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Fig. 1.5 Membrane potentials on the Purkinje fiber network and the heart muscle, and the surface
potential on the torso, at typical times. At the bottom, the second-lead ECG (difference of
the potential values between points A and B) is presented for cases with the heterogeneous
(rigid line) and homogeneous (broken line) torso models.

torso domain outside the heart, I'c its boundaries, o the electric conductivity tensor,
and ¢. the potential on Q¢. We assume that there are some regions inside Q¢ where
electrodes with given potentials ¢, are imbedded in the case of an ICD simulation.
We represent these electrode regions by Qp. In this situation, the following equations
are further imposed on Q¢ in addition to (1.5)—(1.8):

(1.11) -V - o.Vo. =0o0n Qc\Qp,
(1.12) g - ocVo. =Ny -0V = Jyg and ¢ = ¢ on 'y,
(1.13) fic - o.Vop. =0on g,
(1.14) ¢ = ¢p on Qp.

As shown in Figure 1.7, the torso is composed of several kinds of organs that have
different electric conductivities. Table 1.2 lists the conductivities of the organs present
in our simulation. As depicted by the broken line in Figure 1.5, we observed substan-
tially different computational results for the body surface potential when we assumed
a totally homogeneous conductivity (3 mS/cm) on the torso. This indicates the im-
portance of modeling the torso conductance accurately.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



A PARALLEL MULTIGRID FOR THE BIDOMAIN EQUATION 723
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Fig. 1.6 Computational results generated by the UT heart simulator. Time courses of the trans-
membrane potential and the ion channel currents at a specific point in the heart muscle
(A), the distribution of the transmembrane potential (B), structural deformation of the
heart muscle and blood flow (C), and blood flow and valve leaflets at the aorta (D). The
yellow arrow indicates the time azis for one heartbeat.

In this paper, we present a technique for a parallel solution that handles the
bidomain problem with the torso model in a robust and efficient way. In particular,
we focus on a technique to overcome the difficulty of very high spatial resolution by
using a sophisticated multigrid algorithm and parallel computation techniques. The
multigrid algorithm is constructed for a conservative finite element discretization of
the given potential problem on a composite mesh consisting of a fine local voxel mesh
around the heart and a coarse global voxel mesh covering the torso. We also briefly
present strategies to resolve the difficulty of time resolution. On one hand, more
sophisticated adaptive refinement techniques have been proposed in earlier studies
[4, 16, 27], where the refinement is varied over time depending on the ongoing electric
activity. However, on the other hand, this study is significantly more complex since
the method is shown to be applicable to a problem of practical interest, whereas the
earlier study merely showed the feasibility of the method on a simple two-dimensional
grid. Some previous works [19, 29] also adopted a multigrid method for the bidomain
problem. However, neither the composite mesh problem nor the Purkinje network
is dealt with in these studies. The differences between this research and the earlier
studies mentioned above are summarized below.

1. A stability analysis of a typical explicit time integration scheme of the bi-
domain equation [27, 29] is given.
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Fig. 1.7 Organs in the torso.

Table 1.2 Conductivities [mS/cm] of the organs outside the heart muscle.

5.

Blood 7.8 Capsula cordis | 15.0
Muscle 2.56 Lung 0.83
Artery, vein 6.8 Esophagus 2.0
Stomach, bowel 2.0 Lien, liver 1.67
Bone 0.06 Others 0.5

A conservative finite element discretization of the potential problem on the
composite mesh is proposed by applying the Lagrange multiplier technique
for the constraints at the interface of the local and global meshes.

A multigrid solution method for the discretization on the composite mesh is
derived naturally by the Lagrange multiplier at the interface.

The conservation property of the electric currents passing through the elec-
trodes is investigated. This is important when considering the interaction
with an external electrical device, such as an ICD.

An efficient way of dealing with the Purkinje fiber network in the multigrid
method is proposed.

In our simulator, the Purkinje fibers are modeled as one-dimensional multiway branch-
ing lines connected to the voxel nodes at these end-points, as has been reported in
the literature [25]. Bidomain equations similar to (1.5), (1.6), and (1.9) are then dis-
cretized by the one-dimensional finite elements constructed on the network. In this
situation, the voxel mesh can be coarsened in a standard way by exploiting its regular
structure, whereas the Purkinje network is irregular. Thus, combining the Purkinje
network with the multigrid algorithm is not straightforward. We also present a practi-
cal parallel implementation method on a distributed memory machine. Good perfor-
mance of the implemented algorithm is demonstrated through numerical experiments
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with a realistic human heart model that includes the torso. Note that unstructured
grids are preferred for defibrillation studies with an ICD, since smooth boundaries are
required to avoid artificial currents at the strong shock. Efficiency of the algebraic
multigrid method in such cases is confirmed in the literature [17] for rabbit ventricles.
In our case, we adopted the voxel mesh approach due to the simplicity of modeling
and data handling, ease of parallelization, and the faster computation speed obtained
by avoiding indirect memory addressing.

2. Finite Element Discretization. In this section, we introduce the temporal
and spatial discretization of the bidomain equation. The weak forms of (1.5)—(1.8) on
Qp are given by

(21) / Vwi s o-iV@dQ = ——/ wiﬂlmdﬂ,
Qg Qn
(2.2) / Vwe - 06V ded) :/ weﬁlmdQ—f-/ WeJgdl.
19574 Qg Ty

Furthermore, the weak form of (1.11)—(1.13) on ¢ are given by
(2.3) / Vwe - 0:Vod) = —/ weJgdl', we =0 on I'p.
Qc\Qp 'y

Here, w;, we, and w, are arbitrary test functions. With the boundary conditions on
'y given in (1.12), we can superpose the two extracellular equations on Qg and Qc,
and replace (2.2) and (2.3) by

(2.4) / Vi, - 0o Veodl = / we Bl d,
Q Qn
(2.5) Pe = ¢p, we =0 o0nI'p.

Here, Q = Qp UQc\Qp and I'p is the boundary of Qp. The extracellular potentials
and the conductivity tensors are combined on the whole domain €2 as

_J ¢ on Qpg, | o on Qpg,
(6) %—{ ¢. on g, 9=\ 0. on Q.

The matrix representation for a finite element discretization of the intracellular equa-
tion on Qg in (2.1) and the extracellular equation on 2 in (2.4) are given by

(2.7) Ki¢; = — (1,

(2.8) Ke¢e = RHTﬁIm - KP¢P'

Here, we assume that the nodes on the electrodes are deleted in the vector represen-
tation ¢, and that Ry represents a restriction operator from the whole domain Q to
the subdomain Qg on the heart muscle. Since Ry is a simple injection on Qg in our

case, we will omit Ry and its transpose R, in the equations hereafter. For example,
the matrices RLK; and RL K; Ry will simply be represented by K;.

2.1. Explicit Time Integration Scheme. In order to establish a stable time
integration scheme, (2.7) and (2.8) are rewritten as

(29) Kinn + BIm + Ki¢e = 0>
(2.10) KiVi + (Ki + Ke)pe = — K ¢p.
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Equation (2.10) is obtained by adding (2.7) and (2.8) and the relation between the
potentials, Vi, = ¢; — ¢ on Qp. Note that the intracellular potential disappears
in this representation, and the second equation (2.10) does not contain the trans-
membrane current I,. The system of (2.9) and (2.10) can be integrated stably along
the temporal axis in either an explicit or a semi-implicit manner. In our case, we
adopt the following explicit method to reduce computational costs [27]. The matrix
representation of the explicit scheme is given by

BCm My 0 viratl [ ZaMy - K, -K; 743
K; K+K A 0 0 s
6Myg O Lo (V2 8Y) }

2.1) o g || P |
where My is the lumped matrix on Qg and qb?’m is a prescribed potential on
the electrodes. In the semi-implicit scheme as adopted in the literature [19], the
entire PDE system (except for the ODEs to compute S) is solved simultaneously.
This scheme requires almost quadruple the computational costs for the matrix-vector
multiplication and the relaxation phase. On the other hand, the time step size At is
usually determined in accordance with the ODE system to compute the state vector
S, as described later. Thus, we have adopted the explicit scheme in our simulator. If
we ignore the time dependence of Ijon in (2.11), the stability of the explicit scheme
depends on the spectral radius of the matrix:

=
_ Dm 0 Dm—Ki —Ki
(2.12) M= KﬁKJ [ 0 o
with
BCn
2.13 D, =——My.
tay mT Ay A

The spectral radius of M is bounded above as described by the following theorem.
THEOREM 2.1. Assume the spectral radius of D' K; is less than one,

(2.14) p(DLIK;) < 1.
Then the spectral radius of M in (2.12) is bounded as
(2.15) p(M) €1 = Anin (DK (1 — Amax (K + Ko)7LKY)).

Here, Apin and Amax Tepresent, respectively, the minimum and mazimum eigenvalues
of the matrices in brackets.

A proof of the theorem is given in the literature [30]. From the theorem, we see
that the scheme is stable if condition (2.14) is satisfied and the time dependence of
Iion is ignored. In the actual simulation, however, a fairly small time step, far smaller
than the above limitation, is required to compute the ion currents o, (Vin, S) in (1.9)
(see [26]). Thus, we can adopt an “inner-outer” time integration strategy where the
intracellular (2.9) is integrated with a small time step in the inner iterations while
fixing the extracellular potential ¢., and the extracellular potential ¢, is updated
only in the outer iteration with a large time step. This strategy has been adopted
extensively by many studies [27]. The algorithm is presented in Figure 2.1. Here, the
superscripts denote the time indices for the variables, where T is the time index for
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The inner-outer time integration scheme.
Given V2
Solve (K; + K.)p2 = —Kpo? — KV
10T & = Ly wuny Kand
T=to+ (k—1)AT
fori=1,...,AT/A¢t
t=>G—-1)At+T
Vlfl+At = Vrfl - E%MI‘_IIKiVni - Kl‘bg - E%Iion(vlfu St)

next ¢
Solve (K; + K.)¢g T47 = *Kpd)gq_AT — KV ITaT
next k
Fig. 2.1 The inner-outer time integration scheme.
T T T T
_ R —AT=02[ms] .
2 2 -==AT=1.0[ms] 2 E
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Fig. 2.2 The second-lead ECG for two different time steps.

solving the extracellular potential problem and ¢ is the time index for integrating the
membrane potential. At each inner iteration, the ODE to compute the state vector S
is solved by the explicit Euler scheme. The time step dt (typically 10~100 us) is flex-
ibly varied in time and space depending on the ongoing electric activity as described
in the literature [27]. At each outer iteration, a solution to the potential problem
on  is required. The time steps AT and At are adjusted flexibly depending on the
simulation conditions and the desired accuracy of the solution. For example, in Figure
2.2, the two curves represent the second-lead ECG results as explained in section 1
for time steps AT = 0.2ms and AT = 1ms, respectively. Though both curves show
a similar tendency and magnitude of fluctuation, substantial phase lag is observed.

Even when adopting a large time step for AT in the above inner-outer time
integration scheme, the speedup of the solution to the extracellular potential problem
is the key issue for the overall performance. Henceforth, we will focus on an efficient
discretization of and solution method for the potential problem.

2.2. Spatial Discretization of a Composite Voxel Mesh. Hereafter, o denotes
oe + o; and ¢ denotes ¢, for notational convenience. The weak form corresponding
to (2.10) is given by

/ Vw:-oVed) = — Vuw - o;VViy,dQ,
Q Qn

(2.16) w=0and ¢ = ¢, on I'p.
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Fig. 2.3 The fine local vozel mesh domain around the heart and the global coarse vozel mesh domain
covering the torso.

To discretize the above equation, we adopt a uniform three-dimensional voxel mesh be-
cause this allows the input data to be prepared easily, and it facilitates the implemen-
tation of the multigrid solver and the parallelization of the code. For the intracellular
equations (1.5) and (1.9) on the heart, a fine spatial resolution (0.15mm ~ 0.4 mm)
is required to attain sufficient accuracy. On the other hand, such a fine resolution
is unnecessary for the extracellular equation (2.4) outside the heart. The above fact
naturally leads to the use of two meshes with different spatial resolutions. One is
a finer mesh on the local rectangular parallelepiped domain around the heart. The
other is a coarser mesh on the global rectangular parallelepiped domain covering the
whole torso (see Figure 2.3). Henceforth, we refer to the former mesh as the local
mesh and to the latter as the global mesh. We assume that the nodes in the global
mesh on the local rectangular parallelepiped domain are given at the same positions
as those in the local mesh, and the interval ratio of the global to local mesh is a power
of two. Note that it is not necessarily exactly two, as in the usual local refinement.
For example, four or eight can also be handled in our framework.

In order to discretize (2.16) on the composite mesh, we apply the Lagrange mul-
tiplier method for the constraints at the interface of the local and global meshes.
Therefore, we start with a variational formulation of the problem. The energy func-
tional for the formulation is given by

1
5(@'):/ “V-aVedQ+ [ V- o VVind,
0?2 Qr

(2.17) ¢ =¢p onl'p.

The extremum of the energy functional in (2.17) satisfies (2.16). Let Q¥ and Q¢ be
the local and global meshes, respectively. In particular, Q% is a local refinement of
QC. In the following, Q% and Q¢ are identified either as the domains covered by the
meshes or as the sets of nodes in them. Let EL and EY be the sets of finite elements
contained in QF and QF, respectively. Let QF and Q¢ be the subsets of Q¢ on QF
and outside of QF, respectively. Let EY and ES be the subsets of E¢ which lie in

0¢ and OF, respectively (see Figure 2.4). We represent an interpolated function ¢*
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Local mesh

[ig E"

Global mesh

EG

Fig. 2.4 A composite mesh (left) and decomposition of the elements into the subsets for each level
(right).

for the nodal values ¢* on the local mesh QF by

(2.18) ¢l =NE- ¢t =>" NEgL.

ieQl

Here, { N} };cqr are the shape functions on QY. We use similar notation, N¢ NZ, ¢,
etc., for the global mesh Q.

Under the above definitions, we define an energy functional for a given nodal
function ¢ = {¢%, #°} on the composite mesh by

E(¢) = / —Vol  oVeld + / ~V¢® - o VeCdQ + / Vo - o, VVLdn

Qp
= / SVNLgr . oVNErd+ > / “VNCC . aVNCpCdQ
eleEL eGeES
(2.19) + > / VNL¢r . o, VNEVLAQ.
GLGEL

Here, E};I are elements in FL that lie in Qy. Note that we assume that Qp is
composed of a subset of EX. Now, we impose the following constraint conditions on
the variational problem:

(2.20) ¢t = I5¢° on I'1¢.

Here, Ié is an interpolation operator from Q€ to QF and I'rg is the set of nodes
situated at the interface boundaries of QX with QF. Note that I'r¢ is not necessarily
identical to the boundary of QF. As shown by the thick lines in the diagram on the
right of Figure 2.4, the intersections of 9§} and 02y, are not contained in I'rg. The
weights of the interpolation are determined by the shape functions N¢ on Q.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



730 TAKUMI WASHIO, JUN-ICHI OKADA, AND TOSHIAKI HISADA

Let QF be the set of internal nodes in Q where the nodes on I'¢ are excluded.
The components of ¢ on QF do not affect the functional in (2.19). However, these
components are set identical to ¢” by an injection of the solution as described in
section 3.1.

The following equation is obtained by applying the Lagrange multiplier method
to the variational problem (2.19):

/ Vuw" - aVetdQ + /_ V- aVeidQ+ [ Vu' - VVLdQ
o ag oL

L _qL, G L _ gL .G
(2.21) +(’w —lgw )I‘LG -)\-I-w)\-(qb — Iz )FLG = 0.
Here, w’ and w® are arbitrary test functions equal to zero on T'p. The brackets ( )r, o
denote the restriction of a vector to the nodes on I'rg, A is the Lagrange multiplier
defined at the nodes on I'Lg, and w) is a test vector associated with the Lagrange
multiplier. Equation (2.21) can be rewritten in matrix form as follows:

wh . (Kr¢t + KPVE) +w® K¢S + (wh — I(ijG)PLG :
(2.22) +wy - (¢f —I5¢%), =0

Tre

Here, the matrices K*, KF, and Kf are obtained by superposing element matrices
as

(2.23) K'= Y K'),
eleEL

(2.24) Kl = )" K!(Y),
eleEL )

(2.25) KS= > K%,
eGG-E_LG—

where the element matrices are given by

(2.26) KE(eh); = / VN} - oVNEdQ,
eL

(2.27) KE(eh)i; = / ) VN} - 0:VNFdQ,

(2.28) K% (%) = / i VNF - o VNFdQ

for nodes i and j of elements e’ and e®. From (2.22), we finally obtain
(2.29) K¢l + KEVE + X =0 on QN\Tp,
N T —
(2.30) KG¢® —IE X =0 on Q¢\I'p,
¢* = ¢, and ¢ = ¢, on T'p,

with the constraint condition in (2.20). In section 3.1, we derive a local-global multi-
grid solution algorithm for (2.29) and (2.30). From (2.29), the nodal values of the
Lagrange multiplier at I' ¢ can be interpreted as the electric currents from the local
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mesh. In other words, the electric currents passing through the element surface from
the local mesh elements are integrated on the local nodes at the interface. In (2.30),

these nodal values of the currents from the local mesh are distributed by I éT to the
global mesh nodes at I' g, and they are balanced with the currents from the global
mesh elements in E¢. In this way, the current balance is ensured at the interface.
In the next section, we will see that this results in the conservation of the electric
currents passing through the electrodes.

2.3. Conservation Properties of the Electric Currents Passing through the
Electrodes. For simplicity, at first we assume that the boundaries I'p of the electrodes
do not intersect with the interface boundary I'. Later, this condition is relaxed to
some extent. The above assumption implies that the nodes on I'p are exclusively
divided into local and global sections:

(2.31) Ip=T5UT¢.

We define the nodal residual components at nodes i € I't and j € TG by

(2.32) rf=- ) VN - (aVer + a:VVEVIQ = —(KPpt + KEVE),, i e TE,
Q

(2.33) 7§ = - /__vzvf coVtdQ = —(K9¢%);, j e TE.
of

The conservation law through the entire domain ) in the finite element context is
stated below.

THEOREM 2.2. Assume that {¢%, ¢} is the finite element solution to (2.21).
Then

(2.34) dYorb+ > rf=o.

i€l Jjerg

Proof. For the local and global meshes, let us define the following test functions:

(2.35) wh=1- Y NF,
i€Tk

G _ G

(2.36) w?=1- " NF.
JETE

From the assumption on I'p, wX =1 on I'1¢ and w® =1 on I'z¢. Thus, from the
natural requirement on the interpolation Ik, we see that

(2.37) Ifw® =wl =1 on T'ze.

By substituting (2.35), (2.36), and (2.37) into (2.21), we obtain

1— NE . LdQ/
/QLV Z ;] -oVe +

VI{1=- > NF|. oVedn

ierk ag JETE
+/ VI{1=> NF|-oiVVEdQ=o.
2% €Tk
By expanding the above equation, we obtain (2.34). O
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u |

(a) (b)

Fig. 2.5 An undesired ezample for conservation (a) and the correction making this ezample conser-
vative (b). In (a), a hanging node (marked with a circle) is located at the corner of the
electrode.

Physically, the residual at the electrode boundaries I'p can be interpreted as the
current entering the torso through the surface of the electrodes. Here we assume that
the weak solution ¢ to (2.16) is also the strong solution around I', under a certain
regularity of g.. That is, if the strong form equation

(2.38) ~V-0.V¢ =0 around I'p

holds, we obtain from the Gauss divergence theorem

(2.39) —/ VNF - 0. Vpd = —/ NE7 - 0VedT, i € T'5,
Qr rL

(2.40) - / VN§ - 0. VgdQ = — / NE# -0 Vedl, j €T'E.
Q¢ T¢

Here, 7 is the normal outward unit vector at I'p. Note that we assume that the
electrode boundaries I'p are not attached to the heart muscle Qg. Thus, V,, and o
do not appear in the equations. If we replace the analytical solutions on the left-hand
sides of (2.39) and (2.40) by their discrete finite element approximations, they are,
in fact, the residual components. Thus, the residual components rF,i € 'k, and
T'JG, j € Fg, are the approximations of the fluxes on the right-hand sides of (2.39)
and (2.40), respectively. If the interaction with the electric circuit connected to the
electrodes is taken into account, the summations of the residual components at the
electrode surfaces can be identified with the currents from the electrodes.

So far we have assumed that the electrode surface I'p does not intersect the
interface boundary I'r. However, this restriction is not essential for conservation,
which is ensured as long as the boundaries I' 1, follow the edges of the coarser elements
at any interface. Figure 2.5 depicts an undesired example for conservation (a) and the
correction making this example conservative (b). Note that a hanging node (marked
with a circle) is located at the corner of the electrode in the undesired example. In
general, we modify the definition of the test function w” in (2.35) to match w? in
(2.36) at the interface:

(2.41) wh=1- 3" Nf— Y NE(IESS).
i€lp\l'Le jelpNlLe

Here, EJG is the vector on ﬁ? set to 1 at j and zero at the other nodes. From the
above definition, we see that I5w® = w’ holds at I'rg. By substituting this test
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function into (2.21), we once again obtain (2.34) with the following definition of the
residual at the interface:

— . |
(242) vy =—(Kfo%); — (18" (K"9" + KPVE)) | jeTnanlp.

Thus, in computing the residual component at the interface, the contributions from
the residual components on the neighboring fine mesh hanging nodes must be taken
into account.

3. The Local-Global Multigrid Algorithm on a Composite Mesh.

3.1. Derivation of the Algorithm. Let us define the matrices K¢ and K< on
the global mesh by

(3'1) KI?: E KG(GG)7
eGeE¢

(3.2) KC= Y K9¢°)
EGEEG

From the above definitions and (2.25), K¢ is obtained by superposing Kf and K f
Thus,

(3.3) K¢ =K%+ K¢,

Based on an idea proposed by Brandt [2], we add K¢ ¢ to both sides of (2.30). Then
we obtain the following equations equivalent to (2.29) and (2.30):

(3.4) KEpl = —KEVE on QN\(Tre UTp),
(3.5) A=-KLl¢r - KEVE onTpq,
(3.6) KS¢C = IE" X+ KS¢C on QC\I'p.

If we define the residual vector » on the local mesh from (3.4), not only on Q¥\(I'LgU
T'p) but also on I'g, by

(3.7) rf = —KIVE — K¢l on QF\T'p,
we see that it is identical to the Lagrange multiplier on I'z¢ from (3.5),
(38) A= T‘L on PLg.

The above consideration naturally leads to the local-global solution process, shown in
Figure 3.1, where steps (1) and (2) are iterated. Here, the injection I¢ is performed
by injecting the local mesh nodal values into the global mesh nodes on Q. Note
that the correction with the interpolation is also performed on the interface I'r¢ in
the global mesh correction phase. Thus, together with the assumption on the initial
guess, the constraint condition in (2.20) is always satisfied. As for the relaxation on
the local and global meshes, a multigrid V-cycle can be applied. In particular, for the
local mesh relaxation, one V-cycle is sufficient to smooth the error with respect to the
global mesh resolution, where the coarsest mesh of the V-cycle on the local mesh has
the same spatial resolution as the global mesh in our implementation, as depicted in
Figure 3.2.
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The local-global multigrid algorithm.
(0) Start
-gh = -K[Vy
- Prepare an initial guess {¢*, #©} such that ¢* = Iéqu onTzg
(1) Global mesh correction
- Compute the residual on the local mesh r’ := gl — Kl¢l on QF\T'p
- Inject the local mesh solution ¢ := I ¢ on QOF
- Store ¢¢ in another vector QIBG = ¢C
- Compute the right-hand side g := KF¢% + I éTrL
- Compute an approximation for K%¢¢ = g€
with the fixed boundary values on I'p
- Correction with the interpolation ¢¥ := ¢ + I5(¢C — ¢%) on QF
(2) Smoothing on the local mesh
- Relax the interior components of ¢~ for KX¢r = g*
with the fixed boundary values on 'y UTp

Fig. 3.1 The local-global multigrid algorithm.

Vv v o a9 v av.av4
VAT A 2 A AV AV A
VA v dov i A AV i

V-cycle on the local mesh

The local- globa] algorithm
on the composite mesh

V-cycle on the global

Fig. 3.2 A sketch of the local-global multigrid algorithm. In each mesh, the multigrid V-cycle is
applied as a smoother. In particular, the coarsest grid of the local mesh V-cycle has the
same resolution as the finest global mesh.

The local-global multigrid algorithm obtained above is similar to the multilevel
adaptive technique (MLAT) proposed by Brandt [2]. However, the MLAT was de-
scribed for finite difference or finite volume discretizations [22] and derived from the
full approximation scheme (FAS) [2, 22], originally proposed to solve a nonlinear prob-
lem with a multigrid. An interesting point here is that the MLAT is naturally derived
by extending the Lagrange multiplier in (3.6) at the local-global interface 'z to the
inside of the fine finite element mesh, where it can be interpreted as the residual.
Also note that in the standard implementation of MLAT [22], the residual at the fine
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Fig. 3.3 Original Purkinje network (a) and the network after the elimination (b). Black nodes are
shared nodes with the vozel mesh.

grid boundary is not transferred to the coarse grid, whereas in the above algorithm
the residual components at the local mesh interface boundaries certainly affect the
right-hand side of the coarse mesh equation. As we have seen in section 2.3, this is an
essential point to ensure the conservation property at the local-global interface. Other
techniques to ensure conservation have been introduced, for example, in [1, 14, 31] for
finite volume discretizations. On the other hand, in common adaptive finite element
approaches, a special refinement strategy is adopted at the fine-coarse interface so
that hanging nodes are not present. In these approaches, conservation is automat-
ically ensured. However, a method that allows hanging nodes provides easier mesh
generation, in particular, for hexahedral elements.

3.2. Treatment of the Purkinje Fiber Network. In this section, we describe the
special treatment of the Purkinje fibers in the local-global multigrid algorithm. As
mentioned in section 1, the Purkinje network is modeled by one-dimensional elements,
as is commonly done in the cardiovascular literature. In our simulator, only end-point
nodes of the Purkinje network are connected to the voxel mesh nodes, as shown in
Figure 3.3(a). Although a fairly fine spatial resolution is required for the Purkinje
one-dimensional elements, we can eliminate most of the unknowns before solving the
potential problem. This situation is illustrated in Figure 3.3. Nodes on the Purkinje
network with only two edges connected can be eliminated without increasing the
number of edges. Therefore, we do not apply any coarsening to the matrix on the
reduced Purkinje nodes when constructing the matrix at the coarse level. In this case,
although we have to invert the matrix completely on the reduced Purkinje nodes at
the smoothing steps at each level of the multigrid cycle, this does not result in a
crucial overhead due to the smaller size of the matrix on the reduced Purkinje nodes.

Here, we show how to construct the matrix on the global mesh for the reduced
Purkinje network. In the following, the subscript letters “s” and “r” represent shared
nodes and reduced Purkinje nodes, respectively. We assume that the shared nodes
are included in the local voxel mesh nodes. Under this notation, a vector ¢~ on the
local mesh (involving the reduced Purkinje nodes) is represented as

(3.9) | éL:{gg }

According to the above block representation, the coefficient matrix on the local mesh
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is then represented by

_ L
(3.10) gr—| K+ Ds KST}.

KI’S KI‘I‘

Here, the matrices Ds, K, K5, and K, originate from the reduced stiffness matrices
on the reduced Purkinje network. In order to construct an appropriate local-global
multigrid algorithm, the reduced Purkinje network should also be connected to the
global voxel mesh. In our approach, the matrix on the reduced Purkinje network is
not coarsened, as mentioned above. Thus, the coefficient matrix on the global mesh
is given by

(3.11) go_ | KO+ I DIS 15 Ky
‘ K I% K, '

The interpolation I é from the global to the local mesh involving the reduced Purkinje
nodes is defined by

~ It o

L _ G
(3.12) IG—[ 0 I]'
Here, I denotes the identity mapping on the reduced Purkinje nodes. Under these
matrices and mappings, the local-global multigrid algorithm in section 3.1 can also

be performed with the Purkinje fiber network.

3.3. Relaxation of the Local-Global Multigrid Algorithm. In this section, we
describe some details of the multigrid V-cycle that is applied “as the relaxation” in
the local-global multigrid algorithm. As for the interpolation from the coarse to the
fine mesh, we define two different operators, I7 and I7, as follows. For If, standard
weights are chosen, whereby weights for the voxel mesh nodes that are outside ) are
set to zero. Note that the sum of the interpolation weights of I is not equal to one if
one of the neighboring coarse nodes is outside 2. In the definition of I 7, the weights
are adjusted so that their sum is equal to one, except for the fine nodes, all of whose
neighboring coarse nodes are outside Q. In our implementation, we apply I7 as the
interpolation operator and its transpose as the restriction operator in the multigrid
V-cycles, whereas in the determination of the coefficient matrix K¢ on the coarse
mesh from the coefficient matrix K7 on the fine mesh, we apply I/ as follows:

(3.13) Ke=INTK!T!.

In our experience, the above-mentioned strategy (using different interpolations in the
multigrid cycle and in the determination of the coarse mesh matrix) results in the best
convergence. For example, using I ,{ for both stages leads to convergence stagnation
when the Purkinje fiber network is connected, while using I for both stages results
in slower convergence. Further study of this will be part of our future research.

The other key issue for robust convergence in the given potential problem is the
choice of smoother in the multigrid. In this application, the electric conductivity has
an anisotropy in the heart muscle along the fabric construction and also jumps in
coefficients at the interfaces between different organs. Furthermore, the torso bound-
aries given on the finest level on the global mesh do not necessarily fit with the coarser
voxel elements. These problems trigger convergence difficulties for the standard multi-
grid method. Therefore, we adopt an incomplete Cholesky (IC) smoother since it is
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more powerful than a Gauss—Seidel smoother for jumping coefficient and anisotropic
problems (see, for example, [22] or [33]). Thus, the coarse mesh correction may be
somewhat less accurate. In the case where the Purkinje fiber network is connected,
we apply the 1IC smoother on the voxel part and a sparse direct solution method on
the reduced Purkinje network part with the two-block representation as in (3.10). In
general, the linear equation to be solved at an arbitrary level can be represented as
follows (see (3.11)):

sT s sT'
(3.14) K+T ?SI K, o} -9
K. I K, b gr

Here, K is the coefficient matrix on the grid where the smoother is applied, and
I’ denotes the interpolation operator of the shared nodes on the finest local mesh
QF from the grid where the smoother is applied. Under the above notation, one
smoothing step is described as follows:

(3.15) r®) = g — (K + I'T D)™ — IFT K,
(3.16) Solve MA@H*+D) = p(k),

(3.17) S = o) 4 A (D)

(3.18) r D) = g Ko — K Pl
(3.19) Solve KrrA(j)ng) — r§k+1/2),

(3.20) HFTD = pk) 1 AT

where M denotes the IC factorization of the matrix K + I STDSI s,

Another important technique to improve robustness is the Krylov subspace ac-
celeration technique. One iteration of the multilevel solution is applied as a precondi-
tioner for the Krylov subspace method. In the case of a composite mesh application,
the implementation of a matrix-vector product may require considerable effort. How-
ever, as shown in the literature [3, 32], one can obtain a Krylov subspace acceleration
by recombining iterants when their residuals are available. Details of our acceleration
algorithm for this application are given in the literature [30].

4. Numerical Experiments with a Realistic Torso Model and Purkinje Fiber
Network. In this section, we evaluate the performance of the local-global multigrid
algorithm for a realistic model on which the real-life simulations described in section
1 are performed. In the model, the voxel mesh data of the organs in Figure 1.7 are
prepared based on the Visible Human dataset [28]. The mesh sizes and intervals of
the local and global voxel meshes are described in Table 4.1. The ratio of the local
and global mesh intervals is equal to 4. An illustration of the Purkinje fiber network
adopted in the simulation is depicted in Figure 4.1. The geometry of the network
is based on an anatomical observation in [20]. Its conductivity is set to 100 mS/cm,
which is much larger than the values in Table 1.1. The conductivity has been adjusted
in order to reproduce the experimental observation of excitation propagation given
in the literature [8]. The Purkinje-ventricular delay [15] is not taken into account in
the current simulation, and the radius of the cross-section of the network is set to
0.05 cm except near the interconnection points with the heart muscle, where 0.01 cm
or 0.03 cm is used. These radius values have also been adjusted in order to reproduce
proper excitation conduction from the Purkinje fiber to the ventricular muscle. The
total number of Purkinje nodes is 24509, of which 9882 nodes are shared with the
local voxel mesh. The number of nonzero components in the matrix on the Purkinje
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Local and global mesh sizes and intervals.

Local mesh

Global mesh

Size (z,y, 2)

Interval length

Size (z,y, )

Interval length

(288, 288, 368)

0.4 mm

(256, 256, 288)

1.6 mm

terminal area

Fig. 4.1 The Purkinje fiber network. At each terminal, the fiber is attached with 12 shared nodes.

Table 4.2 Elapsed time (in seconds) of one iteration of the local-global multigrid algorithm for the
different divisions of the meshes.

Smoother
Division Lto G GtoL Krylov Voxal Purkinje Total
4x4x2 || 0.09(35%) | 0.13 (4.9%) | 0.12 (4.4%) | 0.79 (30.1%) | 0.30 (11.5%) | 2.62
4x4x3 | 007 (3.4%) | 0.09 (4.7%) | 0.08 (4.4%) | 0.56 (29.7%) | 0.27 (14.4%) | 1.89
4x4x4 | 0.05(3.4%) | 0.07 (4.7%) | 0.06 (4.0%) | 0.42 (27.8%) | 0.22 (14.4%) | 1.51
4x4x5 || 0.04(3.3%) | 0.06 (4.5%) | 0.05 (3.9%) | 0.33 (27.3%) | 0.20 (16.1%) | 1.22

network is 73709. However, after the reduction to the reduced Purkinje nodes, only
3937 nodes are left (besides the shared nodes). Finally, matrix K, in (3.10) consists
of 11989 nonzero components. The sparse LU factorization of matrix K, has only
16481 nonzeros with a fill-in reduced ordering. Thus, the solution to Ky, in (3.19) in
the smoother is unlikely to produce a crucial overhead.

As for the relaxation on the local and global meshes, the multigrid V-cycle, with
one pre- and one postsmoothing iteration, is applied. The V-cycle on the local mesh
consists of three levels as the coarsest local mesh then has the same spatial resolution
as the finest global mesh. One smoothing iteration is performed on the coarsest local
mesh. The V-cycle on the global mesh consists of six levels. On the coarsest global
mesh, twenty smoothing iterations are performed.

First, we examine the parallel performance of the local-global multigrid algorithm.
Parallelization strategies used in our implementation are described in Appendix A.
The timing results are measured on a PC-cluster composed of Pentium 4 processors
(3.2GHz) connected via Myrinet. Shown in Table 4.2 are the elapsed times for the
main processes in one iteration of the local-global multigrid algorithm, where the
performance was examined for up to 80 processors. In the table, “L to G” and “G
to L” denote the elapsed times for the local-to-global and global-to-local data trans-
formations in (A.1), respectively. “Krylov” denotes the elapsed time for the Krylov
acceleration. “Smoother” denotes the elapsed time for the smoothing iterations at
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Fig. 42 Convergence history with respect to (a) iterations and (b) elapsed time.

all levels, where “Voxel” corresponds to the relaxation on the voxel meshes in (3.16)
and (3.17), and “Purkinje” corresponds to the processes on the shared and reduced
Purkinje nodes in (3.15), (3.18), (3.19), and (3.20). The numbers in parentheses are
the ratios to the total time.

‘We observe a very satisfactory scaling. The elapsed times for the data transforma-
tions between the local and global meshes are relatively small in all cases. However,
the elapsed time for the smoothing on the reduced Purkinje nodes is more pronounced
as the number of processors increases. In particular, in (3.15) and (3.18), one-to-many
communications are necessary to transfer the data to the shared nodes. It seems that
this influences the parallel performance negatively.

Further, we analyze the convergence of the local-global multigrid algorithm. The
convergence histories with respect to the number of iterations and the elapsed times
are presented in Figure 4.2 for three different approaches. The notations “strong
coupling with Krylov” and “strong coupling without Krylov” denote the local-global
multigrid algorithm, respectively, with and without the Krylov acceleration technique,
where the reduced Purkinje nodes are taken into account in the smoothing at every
level, as described in section 3.3. On the other hand, the notation “loose coupling
with Krylov” denotes the solution algorithm with the Krylov acceleration technique
but solving the reduced Purkinje nodes and the voxel nodes in a decoupled way. This
means that the direct solution on the reduced Purkinje nodes (including the shared
nodes) and the local-global multigrid algorithm on the voxel mesh are performed
alternately. In this case, the coupling with the reduced Purkinje nodes is dealt with
only at the finest level on the local mesh.

In the Krylov acceleration technique, up to five iterants are recombined for the
acceleration, and the acceleration process is restarted every five iterations. The results
in Figure 4.2 show the effectiveness of the Krylov acceleration technique and the
importance of the smoothing on the reduced Purkinje nodes at every level. The
convergence speed of the loose coupling approach is obviously much slower than that
of the proposed local-global multigrid algorithm. Even though there is considerable
overhead in dealing with the reduced Purkinje nodes at every level, the proposed
algorithm is still significantly faster than the loose coupling approach with respect
to the elapsed time. In our real-life simulations, we commonly adopt 107° as the
convergence tolerance for the relative L2-norm of the residual. Therefore, one solution
takes approximately 8 seconds. If we solve the potential problem every 1 or 0.2 ms,
about 8000 or 40000 seconds, respectively, are needed for the solutions to a 1 second
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simulation with 80 processors. This is approximately 40 or 70%, respectively, of the
total elapsed time in the ECG simulation to obtain the results given in Figure 2.2.

5. Conclusions. A parallel solution to the bidomain equation that appears in the
excitation propagation analysis of the human heart was constructed. The stability of
the explicit scheme was analyzed and an efficient multigrid technique to solve the po-
tential problem with the torso model was introduced. In our approach, the potential
problem was discretized on the composite mesh composed of a fine local mesh around
the heart and a coarse global mesh covering the torso. A conservative finite element
discretization adopting the Lagrange multiplier approach was introduced and a multi-
grid solution technique for this discretization was naturally derived. Furthermore, a
method to combine the Purkinje fiber network with the multigrid solution technique
was shown, whereby the matrix on the Purkinje network was reduced before entering
the multilevel solver and the reduced matrix on the network was dealt with by a direct
solution method at every level. The parallel efficiency and good convergence results
were proved through an experiment with a realistic simulation model.

Appendix A. Parallelization Strategy. Here, we introduce the parallelization
strategy of the bidomain analysis on a distributed memory parallel computer. Fig-
ure A.1 depicts the general situation for a composite mesh.

Note that there is no problem regarding the conservation discussed in section 2.3,
even in the case where the local voxel mesh covers more than the torso region, as long
as the boundaries of the torso on the local mesh coincide with the global mesh edges.
In such a case, the local voxel mesh nodes on the torso boundaries are excluded from
I'rg. Thus, there is no exchange of current there.

As shown on the right-hand side of Figure A.1, the solution process is decomposed
into three phases with respect to data distribution between the processors. The first

N
&

Fig. A.l (Left) two-dimensional image of three meshes (Qp (on the heart), QF (local rectangular
mesh), QC (global rectangular mesh)) and (right) their partitioning (for 4 processes).
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phase corresponds to the explicit Euler time integration of the inner iteration described
in section 2.1. Here, the computation is performed only at the nodes on the heart
muscle Qg . The second and third phases include the local-global multigrid algorithm
described in section 3.1 on the local and global voxel meshes, respectively. For the
second and third phases, the nodes are partitioned regularly in each direction. In
contrast, the first phase is based on a partitioning of an unstructured graph which
consists only of the nodes on the heart muscle Qg. For the partitioning, we adopt the
graph partitioning tool ParMETIS [10] to obtain the partitioning information. Since
these data distributions are not consistent, as can be seen in Figure A.1, redistribution
of variables takes place at each phase change. The variables that are redistributed at
each phase change are described in the diagram below:

Qn
dF Tl KV
(A1) or
¢®—¢¢ 1l IETrL Lol
QG

The communication speed of the redistribution between the local and global meshes
is crucial to the overall parallel performance because this redistribution is performed
every cycle in the local-global multigrid algorithm. The overhead cost for the redis-
tribution in the real-life application has been presented in section 4.

In each phase, parallelism is obtained in a standard way except for the IC smoother
in the second and third phases. The IC smoother is modified, as it can easily be par-
allelized under the regular partitioning; that is, the local IC smoother is performed
in each processor with one layer overlap at the subdomain boundaries.

In the case where the Purkinje fiber network is connected, the vectors ¢,, g, and
the matrices Ky, Kis, K, in (3.14) are stored in one of the processors (say, Proc0),
while the matrix for the interpolation on the shared nodes I® is distributed along the
regular partitioning of the voxel mesh. Thus, the vector data K, ﬁk) on Proc0 is
scattered in (3.15), and the distributed vector data IS¢(*+1) is gathered to Proc0 in
(3.18). This process may generate considerable overhead when the number of shared
nodes is large.
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