tracer binding in the parietal areas was modest. The pattern of tracer distribution correlated with
the known distribution of tau pathology (Fig. 6A), but not with the known distribution of Af nor
the binding of [''C]PiB (data not shown). In addition, quantitative analyses of these images
demonstrated significant correlation of '*F-THK-5105 binding with tau immunostained areas,
but not with the areas of AP immunostaining (Fig. 6B, Fig. S3). In contrast, [''C]PiB bindings

showed good correlation with AB deposition, but not with tau deposition (Fig. S3).

Pharmacokinetics in Mice

All tested compounds exhibited sufficient amounts of tracer uptake in the mouse brain
immediately after intravenous administration. Compared with '*F-THK-523, new THK
compopnds showed significantly higher brain uptake at 2 min p.i. (Table 2). "SF-THK-5105
showed the highest brain uptake. In addition, clearance of these derivatives from normal brain
tissue was faster than that of '*F-THK-523 and '*F-FDDNP (Table 2). The brain uptake ratio at
2 min versus 60 min was highest for '*F-THK-5117, followed by '*F-THK-5105, "*F-THK-5116,
F_FDDNP, and '*F-THK-523. After injection of '°*F-THK-5105 and '*F-THK-5117, the
regional tracer uptake in the liver was highest at 10 min p.i., and the tracer was then slowly

washed out from the body (Fig. 7). Compared with '*F-THK-5105, '®F-THK-5117 tended to
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have faster clearance from the brain, blood, liver, and kidney. No remarkable accumulation of

*F_THK-5105 and '*F-THK-5117 was observed in the bone.

Animal Toxicity Studies

A single intravenous administration of THK-5105 and THK-5117 at 1 mg/kg, equivalent to
100,000-fold the intended clinical dose for humans, caused no systemic toxicity in rats or mice.
There were no unscheduled deaths or morbidity detected in this study. During the experimental
period, the body weight of all animals increased normally, and no treatment-related changes
were noted in any animals. There were no major clinical, biochemical, or histopathological

findings associated with the administration of THK-5105 and THK-5117.

Receptor Binding Assays

Binding inhibition of THK-5105 and THK-5117 was assessed in competitive radioligand
binding assays against 60 common neurotransmitter receptors, ion channels and transporters. As
a result, no remarkable inhibition (<50%) was observed for various receptors, ion channels and

transporters at 1 uM concentrations of THK-5105 and THK-5117.

DISCUSSION

17



These findings suggest that "*F-THK-5105 and '*F-THK-5117 are promising candidates as tau
imaging PET probes. Although previous saturation analysis showed the high binding affinity of
'SF—TI-IK—523 for tau fibrils (Kd = 1.67 nM), current competition assay demonstrated relatively
lower binding affinity of THK-523 for tau fibrils (Ki = 59.3 nM) than THK-5105 (Ki= 7.8 nM)
and THK-5117 (Ki= 10.5 nM). ""F-THK-5105 showed higher affinity for tau pathology than
for AP pathology in AD brain sections. Most amyloid imaging agents potentially bind to both
tau and AP fibrils, because both protein fibrils share a common B-sheet secondary structure. To
ensure the binding specificity of these compounds as tau-selective PET probes, the binding
affinity to AR fibrils should be below the in vivo detection threshold. /r vifro binding assays
indicated that the binding affinity of '*F-THK-5105 for A fibrils (K4 = 35.9 nM) was 25 times
lower than to tau fibrils (K¢= 1.45 nM). This Ky would allow selective detection of tau
pathology, because the usual required K4 values for imaging Af are below 20 nM(34). However,
the required K4 value for imaging tau deposits is still unknown. Considering that the
concentrations of tau are about an order of magnitude lower than those of A, the K, value for
tau should be well below 20 nM, in the low nanomolar range, to allow sensitive detection of tau
pathology. In that respect, the binding affinities of both '*F-THK-5105 and '*F-THK-5117 to tau
fibrils may be sufficient for in vivo detection of tau pathology in the brain. However, ir vitro

binding assay data should be carefully interpreted, because the structural conformation of
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synthetic tau fibrils does not fully correlate with the structure of NFTs and neuropil threads in
the human brain. Actually, "“F-THK-523 showed substantially lower affinity for AD brain
homogenates (Kd = 86.5 nM) than for synthetic tau protein fibrils (Kd = 1.67 nM)(/5). In the
future, in vitro binding data should be compared with in vivo PET data to determine the required
K4 value for in vivo tau detection.

In vitro assays using human brain samples are considered more reliable for evaluating the
binding selectivity of radiotracers to tau and AP pathology at tracer doses. Autoradiography
studies using human brain sections demonstrated the preferential binding of "*F-THK-5105 and
"®E.THK-5117 to tau protein deposits in AD brain. We observed a high density of
"F-THK-5105 and '®F-THK-5117 binding in the CA1 region of AD hippocampus, which
contained substantial amounts of NFTs and neuropil threads. In addition, these tracers clearly
visualized the laminar distribution of tau in pri-a layer of the transentorhinal and temporal
cortices, that is typically observed in AD brain(5). The distribution pattern of THX tracer
binding in AD brains was different from that of the AP imaging probe PiB and BF-227, which
showed diffuse punctate distribution in broad neocortical gray matter and less tracer distribution
in the mesial temporal region. These findings strongly suggest that binding properties of
"®E-THK-5105 and '®F-THK-5117 are very different from those of currently available A PET

- probes. Compared to "*F-THK-523(17), both "*F-THK-5105 and "*F-THK-5117 showed higher
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contrast of tau pathology in autoradiographic images. These findings most likely reflect the
increased binding affinity to tau by methylation of the amino group, as indicated by in virro
binding assays. Similar findings were previously reported in arylbenzothiazole derivatives (37).
Compared to 'F-THK-5105, "*F-THK-5117 showed lesser tracer binding in the gray matter
containing high density of AB plaques, suggesting low binding affinity to Ap and high
selectivity to tau. ""F-THK-5105 tends to show higher signals in the gray matter, and some of
the images of '*F-THK-5105 binding showed the patchy pattern as observed for PiB binding.
One possible reason for this is the binding of "®F-THK-5105 to tau protein in dystrophic neurites.
Another possible reason is binding of "E_THK-5105 to AP fibrils. However, the latter
explanation seems unlikely given that E-THK-5105 binding, as clearly shown in Figure 6, was
correlated with tau, and not A deposits.

In vitro binding assays using AD brain homogenates are generally used to measure the binding
affinity of AR imaging radiotracers to SPs and/or NFTs and the number of binding sites in real
AD pathology(35). For most of the useful A imaging radiotracers, the reported Ksor K; values
for neocortical brain samples are below 10 nM(35, 36). In this study, the K, values for high
affinity sites of AD mesial temporal homogenates were 2.63 nM for '*F-THK-5105 and 5.19
nM for "*F-THK-5117. These binding affinities were higher than that for '*F-THK-523 and

appear to be sufficient for in vivo detection of AD pathology in the mesial temporal region at
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tracer doses. Furthermore, the Bpa/Kq ratios of E_THK-5105 and '*F-THK-5117 for AD brain
homogenates were 136.1 and 65.1 respectively, which fulfills the criteria (Bya/Kq ratio > 10)
for a good neuroimaging agent(37).

Optimization of pharmacokinetics is an important aspect in the development of a PET tracer(38).
"F.THK-5105, "*F-THK-5116 and '*F-THK-5117 fulfilled the criteria of appropriate Log P
value (LogP = 1-3) for brain entry(39). In mice, these tracers showed sufficient brain uptake
and rapid washout from normal brain tissue. 18FfI'HK‘»SlOS and "*F-THK-5117 exhibited high
initial brain uptake in normal mice (>6%ID/g at 2 min). These values, which are equivalent to
over 100% injected dose index in a 25 g mouse, meet the prerequisites for useful PET imaging
agents(34). The 2 to 60 min ratio of radioactivity concentrations for "®F-THK-5117 was 23.1,
indicating faster washout from normal brain for these compounds than for other currently
available '*F-labeled tracers such as FDDNP (2.91), florbetaben (4.83)(40), and florbetapir
(3.90)(36). Compared to '*F-THK-523, "*F-THK-5116 washed out faster from normal brain
tissue of mice, indicating that the hydroxylation of the fluoroalkoxy group improves
pharmacokinetics in mice. However '*F-THK-5116 is not a suitable compound for clinical

application, due to its lower initial brain uptake and binding affinity than the other two THK

compounds.
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CONCLUSION

"®F_THK-5105 and '*F-THK-5117 should be considered as promising candidates for PET tau

imaging radiotracers. Future clinical studies will clarify the usefulness of these radiotracers for

the early detection of AD tau pathology.
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FIGURE LEGENDS:

Figure 1: Chemical structures of '*F-THK-5105, '*F-THK-5116, '*F-THK-5117, and

®F.THK-523

Figure 2: Radiosynthesis scheme of '*F-2-arylquinolines

Figure 3: Competitive inhibition of '*F-THK-5105 binding by 2-arylquinolines and FDDNP to

tau protein fibrils. The Ki value for inhibition of '*F-THK-5105 binding to tau are shown.

Figure 4: Neuropathological staining of brain sections from Alzheimer’s disease (AD) patients.
Neurofibrillary tangles and neuropil threads were clearly stained with THK-5105 (A, C). These
stainings were consistent with tau immunostaining (B) and Gallyas-Braak staining (D) in the

same sections. Bar = 50 pm

Figure 5: (A) Autoradiographic images of '*F-THK-5105 (left), *F-THK-5117 (center) and
["'C]PiB (right) binding in mesial temporal section from the AD patient. (B) Gallyas-Braak
silver staining (left) and the immunostaining with anti-tau (center) and anti-AB (right)

antibodies in adjacent brain sections.
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Figure 6: Autoradiography of hemibrain sections from the AD patient with '*F-THK-5105 (A)
and tau immunostaining (B) in the neighboring section. The region of interest analysis (D)
indicated that % areas of '*F-THK-5105 binding (line plots) were significantly correlated

with % areas of tau immunostaining (gray bars), but not with that of Af immunostaining (white
bars).

HIP: hippocampus, PHG: parahippocampal gyrus, FUG: fusiform gyrus, ITG: inferior temporal
gyrus, MTG: middle temporal gyrus, STG: superior temporal gyrus, INS: insula, POG:
postcentral gyrus, PRG: precentral gyrus, SFG: superior frontal gyrus, PCL: paracentral lobule,

CG: cingulate gyrus

Figure 7: Time activity curves after intravenous administration of '*F-THK-5105 (A) and

"F-THK-5117 (B) in mice

Supplementary data

Figure S1: Saturation binding curves and Scatchard plots of "*F-THK-5105 and '*F-THK-5117

for mesial temporal brain homogenates of AD patient
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Figure $2: Autoradiographic images of '*F-THK-5105 (A) and '*F-THK-5117 (B) in mesial

temporal brain sections of healthy control subject (62-year-old man)

Figure S3: (A) Correlational analysis of % areas of "*F-THK-5105 binding with % areas of tau
(left) and AP (right) immunostaining. (B) Correlational analysis of % areas of [''C]PiB binding

with % areas of tau (left) and AP (right) immunostaining.
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Table 1: Kp and By, values of *F-THK-5105 for synthetic tau and AP, 4, fibrils

KD] Bmaxl KDZ Bmaxz
Tau 1.45 6.89 7.40 20.05
AB12 359 61.6

Kp are in nM and Bmax are in pmol '*F-THK-5105/nmol fibrils.
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Table 2: Log P and brain uptakes after intravenous administration of '*F-labeled compounds

in mice

Brain uptakes (%ID/g) Brain uptake

LogP ratio
2minpi. 30minp.i 60 minp.i
(2 min / 60 min)

WE.THK-523 240 272 1.47 1.46 1.86
BE.-THK-5105 3.03 920 3.61 1.00 9.20
"E.THK-5116 157 336 0.75 0.57 5.89
BE.THK-5117 232 6.06 0.59 0.26 23.1
"E-FDDNP 371 623 2.02 2.14 291
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