enter the brain. The
current research indicates that the design of tau
radioligands with subnanomolar affinity for tau
with an appropriate lipophilicity might be feasi-
ble. While a high affinity for tau is desirable to
provide an adequate signal-to-noise ratio, it might
also delay reaching binding equilibrium requiring
extending the scanning time. While lipophilicity
is necessary for the tracer to cross the BBB, if the
radiotracer is too lipophilic, its nonspecific bind-
ing might be too high [s9.90].

Future perspective
Iin vive imaging of tau pathology by PET will
allow new insights into tau deposition in the
human brain, facilitating research into causes,

The chalienges of tau imaging Review

diagnosis and treatment of major dementias,
such as AD or some variants of FTLD, in which
tau plays a role. The development of a specific
tau imaging technique will allow the assessment
of the regional tau burden in the brain of AD
patients, thus providing a link between brain
AP pathology and neurodegeneration [97117,118].
It will aid in the gathering of crucial informa-
tion on the ncurobiology of AD and non-AD
tauopathies, by allowing the time course of tau
accumulation to be correlated with current and
future cognitive function. In conjunction with
amyloid imaging, it may improve the specificity
of diagnosis and allow for early detection of AT
pathology in atrisk individuals.

Therapies, especially those targering irrevers-
ible neurodegenerative processes have a berter
chance of succeeding if applied eashy. Thatiswhy
carly detection of the underlying pathological
process is so important. Therapeutic trizls aimed
at modulating PHF-tau have beens conducted or
are currently underway 114,110,120}, Tau imaging
will allow noninvasive clinical evaluarion and
selection of those individuals most likely to bene-
fit from disease-medifving therapy. Furthermore,
in order to properly correlate whether the efficacy
of these treatments is truly associated with modi-
fving PHF-12u deposition, it will be necessary to
guantify tau burden in living patients.

The growing body of research focused on
the development of radiotracers for tau imag-
ing is allowing researchers to distinguish spe-
cific radiotracer characteristics that are relevant
for selective and specific binding to tau aggre-
gates. There is still plenty of room for improve-
ment. Development of new ligands and new
leads are crucial for further progress in this
promising field.
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Challenges related to tau as an imaging target

« Intracellular tau aggregates are constituted by different isoforms and undergo multiple post-translational modifications leading to
heterogenous ultrastructural conformations. Not only are they found in gray matter areas, but they are also present, albeit to a lesser
degree, in white matter. In Alzheimer’s disease (AD), tau aggregates are present in much lower concentrations than those of
coexistent Ap.

Challenges related to radiotracer design

Successful neuroimaging radiotracers need to be nontoxic lipophilic molecules of low molecular weight that cross the blood-brain
barrier, are rapidly cleared from blood and are preferably not metabolized. On top of the described general characteristics for a
neuroimaging radiotracer, tau imaging radiotracers must be extremely selective to be able to bind exclusively to tau aggregates and, as
is the case in AD, demonstrate no binding to coexistent AB.

Strategies for developing tau imaging tracers
: The heterogenous ultrastructural conformations of tau aggregates pose a challenge for radiotracer desigr.

There are several groups

working on developing selective tau radiotracers. Because paired helical filaments—tau is the predominant ulirastructural conformation
found in AD, and AD is the most prevalent of tauopathies, most of the effort is focused on developing PHF-tau imaging tracers.

Conclusion

- There are several challenges for tau imaging. In AD, a tau radiotracer needs to be highly selective ic cvercome higher AR
concentrations. Different conformations of the tau aggregates suggest that a radiotracer that is able to identify PHF-tau might not be
able to bind other known tau ultrastructural conformations.

. Future perspective

 In vivo imaging of tau pathology by PET will allow new insights into tau depos

ion ir the human brain, facilitating research into causes,

diagnosis and treatment of major neurodegenerative conditions in whict tau plzvs a rolz. It will aid in the gathering of crucial
information regarding tau deposition in tauopathies, allowing longitudinal assessment of tau accumulation and its relation to cognition. .

Tau imaging will also allow better sel
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Cardiac Positron-Emission Tomography Images With an
Amyloid-Specific Tracer in Familial Transthyretin-Related
Systemic Amyloidosis

Katsutoshi Furukawa, MD, PhD: Shu-ichi Ikeda, MD, PhD; Nobuyuki Okamura, MD, PhD;
Manabu Tashiro, MD, PhD; Naoki Tomita, MD, PhD; Shozo Furumoto, PhD; Ren Iwata, PhD;
Kazuhiko Yanai, MD, PhD; Yukitsuka Kudo, PhD; Hiroyuki Arai, MD, PhD

‘x 7 e report the case of a 32-year-old man who had

suffered from orthostatic syncope and body weight
loss since he was 27 years old. As years passed by, he also
showed muscle weakness and abnormal sensations in both
legs, hyporeflexia in 4 limbs, and autonomic failure (impo-
tence, urinary and fecal incontinence, and edema in lower
limbs) suggesting the presence of peripheral somatic and
autonomic polyneuropathy. His mother, mother’s father. and
mother’s paternal aunt also had similar symptoms. Both the
sensory nerve action potential and the sensory nerve conduc-
tion velocity of his right sural nerve were low (1.26 wV and

Patient

Normal control

47.2 m/s, respectively), and the motor nerve conduction
velocity of his right tibial nerve was 41.1 m/s (normal >45
m/s). A DNA test on the man disclosed a missense mutation
in the transthyretin gene (Ser50Arg), which is relatively rare
in familial transthyretin-related systemic amyloidosis.'-
Transthyretin-immunoreactive amyloid deposition was dem-
onstrated in the biopsied gastroduodenal mucosa (Figure 1).
Echocardiography showed a markedly thickened ventricular
wall (thickness of interventricular septum 22.3 mm [normal
<12 mm]) with normal wall motion (fractional shortening
37.6% [normal 28 -42%)), indicating that he also had cardiac

Figure 1. Detection of amyloid deposition in the
intestines. Congo red (A and B) and BF-227 (C
and D) clearly detect transthyretin in the submuco-
sal space of the small intestine of the patient.
Scale bars, 100 um.

From the Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging and Cancer. Tohoku University
(K.F.,N.T.. H.A.); Department of Medicine (Neurology & Rheumatology). Shinshu University School of Medicine (S.1.); Department of Pharmacology,
Tohoku University Graduate School of Medicine (N.O., S.F., K.Y.); Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku
University (M.T.); Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University (R.l.); Department of
Neurolmaging Research, Innovation New Biomedical Engineering Center, Tohoku University (Y.K.), Sendai. Japan.

Correspondence to Katsutoshi Furukawa, MD, PhD. Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku
University, 4-1 Seiryo-machi Aobaku, Sendai 980-8575 Japan. E-mail kfurukawa-ns @umin.ac.jp

(Circulation. 2012;125:556-557.)
© 2012 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.111.045237

Downloaded from hitp://circ.ahajournals.orgg $6 TOHOKU UNIVERSITY on May 17, 2013



Furukawa et al

amyloidosis (Figure 2A). Contrast magnetic resonance imag-
ing® revealed focal late gadolinium enhancement in the
thickened ventricular wall (Figure 2B). The patient had been
treated with orthotopic live-donor liver transplantation when
he was 31 years old to alleviate and prevent exacerbation of
his neuronal and cardiac symptoms. His condition, including
the neurological disability. gradually improved, and he
started to work again 10 months after liver transplantation.
In order to visualize amyloid deposition in the myocardium,
the patient underwent a cardiac positron-emission tomography
study with ["'CJ-BF-227 that sensitively and specifically binds
to aggregated amyloid fibrils.? The positron-emission tomogra-
phy images revealed significantly robust retention of
[''C)-BF-227 in the patient’s heart compared with that of the
normal control (Figure 3). Biopsy specimens from the patient’s
duodenum also showed higher signals of BF-227 compared
with that of the normal control (Figure I, C and D). The
present result provides evidence that our amyloid-specific
positron-emission tomography tracer, ["'C]-BF-227, can suc-
cessfully detect amyloid deposition in the heart. Several
molecules, such as *°™Tc-aprotinin and **™Tc-labeled phos-
phate derivatives, have been investigated to visualize cardiac
amyloidosis.” None of the previous fracers, however, could
specifically bind to aggregated amyloid, which forms a
B-pleated sheet structure. In any of the amyloidgenic disor-
ders, such as transthyretin-related systemic amyloidosis and
Alzheimer's disease, it is surmised that the monomer of the
amyloid protein itself is not very toxic, whereas misfolded
oligomers could cause damage to human organs.'-* It is
therefore truly important to detect the accumulation of real
amyloid fibrils for the early and accurate diagnosis of
amyloidosis. To our knowledge, this is the first report

Patient

Normal control

[''C]-BF-227 Visualizes Cardiac Amyloidosis 557

Figure 2. A, Echocardiographic finding.
Four chamber views show symmetrical
thickening of ventricular walls and sep-
tum with hyperrefractile myocardial echo
(the so-called granular sparkling appear-
ance). B, Contrast magnetic resonance
imaging with gadolinium. Focal late gad-
olinium enhancement is visible (arrows).

showing the usefulness of a B-pleated sheet structure-specific
positron-emission tomography in investing visceral organ
amyloidosis.
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Operational Research Criteria for Defining Preclinical AD

1. biomarker evidence of amyloid -5 accumulation (stage 1=asymptomatic cerebral

amyloidosis)

a. elevated tracer retention on PET amyloid imaging and/or low Af:» on CSF assay

2. biomarker evidence of synaptic dysfunction and/or early neurodegeneration (stage 2=
evidence of amyloid positivity +presence of one or more additional AD markers)

a. elevated CSF tau or phospho—-tau

b. hypometabolism in an AD —like pattern(i.e. posterior cingulate, precuneus, and/or
temporo —parietal cortices) on FDG-PET

c. cortical thinning/grey matter loss in AD ~like anatomic distribution (i.e. lateral and
medial parietal, posterior cingulate and lateral temporal cortices) and/or hippocam-

pal atrophy on volumetric MRI

3. evidence of subtle cognitive decline, but does not meet criteria for MCI or dementia
(stage 3=amyloid positivity++markers of neurodegeneration-+very early cognitive

symptoms)

a. demonstrated cognitive decline over time on standard cognitive tests, but not meet-

ing criteria for MCI

b. subtle impairment on challenging cognitive tests, particularly accounting for level of
innate ability or cognitive reserve but not meeting criteria for MCI
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