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(Polysciences, Warrington, PA). The size of each spot was measured with Zeiss KS
ELISPOT software (Oberkochen, Germany).

In vitro culture. CD11b* IgA™+ or CD11b™IgA™ PCs (10 cells per well) were
purified from the iLP and cultured with 100 ngm! ™! phorbol 12-myristate
13-acetate plus 300 ngml ~! ionomycin, or 10 pgml ! lipopolysaccharide (all
from Sigma-Aldrich), for 24 h.

For the bacteria uptake assay, fluorescent Staphylococcus aureus was opsonized in
accordance with the manufacturer’s protocol (Molecular Probes). Mononuclear
cells isolated from the iLP (2 x 10° cells) were incubated with 1 x 10° opsonized
bacteria for 90 min. After being washed, the cells were stained with antibodies
for PE-IgA (mA-6E1, 0.5pugml ™ 1, eBioscience) and Pacific Blue CD11b, and the
bacterial uptake by each population was examined by flow cytometry.

Microarray analysis. Microarray analysis was performed as we previously
reported?’. Briefly, CD11b+ IgA* and CD11b~ IgA™* cells were isolated from
the iLP, and total RNA was extracted from them with an RNeasy kit (Qiagen,
Dusseldorf, Germany). cRNA was hybridized with DNA probes on a GeneChip
Mouse Genome 430 2.0 array (Affymetrix), washed and fluorescence-labelled in
accordance with the standard amplification protocol developed by Affymetrix.
The fluorescence intensity of each probe was taken to represent the raw expression
level and was quantified with GeneChip Operating software (Affymetrix). Data
obtained from two independent experiments were analysed with GeneSpring 7.3.1
software (Silicon Genetics). All microarray data have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus
database (www.ncbi.nlm.nih.gov/geo/) under the accession no. GSE37225.

Statistics. Results were compared by a non-parametric Mann-Whitney’s U-test
and unpaired t-test (two tailed) (GraphPad Software, San Diego, CA).
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