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Vitamins

Vitamins are supplied by both the diet and commensal bacteria.
Several lines of evidence have shown that vitamins are involved in
regulating immune responses through the epithelium. For exam-
ple, retinoic acid, a metabolite of vitamin A, is involved in the
preferential induction of regulatory T cells and the inhibition of
Th17 cells [SO]. Both ECs and DCs in the intestine are the major
cell types that express retinaldehyde dehydrogenase, a key enzyme
for the conversion of vitamin A into retinoic acid, suggesting that
the unique gut environment mediated by ECs, DCs, and vitamin A
preferentially induces Treg cells for maintaining quiescent immu-
nity in the intestine. Because it was reported that Treg cells
enhanced the differentiation of IgA' B cells in the intestine
[51,52] and retinoic acid induced the eXpresSion of gut-homing
molecules (e.g. CCR9 and a4B7 integrin) on IgA-committed B cells
as well as T cells [53,54], it is likely that retinoic acid directly and
indirectly enhances intestinal IgA responses.

Vitamin B9 is another important vitamin in the maintenance of
Treg cells. Vitamin B9 receptor (folate receptor 4) is exclusively
expressed on Treg cells and can therefore be used as a cell surface
marker of Treg cells [55]. We recently showed that vitamin B9 isan
essential survival factor for Treg cells [56]. Indeed, Treg cells
differentiate from naive T cells but fail to survive in vitamin B9-
reduced conditions. Because vitamin B9 is supplied from both the
diet and commensal bacteria, and dietary vitamin B9 is predomi-
nantly absorbed by ECs in the jejunum and duodenum, depletion
of dietary vitamin B9 results in the reduction of Treg cells in the
small intestine.

Lipids

Dietary lipids also involved in the regulation of intestinal immune
responses. The ratio of omega-3 polyunsaturated fatty acids (-3
PUFA) to w-6 PUFA in the diet may determine the presence and/or
levels of inflammatory conditions. Dietary linoleic acid is the parent
fatty acid of w-6 PUFA which is metabolized into proinflammatory

lipid mediators, whereas w-3 PUFA, which is derived from dietary
linolenic acid, is metabolized into anti-inflammatory mediators
[57]. A possible molecular mechanism is that w-3 PUFA exert
anti-inflammatory effects through binding to GPR120, which is
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mostly expressed by macrophages, thereby inhibiting the produc-
tion of inflammatory cytokines [58].

Another lipid metabolite with important immunological func-
tion is sphingosine 1-phosphate (S1P), which regulates cell traf-
ficking, activation, and survival. Intestinal tissues contain higher
levels of sphingolipids, including S1P, than other tissues and diet
could be a major source of sphingolipids in the intestine, especially
sphingomyelin from meat, milk, eggs, and fish [59]. Because ECs
express alkaline sphingomyelinase and ceramidase to degrade
dietary sphingomyelin into ceramide and sphingosine, respec-
tively, and also express several key enzymes in the production
of S1P from ceramide and sphingosine (e.g. sphingosine kinase), it
is possible that ECs produce ceramide, sphingosine, and S1P for the
regulation of intestinal immune responses.

Concluding remarks

ECs in the intestine have both physical and immunological barrier
functions, which are achieved by immunological communication
with both immunocompetent cells and gut environmental factors
(e.g. commensal bacteria, dietary materials, and their metabolites).
Elucidation of the complex networks established by commensal
bacteria, dietary molecules, and the host immune system will
provide new insights in gut environment-based mucosal immu-
nology and should lead to new strategies to prevent and treat
infectious and immune diseases in the intestine.
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Microbe-dependent CD11b ™ IgAJr plama cells
mediate robust early-phase intestinal IgA
responses in mice
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Intestinal plasma cells predominantly produce immunoglobulin (Ig) A, however, their func-
tional diversity remains poorly characterized. Here we show that murine intestinal IgA plasma
cells can be newly classified into two populations on the basis of CD11b expression, which
cannot be discriminated by currently known criteria such as general plasma cell markers, B cell
origin and T cell dependence. CDT1b™ IgA™ plasma cells require the lymphoid structure of
Peyer's patches, produce more lgA than CD1Ib~ IgA* plasma cells, proliferate vigorously,
and require microbial stimulation and IL-10 for their development and maintenance. These
features allow CD11b™* IgA™ plasma cells to mediate early-phase antigen-specific intestinal
IgA responses induced by oral immunization with protein antigen. These findings reveal the
functional diversity of IgA ™ plasma cells in the murine intestine.
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the intestinal lumen, where it protects the host against

pathogenic infections™2. It also has an important role in the
creation and maintenance of immunological homoeostasis bé’
shaping homeostatic communities of commensal bacteria®"
Indeed, some patients with IgA deficiency show marked
susceptibility to infections with pathogens such as Giardia
lamblia, Campylobacter, Clostridium, Salmonella and rotavirus;
they also have increased incidences of intestinal immune diseases
such as coeliac disease and inflammatory bowel diseases®.

Peyer’s patches (PPs) are the major sites for the initiation of
antigen-specific intestinal IgA production, mainly in a T cell-
dependent manner’. Intestinal IgA also originates from B1 cells.
B1 cells differ from B2 cells in terms of origin, surface markers
(for examples, B220, IgM, IgD, CD5, CD11b and CD23), growth
properties and Vy repertoire3 10, Bl cells are predominantly
present in the peritoneal cavity (PerC) and traffic into the
intestinal compartment for the production of IgA against T cell-
independent antigens such as DNA and phosphatidylcholine!!.
T cell independent antigen-specific IgA responses are also
initiated in the isolated lymphoid follicles (ILFs), which are
small clusters of B2 cells in the intestine!.

Upon Ig class switching from p to o, IgA ™+ B cells acquire the
expression of type 1 sphingosine-1-phosphate receptor, CCR9
and a4P7 integrin, allowing them to migrate out from the PPs or
PerC and traffic to the intestinal lamina propria (iLP)11:13:14,
In the iLP, they further differentiate into IgA-secreting plasma
cells (PCs) under the influence of terminal differentiation factors
(for example, IL-6)°, As these locally produced IgA antibodies
are continuously transported and secreted by epithelial cells as
a form of secretory IgA into the intestinal lumen, stably high
levels of IgA production are required for the maintenance of
sufficient amounts of IgA; this production is determined by the
generation, survival and function of IgA PCs.

Several lines of evidence have demonstrated that the function
and survival of PCs in the systemic compartments (for example,
spleen and bone marrow (BM)) are not only determined by
intrinsic factors but are regulated by the presence of environ-
mental niches!®, As with systemic PCs, differentiation of IgA
PCs in the iLP is regulated by exogenous factors such as
IgA-enhancing cytokines (for example, interleukin (IL)-5, IL-6,

! mmunoglobulin (Ig) A is an antibody found predominantly in
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IL-10, IL-15, a proliferation-inducing ligand (APRIL) and B cell
activating factor (BAFF))715, In addition, microbial stimulation is
required for the full effects of intestinal IgA. Indeed, germ-free
(GF) mice have decreased intestinal IgA responses with immature
structures of PPs and ILFs!7!8. Previous studies in mono-
associated GF mice have indicated that only a small proportion of
the total amount of intestinal IgA is reactive to monoassociated
bacteria; microbe-dependent IgA production is therefore
mediated by polyclonal stimulation through innate immune
receptors such as toll-like receptors, rather than through B cell
receptors specific for microbial antigens'®?’. Accumulating
evidence has revealed the molecular and cellular pathways of
IgA production mediated by innate immunity, including the
involvement of myeloid differentiation primary response gene 88
(MyD88) in the regulation of tumour necrosis factor/inducible
nitric oxide synthase-producing DCs in the iLP?! and follicular
DCs in the PPs?2, However, the effects of microbial stimulation
on the regulation of differentiated IgA* PCs remain to be
investigated. Here, we identified unique microbe-dependent
subsets of IgA T PCs, which add a new level of complexity to
the intestinal IgA system of mice.

Results

Microbe dependency of intestinal IgA ™ cells. To examine the
immunological elements of intestinal IgA production associated
with commensal bacteria, we initially compared the IgA ™ cells
of specific pathogen-free (SPF) and GF mice. Flow cytometric
analysis showed that CD11b™" IgA™ cells accounted for about
30% of IgA ™ cells, and we found a lack of CD11b™ IgA ™ cells
in the iLP of GF mice (Fig. la). Similarly, the numbers of
intestinal CD11b+ IgA™ cells were reduced in both antibiotic-
treated SPF mice and MyD88 KO mice (Fig. 1b-d). Immuno-
histological analysis indicated that CD11b™ IgA™ cells were
dispersed throughout the iLP of wild-type (WT) mice (Fig. 1d),
although their frequency appeared lower than expected from the
flow cytometric data, probably because of difference in metho-
dological sensitivity. These findings collectively suggest that
CD11b™" IgA™ cells are unique subset that requires MyD88-
dependent microbial stimulation for its development and
maintenance.
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Figure 1| Intestinal CD11b* IgA ™ cells require microbial stimulation. (a-c) Mononuclear cells were isolated from the small intestines of SPF or GF mice
(a), mock- or antibiotic-treated SPF mice (b), or MyD88 WT or knockout (KO) mice (¢) for analysis of IgA and CD11b expression by flow cytometry. Graphs
show data from individual mice, and bars indicate median. Statistical analyses were performed with Mann-Whitney's U-test. (d) Specimens of small
intestinal tissues of WT and MyD88 KO mice were stained for IgA and CD11b, and counterstained with 4',6-diamidino-2-phenylindole. Data are

representative of three independent experiments. Scale bars, 50 pm.
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Intestinal CD11b™ IgA™ cells are PCs. We next aimed to
characterize the CD11b™ and CD11b ™ IgA ™ cells in the iLP. In
addition to a §ating strategy to exclude the possibility that the
CD11b™* IgA™ cells detected by flow cytometry were doublets
(Supplementary Fig. S1), we further performed a cytospin analysis
and confirmed that both CD11b™" and CD11b~ IgA ™ cells had
homogeneous morphology that was the same as that of PCs (for
example, large irregular nuclei with prominent nucleoli), whereas
CD11bM IgA~ cells were composed of different kinds of cells,
including eosinophils and macrophages (Fig. 2a). We also con-
firmed that both CD11b™ and CD11b~ IgA™ cells did not
express markers for macrophages (F4/80), DCs (CDllc) or
eosinophils (CCR3) (Fig. 2b). Thus, CD11b™ IgA™ cells are
neither doublets nor myeloid cells decorated by bound IgA on
their surfaces.

CD11b™" and CD11b~ IgA ™ cells were identical in cell size
and density, as determined by forward scatter (FSC) and side
scatter (SSC), respectively, and by their surface expression pat-
terns (CD19™t, B220", CD138 T, CD38M and CD40™) (Fig. 2¢).
Although PCs in the systemic compartments (for example, the
spleen) generally express little or no surface immunogloblin®®, we
previously confirmed that CD38%" CD138% cells in the iLP
express IgA both on the cell surface and in the intracellular
compartment (Supplementary Fig. $2)'3. These findings indicated
that both CD11b™ and CD11b~ IgA ™ cells could be classically

categorized as PCs. This view was further supported by our
finding that both populations expressed equal levels of Blimpl, a
master transcription factor for PCs (Fig. 2¢)%3.

The phenotypes of IgA ¥ cells in the iLP differed from those of
IgA ™ cells in the spleen. Splenic CD11b~ IgA™ cells exclusively
had a memory phenotype (that is, B220 ", CD138", CD38™ and
CD40M), whereas splenic CD11b* IgA ™ cells contained almost
equal amounts of B220+ CD138~ CD38™ CD40M memory
cells and B220~ CD138+ CD38" CD40°" PCs (Supplementary
Fig. $3). These results indicated that CD11b™ IgA™ cells in the
iLP were unique PCs that had an immunologically different status
from splenic CD11b™ IgA ™ cells.

Intestinal CD11b™ IgA ™ PCs require PP lymphoid structure.
CD11b™* IgA™ PCs expressed CD18 (Supplementary Fig. S4),
which associates with CD11b and acts as a ligand for intercellular
adhesion molecule-1 (ICAM-1)24. As ICAM-1 is an endothelial
adhesion molecule that regulates cell trafficking?*?%, we
considered that CD11b™ IgA™ PCs were recent emigrants
from IgA-inductive tissues (for example, PPs and PerC) and had
migrated into the iLP. To test this possibility, we employed
FTY720 to inhibit the trafficking of IgA-committed B cells from
PPs and PerC into the iLP. As we previously reported!l!3,
FTY720 treatment reduced the numbers of intestinal IgA ™+ PCs,
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Figure 2 | Both CDTIb™ and CD11b~ IgA ™ cells in the intestine are categorized as plasma cells. (a) Cells were purified by cell sorting from the iLP,
and their morphology was examined by haematoxylin and eosin staining after cytospin. Data are representative of three independent experiments.

(b) Cells were isolated from the iLP for the analysis of F4,/80, CD1lc and CCR3 expression on CD11b~ IgA™, CD1lb™ IgA™ and CD1b* IgA ™~ cells.
Grey indicates isotype control. Similar results were obtained from three separate experiments. (¢) Cells were isolated from the iLP for comparisons
between CD11bt and CD11b~ IgA ™ cells in terms of cell size (FSC) and density (SSC), and expression of CD19, B220, CD138, CD38, CD40 and Blimpl.
Grey indicates isotype control. Similar results were obtained from five separate experiments.
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but the effect was not specific to CD11b™* IgA* PCs (Fig. 3a).
These data suggested that CD11b™ IgA+ PCs were not recent
emigrants from IgA inductive tissues (for example, PPs and
PerC).

The second possibility was that CD11b™* IgA ™ PCs originated
from B1 cells, because CD11b is a marker of peritoneal B1 cells?®.
To test this possibility, peritoneal CD11b™ B1 cells were purified
and adoptively transferred into severe combined immuno-
deficiency mice. As we reported previously'!, adoptively
transferred CD11b™ Bl cells migrated into the intestine, where
they differentiated into IgA™ PCs. Although we transferred
B cells expressing CD11b, they lost their CD11b expression in the
iLP (Supplementary Fig. S5). Although only a few cells were
detected in the iLP under these experimental conditions, CD11b
expression was likely to be reversible on B cells and was thus
not to be a marker of PCs originating from peritoneal CD11b™
B1 cells.

As a third possibility for discriminating between CD11b* and
CD11b~ IgA ™t PCs, we examined the T cell dependency of their
differentiation and IgA production. For this, we employed TCRBS
mice. Although TCRP 8 mice had decreased levels of intestinal
IgA™ cells, the ratio between CD11b™ and CD11b™ IgA™ PCs
did not differ between the WT mice and the TCRP & mice
(Fig. 3b).

We also examined the production of IgA against T cell
dependent and T cell independent antigens by CD11b™ and
CD11b~ IgA ™t PCs. For the analysis of T cell dependent antigen,
mice were orally immunized with ovalbumin (OVA) plus cholera
toxin (CT). Following three oral immunizations, substantial
amounts of OVA-specific IgA antibody-forming cells (AFCs)
were detected in the iLP by enzyme-linked immunosorbent spot
(ELISPOT) assay; this Eroduction was reduced by almost 50%
when either the CD11b™ IgA ™ or the CD11b ™~ IgA ™ cells were
removed before the ELISPOT assay (Fig. 3c). Similar results were

obtained when we enumerated IgA AFCs against
phosphorylcholine, a typical TI antigen, induced by commensal
bacteria (Fig. 3c)%’. These results collectively suggested that both
CD11b* IgA* and CD11b~ IgA ™ cells almost equally included
IgA AFCs producing IgA antibodies specific for T cell dependent
and T cell independent antigens.

Next, to examine the involvement of PPs, we established PP-
null mice by in utero treatment with anti-IL-7Ra. antibody?® and
found that PP-null mice had reduced numbers of CD11b™ IgA ™+
PCs in the iLP (Fig. 3d). In addition, CD11b was not expressed on
IgAJr B cells in the PPs (Fig. 3e). We treated mice with anti-IL-
7Ro. antibody only once in utero and confirmed that it did not
affect the ILFs?8, Although it is still possible that CD11b+ IgA+
PCs specifically require IL-7, the most plausible conclusion based
on our current findings is that CD11b™ IgA ™t B cells require the
lymphoid structure of PPs, and CD11b~ IgA™ B cells acquire
CD11b expression in the iLP.

As in antibiotic-treated and MyD88 KO mice (Fig. 1), the
numbers of CD11b~ IgA™ PCs changed little in PP-null mice
(Fig. 3d), suggesting that it is unlikely that CD11b™ IgA ™+ PCs
differentiate back into CD11b~ IgA ™ cells in the iLP. This view
is further supported by the results of in vitro analysis. When
purified CD11b* and CD11b~ IgA™T PCs were separately
cultured with different kinds of stimulants (for example, phorbol
12-myristate 13-acetate plus ionomycin, or lipopolysaccharide)
little change was noted in CD11b expression (Supplementary
Fig. S6). Although the origin of these cells remains to be firmly
established, it is plausible that CD1lb™ IgA™+ PCs act as a
separate lineage once they differentiate in the iLP.

High proliferation activity of CD11b™ IgA+ PCs. We next
performed a gene microarray analysis to assess the uniqueness
of CD11b* IgA™* PCs in the iLP. Gene ontology enrich-
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Figure 3 | CD11b™ IgA™ cells require the lymphoid structure of Peyer's patches. (a) Mice were treated with FTY720 every day for 5 days. The day
after the final treatment, the proportions of CD11b+ and CD11b~ IgA ™ cells were measured by flow cytometry. Data are presented as means * s.d. from
four mice. Similar results were obtained from three separate experiments. (b) Proportions of CD1lb+and CD11b~ IgA ¥ cells in the iLP of WT and TCRBS
KO mice were measured by flow cytometry. Data are presented as means * s.d. from four mice. Similar results were obtained from three separate
experiments. (c) After three oral immunizations with OVA plus cholera toxin, cells were isolated from the iLP and used in an ELISPOT assay to enumerate
OVA-specific IgA AFCs. In some groups of mice, CD11b+ or CD11b~ IgA+ cells were depleted by cell sorting before application of ELISPOT assay.
Phosphorylcholine-specific IgA AFCs were measured. Graphs show data from individual mice, and bars indicate median. Statistical analyses were
performed with Mann-Whitney's U-test. (d) Mononuclear cells were isolated from the iLP of Peyer's patch (PP)-normal (control Ab) and -null (anti-IL-7Ra
Ab) mice for analysis of IgA and CD11b expression by flow cytometry. Graphs show data from individual mice. Statistical analyses were performed
with Mann-Whitney's U-test. (e) Mononuclear cells were isolated from PPs for analysis of CD11b* and CD11b~ IgA* cells by flow cytometry. Similar
results were obtained from three separate experiments.
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ment score computation analysis showed that the activity of
cell-cycle-associated pathways was higher in CD11b™* IgA ™+ PCs
than in CD11b~ IgA™* PCs (Supplementary Table S1). Con-
sistent with this finding, higher expression of cell-cycle-associated
genes was noted in CD11bT IgA ™ PCs than in CD11b~ IgA™*
PCs; these genes included members of the cell division cycle
family (Fig. 4a and Supplementary Table S2). In line with this,
these cells expressed higher levels of the proliferation marker
Ki67 than did CD11b~ IgA* PCs (Fig. 4a and Supplementary
Table S2). Additionally, CD11b* IgA™ PCs showed greater
uptake of bromodeoxyuridine (BrdU) than did CD11b~ IgA™
PCs (Fig. 4b). CD11b* IgA™ PCs were preferentially removed
by treatment with cyclophosphamide (CPM), which selectively
targets proliferating cells (Fig. 4c). These data collectively sug-
gested that CD11b™ IgA™ PCs possessed greater proliferating
activity than did CD11b~ IgA™ PCs in the iLP. ,
Microarray analysis further identified CD150 (also known as
signalling lymphocytic activation molecule family member 1,
SLAMF1)?, B1 integrin and CD168 (also known as hyaluronan-
mediated motility receptor)>® as possible candidates uniquely
expressed on CD11b™ IgA™ PCs (Supplementary Table S3).
Flow cytometric analysis confirmed that CD11b™* IgA™ PCs
expressed higher levels of CD150 than did CD11b™ IgA™ PCs,
whereas CD11b* IgA™ and CD11b~ IgA™t PCs identically
expressed B1 integrin and no CD168 (Supplementary Fig. S7).

IL-10 is essential for intestinal CD11b™ IgA ™ cells. We next
aimed to identify key molecules for inducing and maintaining
CD11b™ IgA ™ PCs in the iLP. As CD11b™ IgA™+ PC numbers
were reduced in MyD88 mice (Fig. 1c), and MyD88 is expressed
in not only hematopoietic cells, including B cells, but also non-
hematopoietic cells, including epithelial cells!, we performed BM
chimeric experiments to determine whether MyD88 in non-
hematopoietic cells, hematopoietic cells, or both, was required for
the generation of CD11b T IgA ™ cells. Similar levels of CD11b™
IgA ™ cells were observed in irradiated WT mice receiving WT or
MyD88 BM cells and in irradiated MyD88 mice receiving WT
BM cells (Supplementary Fig. S8), suggesting that MyD88-
dependent molecules commonly expressed in both non-

hematopoietic and hematopoietic cells are involved in the
microbe-dependent induction of CD11b™ IgA™ PCs.

We then examined the involvement of cytokines known to
enhance IgA responses. Among several IgA-enhancing cytokines
(for example, IL-5, IL-6, IL-10 and APRIL/BAFF)”!°, we found
that neutralization of IL-10 resulted in preferential reduction in
CD11b™ IgA™ PCs, whereas blocking of other cytokines
induced a reduction in IgA ™ cell numbers regardless of CD11b
expression (Fig. 5a). Additionally, CD11b™ IgA™ cell numbers
were preferentially reduced in IL-10 KO mice (Fig. 5b). As
normal differentiation into IgA ™ B cells was observed in the PPs
and PerC of IL-10 KO mice (Supplementary Fig. S9), it is
plausible that IL-10 targets the maintenance of CD11b™ IgA™
cells in the iLP, but not the induction of IgA ™ cells in inductive
tissues such as PPs and PerC.

Early-phase robust IgA responses by proliferating IgA ™ PCs.
To examine the immunological importance of proliferating IgA
PCs present mainly in CD11b™ IgA™* PCs, mice were orally
immunized with OVA plus CT. In this assay, one group received
CPM treatment during immunization and the second group
received CPM treatment 4 days after the final immunization
(Fig. 6a). Because of the high cell-proliferation activity, CPM
treatment during oral immunization resulted in efficient killing of
peanut agglutinin (PNAM) B220" GC B cells and thus a reduc-
tion in the numbers of IgA™ IgM~ plasmablasts in the PPs
(Supplementary Fig. S10). Thus, treatment with CPM during oral
immunization led to an ~90% reduction in the numbers of
OVA-specific IgA AFCs (Fig. 6b); this was associated with almost
complete disappearance of faecal IgA produced against OVA
(Fig. 6¢). On the other hand, when mice were treated with
CPM 4 days after the final immunization to remove proliferating
cells mainly present in CD11b™* IgA™ cells in the iLP, the
reduction in numbers of OVA-specific IgA AFCs in the iLP was
only about 50% (Fig. 6b). This finding was consistent with our
current finding that CD11b™ IgA™* PCs accounted for half
the number of OVA-specific IgA AFCs (Fig. 3c). Thus, CPM
treatment after the last immunization preferentially depleted
CD11b* IgA™T cells, with little influence on CDI11b~
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Figure 4 | CD1T1b™ IgA™* cells are proliferating cells. (a) mRNA was purified from small intestinal CD11b+ and CD11b~ IgA ¥ celis and used for
microarray analysis. Data related to the cell cycle and proliferation are shown. Data are representative of two independent experiments. (b) Mice were
treated with BrdU, and uptake of BrdU by CD11b* and CD1lb~ IgA* cells was determined by flow cytometry. Data are representative of four independent
experiments. (¢) Cells were isolated from the intestinal lamina propria of mice receiving CPM to analyse CD1b* IgA™* cells. Similar results were
obtained from four separate experiments. Graphs show data from individual mice. Statistical analyses were performed with Mann-Whitney's U-test.
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Figure 6 | Proliferating IgA* cells mediate early-phase IgA responses to oral antigen. (a) Experimental schedule for oral immunization and CPM
treatment. Mice were orally immunized with OVA plus CT on days 0, 7 and 14. One group received CPM during oral immunization (days O, 7 and 14) and
another received CPM after the last immunization (days 18, 19 and 20). (b,c) One week after the final immunization (day 21), mononuclear cells were
isolated from the iLP to quantify OVA-specific igA-forming cells by ELISPOT (b). Simultaneously, faeces (¢, d) were collected and were used for the
detection of the (¢) OVA-or (d) B subunit of CT (CTB)-specific IgA by enzyme-linked immunosorbent assay. Data are from individual mice and bars
indicate median (b) and represent means £ s.d. (n=10) from two separate experiments (¢, d). *P<0.001, **P<0.01, ***P<0.05 (two tailed unpaired
t-test). (e) Mononuclear cells were isolated from the iLP of mock- or CPM-treated mice 1 week after the final immunization to quantify CTB-specific
IgA-forming cells by ELISPOT. In some groups of mock-treated mice, CD1Ib* or CD11b~ IgA ™ cells were depleted by cell sorting before application of
ELISPOT assay. Graphs show data from individual mice, and bars indicate median. (f) On day 21, mice were orally challenged with 100 ug CT. After 15 h, the
volume of intestinal fluid was measured. Graphs show data from individual mice, and bars indicate median. Similar results were obtained from two separate

experiments. (g) Spot sizes of CTB-specific IgA AFCs were measured by Zeiss KS ELISPOT software. Graphs show data from individual mice, and bars
indicate median. Statistical analyses were performed with Mann-Whitney's U-test (e-g).

IgA™ cells. Of note, these mice showed ~90% reduction in CTB-specific IgA AFCs in the intestine (Fig. 6d.e). Like OVA-
OVA-specific IgA content in the faeces compared with mice not  specific IgA responses (Figs. 3¢ and 6b), similar levels of reduc-
treated with CPM (Fig. 6c). We also confirmed that CPM treat- tion of CTB-specific IgA AFCs were noted when CD11bT IgA ™
ment 4 days after final immunization induced a reduction in the cells were depleted before ELISPOT assay (Fig. 6e). These mice
production of IgA specific to the B subunit of CT (that is, CTB), showed reduced resistance to oral challenge with CT and
which was associated with the halving of the abundance of developed watery diarrhoea (Fig. 6f and Supplementary Fig. S11).
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These findings led us to hypothesize that CD11b+ IgA* PCs
are capable of producing more IgA than are CD11b~ IgA* PCs.
To test this hypothesis, we measured the size of each spot in CTB-
specific IgA AFCs in an ELISPOT assay. The cells in the CD11b ™
IgA™ cell-enriched fraction (depletion of CD11b™ IgA™ cells)
were bigger than those in the CD11b~ IgA™ cell-enriched
fraction (depletion of CD11b™ IgA™ cells) (Fig. 6g). Further-
more, an adoptive transfer experiment demonstrated higher
intestinal IgA production in severe combined immunodeficiency
mice receiving CD11b™ IgA™ PCs than in those receiving
CD11b~ IgA™t PCs (Supplementary Fig. S12), presumably
because of both high IgA production and proliferating activity of
CD11b* IgA™ PCs. Although some possibilities (for example,
proliferation and CD11b expression of IgA™ cells might be
changed during immunization) cannot be excluded, it is plausible
that the actual production of IgA secreted into the intestinal
lumen was derived mainly from CD11b™ IgA™ PCs in the early
phase of the IgA response against orally immunized antigen.

Discussion

PCs could secrete antibodies to provide antigen-specific humoral
immune responses in both systemic and mucosal tissues.
Here, we demonstrated that intestinal IgA ™ PCs in mice could
be categorized into two populations on the basis of CD11b
expression. CD11b is an integrin oM that non-covalently
associates with CD18 to form aMf2 integrin (Mac-1) and binds
to ICAM-1 (ref. 24). We therefore expected that CD11b* IgA™
PCs were newly migrating cells whose migration was mediated by
endothelial cells expressing ICAM-1, but in fact they were not.
We also found no uptake of opsonized bacteria in either CD11b+
or CD11b™ IgA™ cells (Supplementary Table $4 and Supple-
mentary Fig. S13a), although CD11b is a receptor for complement
(iC3b)?*%. In addition, unlike in human CD11b™ B cells, which
stimulate T cells strongly>?, major histocompatibility complex
(MHC) class II (I-Ad) and costimulatory molecules (for example,
CD80) were identically expressed on both CD11b™ and CD11b~
IgA™ cells (Supplementary Table S4 and Supplementary
Fig. S13b).

A similar subset of CD11b™ IgA™ cells was observed in the
systemic murine compartments (for example, spleen), but the
immunological characteristics of these cells differed from those of
the cells in the intestine. Indeed, intestinal CD11b™ IgA ™ cells
consisted exclusively of PCs, but not memory B cells, whereas

splenic CD11b™ IgA™ cells included both PCs and memory -

B cells. We further found that CD11b could not be used as a
marker of B1 cells in the intestine. OQur current findings show for
the first time that CD11b could be a specific marker for
discriminating IgA* PCs that require microbial stimulation
and IL-10, and presumably contribute to the early phase of the
intestinal IgA response in mice.

We have identified unique CD11b™" IgAT PCs in mice; the
next question is whether or not the same population of IgA+ PCs
exists in humans. Our preliminary experiments have shown that
no human intestinal IgA ¥ cells express CD11b, but that some
IgA™ cells express Ki67, a marker of proliferating cells
(unpublished data). One possible explanation for this difference
between human and mice is difference in the composition of
commensal bacteria. In this regard, we examined the involvement
of segmented filamentous bacteria (SFB), which are a known
major IgA stimulus in mice, but has not yet been confirmed
as part of the human microbiotal®. As expected, SFB stimulated
IgA production following colonization of SFB-deficient C57BL/6
mice from the Jackson laboratory (JAX mice) with bacterial
suspensions from SFB-monoassociated mice (JAX + SFB mice)?3;
however, we found that CD11b is expressed on IgA™ cells

independently of SEB colonization (Supplementary Fig. S14). It is
possible that other commensal bacteria such as Lactobacillus
(abundant in mice) and Bifidobacterium (abundant in human)
are responsible for the species-specific expression of CD11b on
IgA™T cells. It is important to recognize the differences between
the mouse and human immune systems, but it is obvious
that proliferating IgA ™ cells are present in the iLP of both
mouse and human. The immunological function of human
proliferating IgA ™ cells in the intestine will therefore be the
subject of our next study.

In the initial step of the antibody response to T cell dependent
antigens, B cells are activated by antigens and form GCs in the
lymph nodes’. As depleting antigen-specific GC B cells by CPM
treatment during oral immunization resulted in complete loss of
the IgA response to orally immunized antigen, it is likely that both
CD11b* and CD11b~ IgA™ PCs against T cell dependent
antigen are derived from GC B cells. We also found that depletion
of proliferating CD11b™+ IgA ™ PCs by CPM treatment after final
immunization led to a decrease in the early-phase IgA response,
although it is possible that proliferation activity and/or CD11b
expression on IgA ™ cells might be wobble during immunization.
Our in vivo findings indicated that the reduction in CD11b™*
IgA™ PC numbers in MyD88 KO, IL-10 KO and PP-null mice
did not affect the numbers of CD11b~ IgA ™ PCs (Figs 1c, 3d and
5b). These findings, together with our in vitro data (Supplementary
Fig. S6), indicate that it is likely that CD11b™¥ IgA™ PCs act as a
separate lineage once they differentiate in the iLP.

Proliferating CD11b* IgA ™ PCs required microbial stimula-
tion in the intestine. As proliferation is one of the characteristics
of plasmablasts, it was possible that CD11b™ IgA™ cells have
been recently committed to the PC fate. Notably, intestinal IgA
cells expressed MHC class II molecules; this expression is one of
the unique characteristics of plasmablasts. Therefore, it is likely
that intestinal IgA ™ PCs partly retain their plasmablast features.
However, our findings indicated that CD11b™ and CD11b~
IgA™ cells expressed identical levels of Blimp-1 and MHC
class 11, In addition, similar reduction was noted in CD11b™" and
CD11b~ IgA™ cells when cell trafficking from IgA inductive
tissues (for example, PPs and the PerC) into the iLP was inhibited
by treatment with FTY720. Thus, our findings suggest that
CD11b™T IgA™ cells uniquely exhibit high proliferating and IgA-
producing activity, although their other immunological features
as PCs are similar to those of CD11b™ IgA™ PCs,

Proliferating CD138 T PCs have been detected in the spleens of
NZB/W mice with signs of systemic lupus erythematosus, but not
in naive mice®. In contrast, the number of non-proliferating
CD138 1 PCs is unchanged in the intestines of GF mice, as it is in
the spleens of NZB/W mice>. These findings suggest that
MyD88-dependent homeostatic stimulation of commensal
bacteria determines the fate of proliferating CD11b+ IgA T
CD138% PCs in the intestine. Several lines of evidence have
revealed the cellular and molecular mechanisms of microbe-
dependent initiation of IgA responses. B cells express several
toll-like receptors, and B cell-intrinsic MyD88-mediated
signalling has been implicated in enhanced antibody production
in some studies®>36. However, our current findings indicated that
MyD88-mediated signalling in hematopoietic cells, including
B cells, was not essential for intestinal CD11bT IgA*™ PC
production. Additionally, we found IL-10 as a key molecule
inducing CD11b™ IgA™ PC production. Previous studies have
demonstrated that IL-10 promotes the proliferation of activated
B cells and subsequent IgA production in vitro>”38, which are
consistent with our current findings of high-level proliferation of,
and IgA production by, CD11b™ IgA™ PCs. Thus, our current
findings proved that IL-10 functions in IgA production in vivo
and that CD11bT IgA' PCs are the main targets in this
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pathway. Despite these findings, our preliminary study demon-
strated that treatment of CD11b™ or CD11b ™ IgA ™ PCs with
IL-10 alone did not induce their reciprocal differentiation into
each other, and IL-10 KO mice with colitis possessed CD11b+
IgA™ PCs (JK., unpublished data). Thus, IL-10 is redundant
in some cases and additional factors are required for the
maintenance of CD1lb* IgA™ PCs. Our current findings
identified CD150 as a surface molecule that is highly expressed on
CD11b* IgA™ PCs. CD150 is a 70-kDa glycoprotein expressed
on some B and T cells, thymocytes and macrophages®’.
Homophilic interaction of CD150 induces proliferation of, and
antibody synthesis by, B cells®”, and notably IL-10 synergistically
enhances CD150-mediated B cell proliferation”. Thus, it is likely
that, at least partly, IL-10 and CD150 determine the unique
features (for example, proliferation and high IgA production) of
CD11b™ IgA™ PCs in the iLP. In addition, accumulating
evidence has revealed an important immunological function
of stromal cells as survival niches for PCs in the BM* and
intestine?™¥2, It is possible that complex immunological
communications among commensal flora, epithelial and stromal
cells, and the cells involved in innate and acquired immunity
determine the differentiation and maintenance of IgA PCs in the
intestine.

Taken together, our results provide new insights into the
nature of IgA* PCs in the murine intestine, and especially into
the regulation of the early-phase IgA responses to intestinal
antigens and requirement of microbe-dependent stimulation,
IL-10, and the PP lymphoid structure. These findings add a new
level of complexity to the intestinal IgA system of mice.

Methods

Mice. SPF and GF Balb/c mice were obtained from Japan CLEA (Tokyo, Japan).
MyD88 KO mice, IL-10 mice (Balb/c background) and TCRBS mice (C57/BL6
background) were maintained under SPF conditions at the Experimental Animal
Facility, The Institute of Medical Science, The University of Tokyo, and WT lit-
termates were used as controls. To deplete gut commensal bacteria, mice received
broad-spectrum antibiotics, namely ampicillin (1 g1~ !; Sigma-Aldrich, St Louis,
MO), vancomycin (500 mgl~?; Shionogi, Osaka, Japan), neomycin sulphate
(1g1~ % Sigma-Aldrich) and metronidazole (1 g1~ %; Sigma-Aldrich), in their
drinking water for 4 weeks*>. To establish BM chimeric mice, we injected
y-irradiated (960 rad, Gammacell 40, Atomic Energy of Canada Limited, Ontario,
Canada) recipient mice with 5 x 105 BM cells through the tail vein and used them
in experiments 8 weeks after injection. Under our experimental conditions, the
reconstitution efficacy was about 90-95%. To obtain PP-null mice, pregnant BALB/
¢ mice were injected intravenously and subcutaneously with 1 mg anti-IL-7Ro
antibody (A7R34, BioLegend, San Diego, CA) at 14.5 days post coitus, as described
previously?®. We confirmed the disruption of organized PPs and the existence of
ILFs in the offspring, as described previously?®. To neutralize cytokines, mice were
treated intraperitoneally with 250 pg of monoclonal antibodies specific for IL-5
(TRFKS5), IL-6 receptor (D7715A7) or IL-10 (JES5.16E3) (BioLegend, San Diego,
CA); control antibody (Rat IgG2b); or 100 pg of soluble TACI-Fc¢ fusion protein
(R&D Systems, Minneapolis, MN) every second day for 2 weeks**%>. For assessing
the role of SFB, mice purchased from the Jackson laboratory were orally inoculated
with bacterial suspensions obtained by homogenizing faecal pellets from SFB-
monoassociated mice in water. SFB colonization was confirmed by quantitative
PCR% and CD11b+ IgA+ cells were analysed in the small intestine 2 weeks post
gavage by flow cytometry. All experiments followed the guidelines of the Animal
Care and Use Committee, The University of Tokyo and Columbia University.

Oral immunization. Mice were given sodium bicarbonate solution to neutralize
stomach acid! '3, Thirty minutes later, the mice were orally immunized with 1 mg
OVA (Sigma-Aldrich) and 10 pg CT (List Biological Laboratories, Campbell, CA).
This procedure was conducted on days 0, 7 and 14. In some groups, mice were
intraperitoneally given CPM (35mgkg ! each time, Sigma-Aldrich). One week
after the final immunization, faecal samples and mononuclear cells from the iLP
were collected for enumeration of OVA-specific antibody responses by enzyme-
linked immunosorbent assay and ELISPOT, respectively'®. I vivo CT challenge
was performed by oral challenge of naive or immunized mice with 100 pg of CT as
previously described®s.

Cell isolation. To isolate mononuclear cells from PPs, we stirred the tissues in
RPMI-1640 medium containing 2% fetal calf serum plus 0.5 mgml ~! collagenase

(Wako, Osaka, Japan)!113, To isolate mononuclear cells from the iLP, PPs were
carefully removed and the remaining intestines including ILFs were opened
longitudinally, washed with RPMI-1640, cut into 2-cm pieces and stirred for

20 min at 37 °C into RPMI-1640 containing 0.5 mM EDTA and 2% fetal calf serum
to remove epithelial cells and intraepithelial lymphocytes! 13, The tissues were
then stirred three times in 0.5mgml ~! collagenase for 20 min before undergoing
discontinuous Percoll gradient centrifugation (40 and 75%). Peritoneal cells were
obtained by peritoneal flushing with 8 ml ice-cold phosphate-buffered saline
(PBS)U’B.

Flow cytometry and cell sorting. Mononuclear cells were preincubated with

10 pgml ~ ! anti-CD16/32 antibody (BD Biosciences, San Diego, CA). They were
then reacted with the following antibodies: Pacific blue-rat anti-mouse CD45R
(B220) (RA3-6B2, 0.8 pgml 1), phycoerythrin (PE)-rat anti-mouse CD11b
(M1/70, 0.1 pgml ~ 1), PE-Cy7-hamster anti-mouse CD11c (HL3, 0.4 pgml 1),
PE-rat anti-mouse CD18 (C71/16, 0.8 pgml ~1), PE-rat anti-mouse CD19 (1D3,
0.8 pgml ~1), PE-rat anti-mouse CD38 (90, 0.13 pgml ~ 1), FITC-rat anti-mouse
IgA (C10-3, 2 pgml ™ 1), PE-Cy7-rat anti-mouse IgM (R6-60.2, 1 pgml~ 1), PE-
anti-mouse I-AY (AMS-32.1, 0.4 pgml ~ 1), APC-Cy7-rat anti-mouse CD11b (M1/
70, 1 pgml ~ 1), APC-Cy7-anti-mouse Bl-integrin (HMP1-1, 4 pugml~1), APC-
anti-mouse CD40 (3/23, 2 pgml ~?), Pacific blue-anti-mouse CD11b (M1/70,

1 pgml 1), PE-Cy7-anti-mouse F4/80 (BMS, 0.4 pgml ~ ) and biotin mouse anti-
CD138 (281-2, 10 pgml ~ 1y (all antibodies from BD Biosciences) followed by
incubation with streptavidin-APC (1 pgml ™1, BD Biosciences), PE-anti-mouse
CD150 (TC15-12F12.2, 0.1 pgml ~ 1), Alexa Fluor 647-anti-mouse CD80
(16-10A1, 1pgml ™~ 1y (BioLegend, San Diego, CA), anti-mouse CD267 (TACI)
(8F10-3, 4 pugml ~ 1y (eBioscience, San Diego, CA), PE-mouse CCR3 (83101,

0.5 pgml ™) (R&D Systems) or biotinylated anti-peanut agglutinin lectin

(1 pgml %, Vector Laboratories, Burlingame, CA), followed by staining with
streptavidin PE (1 pgml ™1, BD Biosciences). For staining for Blimp-1, cells were
fixed and permeabilized with a Cytofix/Cytoperm kit (BD Biosciences) and stained
with PE-conjugated anti-Blimp1 goat polyclonal IgG (0.4 pgml ~ 1, Santa Cruz
Biotechnology, Santa Cruz, CA). FSC-H and FSC-A discrimination was used to
exclude doublet cells, and ViaProbe cell-viability solution (BD Biosciences) was
used to discriminate between dead and living cells. To detect proliferating cells,
mice received 1 mg BrdU intraperitoneally 24 h before analysis; the BrdU signal
was detected with the manufacturer’s protocol (BD Biosciences). Concentration-
matched isotype antibodies were used as negative controls. Flow-cytometric
analysis and cell sorting were performed with FACSCanto II and FACSAria

(BD Biosciences), respectively. We confirmed that cell purity was about 95%
(Fig. 2a).

Immunohistological analysis. Intestines were fixed in 4% paraformaldehyde for
15h at 4°C, washed with PBS and treated sequentially in 10 and 20% sucrose for
12h at 4°C'3. The tissues were embedded in OCT compound (Sakura Fine-
technical Co., Tokyo, Japan). Cryostat sections (7 pm) were pre-blocked with anti-
CD16 and CD32 antibody for 15 min at room temperature and stained for 15h at
4°C with FITC-rat anti-mouse IgA (C10-3, 2 pgml ~ 1y and biotin anti-mouse
CD11b antibody (M1/70, 1 ugml~1). This was followed by incubation with
horseradish peroxidase (HRP)-conjugated streptavidin (Pierce, Rockford, IL) for
30 min at 4 °C and amplification of the fluorescent signal with Cy3-tyramide (TSA-
Direct kit; PerkinElmer, Waltham, MA)!3. We confirmed that no signal was
detected when the specimens were stained with the concentration-matched isotype
antibodies. They were then counterstained with 4',6-diamidino-2-phenylindole
(Sigma-Aldrich). Deconvoluted fluorescence images of specimens were obtained by
fluorescence microscopy (BZ9000, Keyence, Osaka, Japan).

Detection of antibody responses by enzyme-linked immunosorbent assay and
ELISPOT. To measure OVA- or CTB-specific IgA levels in faecal extracts, faeces
were homogenized in PBS by vigorous vortexing! 1%, After centrifugation of the
extracts (9,000¢ for 15 min) the supernatants were used as faecal extracts. Plates
were coated with 1 mgml~! OVA or 2pgml ~! CTB in PBS; this was followed by
blocking for 1h at room temperature with 200 il PBS containing 1% (w/v) bovine
serum albumin. After extensive washing of the plates with PBS containing 0.05%
Tween 20, serial sample dilutions were added for incubation overnight at 4 °C.
Samples were then incubated for 1h at room temperature with optimally diluted
HRP-conjugated goat anti-mouse IgA (SouthernBiotech, Birmingham, AL). After
sample washing, the colour reaction was developed at room temperature with
3,3,5,5'-tetramethylbenzidine (Moss, Pasadena, MD) and terminated by adding
0.5M HCL. The colour reaction was measured as the optical density (wavelength
450 nm).

ELISPOT assay was used to enumerate IgA-producing AFCs in the iLP!513,
Briefly, various concentrations of mononuclear cells were cultured at 37 °C for
4h in 96-well nitrocellulose membrane plates (Millititer HA; Millipore, Bedford,
MA) coated with 1 mgml~! OVA and 5pgml~! bovine serum albumin-
conjugated phosphorylcholine (Biosearch Technologies, Novato, CA). After
vigorous washing of the plates with PBS and PBS containing 0.05% Tween 20,
HRP-conjugated goat anti-mouse IgA was added; the plates were then incubated
overnight at 4 °C. Spots of AFCs were developed with 2-amino-9-ethylcarbazole
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(Polysciences, Warrington, PA). The size of each spot was measured with Zeiss KS
ELISPOT software (Oberkochen, Germany).

In vitro culture. CD11b* IgA*+ or CD11b~IgA™* PCs (10* cells per well) were
purified from the iLP and cultured with 100 ngml ~! phorbol 12-myristate
13-acetate plus 300 ngml ~! ionomycin, or 10 pgml~ ! lipopolysaccharide (all
from Sigma-Aldrich), for 24 h.

For the bacteria uptake assay, fluorescent Staphylococcus aureus was opsonized in
accordance with the manufacturer’s protocol (Molecular Probes). Mononuclear
cells isolated from the iLP (2 x 10° cells) were incubated with 1 x 10° opsonized
bacteria for 90 min. After being washed, the cells were stained with antibodies
for PE-IgA (mA-6E1, 0.5 pgml ™1, eBioscience) and Pacific Blue CD11b, and the
bacterial uptake by each population was examined by flow cytometry.

Microarray analysis. Microarray analysis was performed as we previously
reported?”. Briefly, CD11b+ IgA+ and CD11b~ IgA™ cells were isolated from
the iLP, and total RNA was extracted from them with an RNeasy kit (Qiagen,
Dusseldorf, Germany). cRNA was hybridized with DNA probes on a GeneChip
Mouse Genome 430 2.0 array (Affymetrix), washed and fluorescence-labelled in
accordance with the standard amplification protocol developed by Affymetrix.
The fluorescence intensity of each probe was taken to represent the raw expression
level and was quantified with GeneChip Operating software (Affymetrix). Data
obtained from two independent experiments were analysed with GeneSpring 7.3.1
software (Silicon Genetics). All microarray data have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus
database (www.ncbi.nlm.nih.gov/geo/) under the accession no. GSE37225.

Statistics. Results were compared by a non-parametric Mann-Whitney’s U-test
and unpaired t-test (two tailed) (GraphPad Software, San Diego, CA).
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