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Abstract A framework for the homogenization of nonlin-
ear problems is discussed with respect to block LU factor-
ization of the micro—macro coupled equation, and based on
the relation between the characteristic deformation and the
Schur-Complement as the homogenized tangent stiffness. In
addition, a couple of approximation methods are introduced
to reduce the computational cost, i.e., a simple scheme to
reuse the old characteristic deformation and a sophisticated
method based on the mode-superposition method developed
by our group. Note that these approximation methods sat-
isfy the equilibrium conditions in both scales. Then, using
a simplified FE model, the conventional algorithm, a rela-
tive algorithm originating from the block LU factorization,
and the above-mentioned algorithms with the approximated
Schur-Complement are compared and discussed. Finally, a
large-scale heart simulation using parallel computation is
presented, based on the proposed method.

Keywords Homogenization method - Nonlinear finite
element analysis - Schur-Complement - Mode superpo-
sition - Parallel computation - Block LU factorization -
Heart
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1 Introduction

The door to petaflop computing has recently opened and
meaningful applications for massively parallel computers
are being sought. A multi-scale approach to biomechani-
cal problems is consequential in the post-genome era and
the homogenization method is going to play a more impor-
tant role than ever before. The homogenization method is a
mathematical modeling technique for efficiently analyzing
inhomogeneous material with a periodic microstructure. In
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biomaterial, the periodicity hypothesized in the homogeni-
zation method is not strictly established. However, Terada
et al. [1] have shown that an appropriate equivalent charac-
teristic is obtained in material with an irregular microstruc-
ture by assuming a periodic boundary condition. Thus, it
is possible to evaluate the effect of each component in the
microstructure on the macroscopic behavior, if microstruc-
ture modeling is appropriate. The homogenization method
for biomaterial was applied to bone by Hollister and Kikuchi
[2], while a two-dimensional analysis of engineered tissue
cells was conducted by Breuls et al. [3]. In an example using
the heart, Krassowska et al. [4] applied the method to an
excitation propagation phenomena. To investigate the effect
of intracellular structure on heartbeat, the authors have devel-
oped the necessary finite element homogenization method,
where the heart is the macrostructure and the cardiomyocyte
the microstructure. Thus the problem inevitably becomes a
large-scale one.

In the homogenization method two scales are introduced,
namely, a scale for the unit period, and a scale for the whole
material. By solving the governing equations for both scales
with coupling, we can obtain the macroscopic characteristic
as an equivalent homogeneous body and variable distribu-
tion from the microstructure. In the conventional nonlinear
homogenization method [5, 6], itis first necessary to calculate
microscopic equilibrium and then the macroscopic tangen-
tial homogenization updates all quadrature points at every
Newton—Raphson iteration, resulting in huge computational
cost. Even with a high performance computer, the cost is
prohibitive for practical large-scale problems. To reduce this
computational cost, various techniques have been devised.
These include, for example, the construction of a database
with the homogenized properties [7], sensitivity analysis [8],
Fast Fourier Transforms [9], and so on. In a previous work,
we proposed a homogenization method using characteristic
deformation mode superposition [10,11]. This is, however,
an approximation method and the accuracy depends on the
problem. We subsequently proposed a new algorithm that
solves the microscopic equilibrium equation alternately with
the solution of the mode superposition-based micro-macro
coupled equation. In this algorithm, the equilibrium condi-
tions for both the micro and macro structures are satisfied
with far less computational cost. This method is applicable
to microstructures composed of slightly incompressible and
viscoelastic materials [12—15].

Looking at this method from the block LU factorization
of the micro—macro coupled equation, we recognize that the
Schur-Complement as the homogenized tangent stiffness, is
ingeniously approximated with the aid of mode superposi-
tion. It is further beneficial to generalize this view, that is,
to interpret the framework of the homogenization method
with regard to the block LU factorization and investigate how
the Schur-Complement can be approximated to reduce the
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Fig. 1 Homogenization method for large deformation problems.
a Macro structure. b Micro structure

computational cost whilst preserving the accuracy. Accord-
ingly, a couple of approximation methods, i.e., a simple
scheme to reuse the old characteristic deformation and the
above-mentioned mode-superposition based method, are
introduced in this paper. Then a simplified numerical exam-
ple is solved using both the conventional homogenization
algorithm and the algorithm originating from the block LU
factorization, and the performance of each is discussed.
Finally, a large-scale heart simulation using parallel com-
putation is presented based on the proposed method.

2 Homogenization method for finite deformation
problem

2.1 Problem statement and geometric prospect

‘We assume that the material in the body (£2) reveals heteroge-
neity on a very fine scale and is characterized by the periodic
distribution of a basic structural element (Yg) as shown in
Fig. 1. To measure the changes in the spatial domains, we
introduce two scales: a macro-scale X € 2 and a micro-scale
Y € Y. Thus the actual domain can be regarded as the prod-
uct space (£2 x Yp). In the subsequent development, the mac-
roscopic quantity corresponding to the microscopic one is
expressed with a bar symbol over the microscopic symbol.
The following assumptions of homogenization are applied in
the formulation of the homogenization method.

— A macrostructure that consists of a periodic microstruc-
ture can be considered to be an approximately equivalent
homogeneous substance.

~ A microstructure is infinitely fine compared with a
macrostructure; the variable defined at each point of the
macrostructure corresponds to the volume average of the
variables in the microstructure.
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It is assumed that the deformation of the microstructure is
linked to the local values of the macro continuum via

y=FY +w, (1)

where y and Y are position vectors defined on the micro-
structure [16].

The deformation consists of a homogeneous part FY and
a non-homogeneous superposed field w. Consequently, the
following relationships exist between the microscopic and
macroscopic deformation gradients.

Yy = =
F Yy 3y F+7Z, 2
— ox
F=Vyx=— 3
XX = o= 3
~ ow
Z=Vyw=—. 4
YW=y 4)

Thus increment and variation of the deformation gradients
are represented, respectively, as

AF = AF + AZ = AF + VyAw, (5)
8F = 6F + 8Z = 6F + Vysw. (6)

For the assumptions mentioned above, the macroscopic
gradients are related via the volume averages

— 1 1 — - — 1 -
F=— | FdY = — F+2)dY =F+ — [ ZdY,
|V1/ 1V1/(+ ) +1V|/

Yo Yo Yo
™

where V is the volume of the microstructure Y. Then, the
fluctuation field w must satisfy the constraint

~ ow
/ZdY:/ﬁ-dY_/N®wdS=0, )

Yy Yo aYo

where N is an outward normal vector on the boundary 9Yj.
This constraint is satisfied when w is periodic.

2.2 Formulation of homogenization method and finite
element discretization

We now consider the equilibrium of material with a peri-
odic microstructure, modeled by hyperelastic material. Using
the principle of stationary potential energy, the equilibrium
condition becomes a functional stationary problem. Under
the homogenization assumptions, the macroscopic potential
energy is related via the volume averages of the microscopic
ones and the entire potential energy is defined by

<I>=/-1-—/WdeX—/t.udS, 9)
VI,

Q Yo a2

where W is the strain energy function of the microstruc-
ture defined by the deformation gradient F, and assuming

conservative tractions. The stationary condition becomes

1
8P = / m/5F :TIdYdX — Fox(Su) =0, (10)
Q Yo
ow
M= SF an
Fons (Su) = / t.5uds. (12)
aQ

A similar equation has been reported by Terada and Kikuchi
[5] using two-scale convergence theory [17]. We have also
shown a formulation based on the mixed variational princi-
ple with a perturbed Lagrange-multiplier [14]. By inserting
Eq. (6) into Eq. (10), macro and micro equilibrium equations
can be derived based on the defined space of the variation.

— 1 —

G = / W/SF TIdYdX — Foxy(Su) = 0, (13)
Q Yo

G:/SZ:HCIY:O, (14)

Yo

which achieves equilibrium under the given boundary
condition in the macrostructure and self-equilibrium under a
periodic boundary condition, Eq. (8), of the microscopic dis-
placement in the microstructure. Thus the homogenization
method simultaneously satisfies the two equilibrium condi-
tions as described above. To solve the nonlinear equation,
the Newton—Raphson method is employed. Then the stan-
dard linearization process in nonlinear finite element method
provides the following linearized equations

1
/———/8F:A:AFdeX
V]
Yo

Q
1
— Fuxtow) — | o [ v navax, (15)
Q Yo
all
A= —. 1
o (16)

Substituting Egs. (5) and (6) into the above equation yields

/—l—‘-lj—]/s(éf+82):A :(AF + AZ)dYdX
Q i’()

1 — -
= Foyr(Su) —/ m/(SF—HSZ) :dydX. amn
Q Yo
By finite element discretization using
AF = [B°]{Au’), (18)
AZ = [B]{Aw)}, (19)
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where [B¢] is a shape function matrix, the left-hand side of
Eq. (17) becomes

{SWQ}T‘I/_! /‘[BE]T[A][Be]dY{AwQ}
Yo

+{8wQ}|—é—l / (81 [AldY[BFH Au’}
A
+{8u€>["B’EJTI—1V-'—I / [AILB1dY (AW
Yo

+ {auE}[ﬁ]T!%, / [AldY [Be){ Au)
7,

= WKL (Aw?) + [sw2IKEC {Au®)

ww wiu

+ {suJKZ {AW?]} + (su’}KY {Au‘),

uw (20)
while the second term of the right-hand side of Eq. (17)
becomes

_ st —?TJ,/ _ (5w _1__/ T
{ou}[B*] Vi [TT]dY — {6w }|Vl [B°]" [I1]aY,
Yo Yo

(21

at each quadrature point of the macrostructure. Symbol Q
denotes the quantity that is evaluated at a macroscopic quad-
rature point, while symbol e denotes the quantity evaluated in
the macroscopic element. By assembling these appropriately
on the macro continuum, and considering the facultative vari-
ations, the following semi-positive definite symmetric matrix
is obtained

wa Kwu Aw . Iy

[Kuw K ] { Au } - { Iy }, @2)

where

Kyw = / }-é—} / [B1T[A|[B4YdY | dX (23)
Q Yo

Kuu = / l—‘l;—} / [(BYT[AldY | [BldX (24)
Q Yo

Ky = / ()7 ﬁl;l / [AI[BCJaY | dx (25)
Q Yo

K, = / [Be)” !—\lf—l / [AldY | [BeldX (26)
Q

Yo

4‘_3 Springer

ru) = — / @7)

1
— [ BT [IIdY | dX
IVI/{ 71
Q Yo

{ry} = Fexs 'f[—B—E]T I—‘l}"l'/[n]dy dX. (28)
Q Yo

The nonlinear homogenization method solves Eq. (22) for
Au and Aw under the given boundary condition for the mac-
rostructure and the periodic boundary condition (Eq. 8) for
microscopic displacement. The number of degrees of free-
dom (NDOF) of this matrix is (NDOF of macrostructure +
quadrature point of macrostructure x NDOF of microstruc-
ture). An enormous computational cost is, however, required
to solve a small-scale problem. Moreover, it is difficult to
solve the form given in Eq. (8) due to memory limitations, and
generally, a transformation into the weak form takes place as
described below.

2.3 Characteristic deformation

In a nonlinear problem, to evaluate the response of a micro-
structure to macroscopic deformation in a similar way to that
in a linear problem [18], we obtain the following equation
by taking the derivative of Eq. (14) at each quadrature point
and substituting Eqgs. (5) and (16).
/(SZ:A:dZde—/(SZ:A:dFdY (29)
Yo Y

Since the macroscopic deformation gradient is independent
of the microscopic integration,
. 9Z -
/6Z:A:—:dY=—/8Z:A:IdY,
oF
Yo Y

(30)

where I is a fourth order identity tensor, and the micro-
structural response of the macroscopic deformation gradient
becomes

07 ow

oF (8F) v Gb
. ow (32)

X = (’)—F’

where a third order tensor y is the derivative of the
microscopic displacement with respect to the macroscopic
deformation gradient. This is referred to as the characteristic
deformation for nonlinear problems. The equation above can
be substituted into Eq. (30) yielding

/5Z:A:vyxdy=/3Z:A:IdY. (33)

Yo Yo
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By finite element discretization, the gradient of x becomes
Vyx = [B1x°], (34)

in a microscopic finite element. [x ] is the derivative of the
microscopic displacement for each component of F; in other
words, it is the matrix given below with nine kinds of char-
acteristic deformation.

Xt Xtz - X£33
X511 X2z - Xom3

x1=1"" T L 35)
Xl X1z - Xn33

where n is the NDOF of one finite element of the microstruc-
ture. The matrix equation becomes

K, [x9 =ry], (36)

K, = / BV [Al[B®1dY, 37)
Yo

[r, 1= / [BeY [AL1Y, (38)
Yo

from Eq. (33) about one microstructure. [ 2] denotes that
the quantity is evaluated at the macroscopic quadrature point.
The value of [x €], which is a (NDOF of the microstructure)
row x 9 column matrix, can be obtained by assembling [ x °].
[I] is a ninth order identity matrix, consisting of nine column
vectors {[;}(i = 1...9). Thus nine solutions can be obtained
for the right-hand side of Eq. (38), one for each {/;} corre-
sponding to a component of the deformation gradient. [ ]
can then be obtained by solving each different version of the
right-hand side of the above equation.

Multiplying by [B¢] and dividing by |V| on both sides,
Eq. (36) yields

1 — 1 —_
_ O Be) = — ¢
{VIKX[X 11B¢] IVI[I'X]{B 1 (39)

Now, by using Eq. (20)

l_‘lf—l L =K2 (40)
{171[13(][?] =KZ,, @1
and thus,

KQ, [x2B1=Kg,. (42)

The total is obtained at all macroscopic quadrature points in
respect of the above equation

Kwu,[X}[-B—] = Kyu, (43)
[B]= > [B°], (44)
[xI1= > [x?, (45)

where [ x ]is a matrix consisting of (quadrature points of mac-
rostructure x NDOF of microstructure) rows x 9 columns.

The characteristic deformations are the deformation incre-
ments for unit macroscopic deformation gradients at a par-
ticular instant and these describe the material properties and
strain distribution of the microstructure. Equation (29) can
also be considered a linear approximation of the microscopic
deformation. Therefore, the update of the microscopic
deformation by

Aw = —x : AF, (46)

corresponds to the Forward Euler method for microscopic
deformation from Eq. (32).

2.4 Homogenization method using characteristic
deformation mode superposition

In the mode superposition homogenization method, the
microscopic displacement increment is approximately
obtained by the linear combination of the previously cal-
culated characteristic deformation ¢ and the scaling factor
from Eq. (46) as in [10]

Awg = —oXrpo Doy, 47)

where « is the scaling factor for each mode. Inserting Eq. (47)
into Eq. (22) yields the matrix

[OX]T 0 Kuww Kuu lox] 0 A
i P I TP I

. [OX]T 0 Ty
1 Ii]r,

[OX]Twa[OX] [OX]TKwu Ao | [OX]Trw
Kuwloxl] | [ Au | |y, ’
49)

where [px] is the same kind of matrix as [x]. The above
equation can be represented as

Koo Kow | | A | _ | 1o
]:Kuoz Kuu} l AH} n {ru ] ’ (50)
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where

1 L
Koo = / Wi / lox 1" [B1" [A[B 1lox“1dY | dX,
Q Yo

1 -
Kou = — / g / lox“1" BV [AldY | (B°ldX, (52)
Q Yo

— 1 X .,
Ko = — / [Bel” K / [Al[B“1ox“1dY | dX,  (53)
Q

Yo
K, = / (5e)” T\lf_l / [A1dY | [Belx, (54)
Q Yo
vy} = Fexf“/l[“B—e]T T%/.[H]dY dX, (55)
.Q Yo
" 1
(T} = / o / lox“1" (BT [T11aY | dx. (56)
Q Yo

We obtain the matrix with unknowns A« and Au. Because
the NDOF of the matrix is reduced to (NDOF of macrostruc-
ture + quadrature point of macrostructure x 9), significant
computational cost is saved.

This technique is, however, an approximate means of
achieving equilibrium in a range of displacements represent-
ing linear combinations of g, as it is clear from Eq. (56) that
xo has an effect on the equilibrium. In this way, to approx-
imate the deformation in limited deformation patterns, an
approximation error is created depending on the analysis case
[15].

3 Algorithm for nonlinear homogenization method
3.1 Generalized algorithm

In Eq. (22), {Aw} can be statically condensed at the element
quadrature point level and becomes

{Aw) =K} (fry) — KyulAu)). (57)

{Aw} vanishes when the above equation is substituted in the
macroscopic equilibrium equation

(Kmt - I(uw1<—-I Kwu){Au} = {ru} - Kqu;zlu{rw}- (58)

ww
Now, the microscopic equilibrium hypothesized for F at this
time is

{ry} =0. (59

@ Springer

By using Egs. (43) and (57), we obtain [5]
(Aw} = =K} Kyu{Au} = —[x][Bl{Au}. (60)

ww

By using Eqgs. (43), (57), and (58) we can represent
(Kuu = Kuw [x1BD{AU} = (1}, (61)

where (Kyu — K[ x1[B]) is called the homogenized tangent
stiffness.

In differential equation form, from Egs. (14), (17), and
(31), this becomes

/SF: %/—{/(A:(I—Vyx))d)’ : AFdX
Q

Yy

= — 1
Q Yo

Microscopic equilibrium, Eq. (59),

o = / 87 : TIdY = 0, (63)
Yo

is a prerequisite of the above equation. To satisfy this non-
linear prerequisite, a Newton—Raphson iteration is needed.
Thus the above equation is linearized with respect to w while
F is fixed, and then discretized by the finite element method
using Eq. (19). At each quadrature point, the linearized self-
equilibrated equation becomes

/ (B [AJ[B*]dY (AwC) = — / BV [TdY.  (64)
Yo Yo

In the generalized algorithm, it is necessary to compute three
different calculations in each iteration.

1. Update macroscopic tangential homogenization x using
Eq. (36).

2. Solve microscopic equilibrium problem, Eq. (63), and
obtain the convergence solution {w} while F is fixed.

3. Solve the linearized macroscopic equilibrium equation,
Eq. (61), to obtain {u}.

Processes 1 and 2 need to be solved at all quadrature points
of the macrostructure and it is known that this contributes the
most to the calculation load [6]. These processes require pro-
hibitive computational cost and actual numerical simulation
is difficult.

3.2 Block LU factorization algorithm

We now present an algorithm that decreases the residual of
each scale simultaneously using the block LU factorization
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algorithm without microscopic convergence in the macro-
scopic iteration as in the conventional algorithm. By block
LU factorization, Eq. (22) becomes

Kuw O[T KplKuu][AW]  [ry
[Kuw s} [0 I Y R E R

where S is called the Schur-Complement. Referring to
Eq. (43),

S= Kuu - Kqu;,i;Kwu

=Ky — Kuw[X][E]

= Ky — B [x1" Kuu[x1BI, (66)
which corresponds to the homogenized tangent stiffness of

Eq. (61). The solution process for Eq. (65) is composed of
the forward substitution

_wa 0- AW _ I‘w
| Kuw S| [ Al } - { r, |’ (67)
and the backward substitution

AW [T KpLlKuu ][ Aw

Aﬁ} - 101 Au |’ (68)

Then, from Egs. (43), (67), and (68),

Ky AW} = {1y}, (69)
S{Au} = {ru} - KMU){AW}s (70)
[Aw} = {AW) — KL Ky {Au)

ww

= (AW} — [x]AF, (1)

hold. The calculation process is described below.

1. Solve linearized microscopic equilibrium equation,
Eq. (69), to obtain {Aw}.

2. Solve linearized macroscopic equilibrium equation,
Eq. (70), to obtain { Au}. Note that this equation is equiv-
alent to Eq. (58).

3. Update {Aw} using Eq. (71). We have already obtained
[x] from the calculation of S.

Three matrices, namely the micro, macro, and Schur-
Complement, need to be solved at each iteration. Although
the computational cost of this algorithm is expected to be
lower than that of the generalized algorithm since equilib-
rium of the microstructure is not required at every iteration,
the Schur-Complement update is still relatively expensive as
described above. A similar algorithm for a differential equa-
tion using the Block-Newton method has been proposed by
Yamada and Matsui [19].

3.3 Approximation of schur-complement in micro-macro
coupled equation

In the block LU factorization algorithm described in the
previous subsection, the linearized equations for the micro-
structure are solved first and then the increment for the
macro-displacements is solved using the Schur-Complement
that reflects the micro—macro interactions. These two steps
essentially define the computational cost because the third
step can be solved efficiently by reusing the characteristic
deformation that has already been computed in the evalua-
tion of the Schur-Complement in the second step. Although
the macroscopic equilibrium conditions must be satisfied as
well as the microscopic ones by making a convergence judg-
ment for the residuals, the Schur-Complement is a tangent
stiffness for prediction and does not influence the equilib-
rium directly. Hence, one of the requirements for efficient
nonlinear homogenization algorithms is to approximate the
Schur-Complement effectively. In this regard, we propose
the two algorithms given below.

A simple method is to approximate the Schur-Comple-
ment using the previously calculated characteristic deforma-
tion g x as in

S=Ku, — Kttw[X][E]

=K, — Kuw[OX][E]

= Kuu — BIT X1 Kywlox1[B], (72)
that is,
X1 Kuwlx] = X1 Kuwlox], (73)

is employed from Eq. (66). Henceforth, this method is
referred to as the modified block LU factorization algorithm
(MBFA). The other approach is to make use of the aforemen-
tioned Mode Superposition method in the approximation of
the Schur-Complement. The calculation process and an inter-
pretation thereof are given below.

1. Solve the linearized microscopic equilibrium equation,
Eq. (69), to obtain {AW}.

2. From Eq. (50), solve the mode superposition-based
linearized micro—macro coupled equation

Koo Ko Ac | Yo
[Ku(x Kzlu:l { Au} N {ru ] ’ (74)

to obtain {Au}. Then, S is approximated by the range of
the mode superposition method and the update of S can
be omitted.

3. The assumption of the mode superposition method fol-
lows from Eqgs. (46), (47), and (71), and { Aw} is updated
using

@. Springer
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{Aw} = {Aw} — [ox){Aa}. (75)

The meaning of the algorithm is now given. Block LU
factorization is applied to Eq. (74) yielding

Koo{Ad) = {ra}, (76)
Kuu — Ko Koa Kol AU} = {r,) — Kio{AG), 77
(Aa} = (A} — K3 Kyu{Au}. (78)

In Eq. (77), the macroscopic displacement is updated using
(Kuu - KL[Q'K(;o} Kocu)a (79)

which can be considered an approximation of the homoge-
nized tangent stiffness. Then, using Egs. (43) and (66), the
Schur-Complement becomes
S = Kux — Kuu[x1[B]

= Ky — K X001 Ko D™ (X1 K [XDIBI

= Kuw = K X100 Ko XD 7 1 Ko

= Kuu — Kuwlox(ox 1 Kuwlox D™ lox1" Kuu

= K — BI" [ Kuwlox]

* ([lox 1 Kuwlox D™ lox 1 Kuw[x1(B]

= Kuu - KuaK;oi Kau-, (80)
that is,
[T Kuwlx] = [x17 Kpwlox]

x(Tox 1" KuwloxD ™ ox 1 Kuwlxl, (81)

is employed. In the mode superposition method, since the
homogenized tangent stiffness corresponds to the exact value
with the mode updated at every Newton—-Raphson iteration as
described above, this method can give an approximate mean
of the homogenized tangent stiffness by decreasing the num-
ber of times that the mode is updated. This method is referred
to as the mode superposition algorithm (MSA).

4 Numerical examples

4.1 Comparison of computational costs and convergence
properties

With respect to computational cost and convergence, which
are of interest to us, we now compare the four methods
introduced in the previous section, namely, the generalized
algorithm (GA), block LU factorization algorithm (BFA),
modified block LU factorization algorithm (MBFA) and the
algorithm using mode superposition (MSA). Detailed algo-
rithms for the parallel computation of each of the methods
are given in Fig. 2. The GA calculates the microscopic equi-
librium at each quadrature point in every iteration. In contrast
to the GA, the BFA, MBFA, and MSA decrease the residual

@ Springer
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. Update the vatiables

{u} = {u} + {Au}
. if [{x,}| < Tol, then
Next step GOTO 1
else
Next iteration GOTO 2

[

[=

(@)

-

. Set calculation condition

™

. Perform in a unit cell at each quadrature point by paraell compu-
tation
Compute : Koy, {Tw?}
Solve : Ky {AW} == {ry}
Update the microscopic deformation: {w} = {w} + {AW}
In the BFA, everytime solve for update x : Ky [x?] = [ry]
( In the MBFA, sometime solve for update xq : Ky[x?] = fry] )
Compute : S, {r,} - Ky, {AW}
3. Communication using MPIallreduce
Assemble : 8, {r,} - Kyp{AW}
4. Solve
S{Au} = {ru} - Ku,{AW%}
. Update the vatiables
{u} = {u} + {Au}
In the BFA, {w} = {W}- [x]AF
In the MBFA, {w} = {W}— [x0]AF
6. if {ry} < Tol,[{r,} < Tol, then
Next step GOTO 1
else
Next iteration GOTO 2

o

(b)

ot

. Set calculation condition

N

. Perform in a unit cell at each quadrature point by paraell compu-
tation
Compute : Koy, {ro}
Solve : Kyw{AW} = {1y}
Update the microscopic deformation: {w} = {w} + {AW%}
( Sometime solve for update xo : Ky [x?] = [ry] )
Compute : Kyu, Kuo, Ko Kaas {Tat, {ru}
3. Communication using MPlallreduce
Assemble : Ky, Kua, Ko Kooy {Tats {Tu}

4. Solve
Koo Kou Aa _ ) Ta
Kua Kuu Au Ty

. Update the vatiables

e

{u} = {u} + {Au}
{a} = {a} + {Aa}
{w} = {W}~ [ox{ e}
Lt [{re}| < Tol, |[{ry}| < Tol, then
Next step GOTO 1
else
Next iteration GOTO 2

=3

(c)

Fig. 2 Algorithms for parallel computation using the message pass-
ing interface (MPI). a Algorithms for GA. b Algorithms for BFA and
MBFA. ¢ Algorithms for MSA
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Fig. 3 FE models used in the calculation time evaluation. a 64 nodes,
27 elements (minimum size). b 1000 nodes, 729 elements

Table 1 Material constants for the models used in the calculation time
evaluation

E(kPa] v
Material A in Fig. 3 0.1 0.3
Material B in Fig. 3 10.0 03

of both scales simultaneously. Moreover, in the MBFA and
MSA the straightforward update of S is avoided. We per-
formed a 20% tensile test using the mesh of the block shown
in Fig.3 as the microstructure, and a single 8-node element
as the macrostructure. The minimum size of the mesh is con-
structed from 27 (3 x 3 x 3) elements as shown in Fig. 3a,
with the stiffness of the center element different from the
rest.

The NDOF is adjusted by adding the same number of min-
imum units in each direction (e.g. Fig.3b). The St. Venant
hyperelastic material is used for the constitutive equations

1
W = Ek(z‘rE)z +uE:E, (82)
w
S:%—Ez(xl®l+2ul):E=C:E, (83)
lijrt = 8ixd i1, (84)
Ev E

FEdrwacyy T ay ®3)
where I is a second order identity tensor, A and @ are Lame
constants, and E and v are, respectively, Young’s modulus
and Poisson’s ratio. C is a fourth order constant elasticity ten-
sor and the relationship between S and E is linear. The mate-
rial constants are given in Table 1. If the material constants
are assumed to be uniform in the microstructure, the solu-
tions obtained by these methods agree completely with the
theoretical solution in the case of infinitesimal deformation.
We have thus confirmed the correctness of the formulations
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Fig. 4 Comparison of calculation time. a Iterative solver. b Direct
solver

30000

and computer programs. The relationship between calcula-
tion time and NDOF of the microstructure for each algorithm
is depicted in Fig. 4 for cases where an iterative solver (ILU
preconditioned GMRES method) or direct solver (skyline
method) are used. The breakdown of calculation time and
number of iterations in each process, where the NDOF of the
microstructure is 31,944, are given in Table 2. Convergence is
judged to occur when the root sum square reaches 1 x 1010
times the initial value. As shown in Fig. 4, the calculation time
of the BFA using an iterative solver slightly exceeds that of
the GA. In the BFA, equilibrium of the microstructure is not
required within an iteration for the sake of computational
efficiency, but this may result in more iterations compared
with the GA. Table 2 illustrates this, in that the BFA requires
5 iterations whereas the GA requires 4. We need to calculate
the characteristic deformation to update the Schur-Comple-
ment; this means that the nine different right-hand sides of
Eg. (33) must be solved in the case of the iterative solver.
Consequently, the increased number of iterations results in
a deterioration in the performance of the BFA. If a direct
solver is used instead, the result of the LU decomposition

@ Springer
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Table 2 Calculation time and number of iterations in each process

Calculation  Calculation of Total (s) No. of
of x (s) equilibrium in the iterations
microscopic model (s)
a. Iterative solver
GA 670 211 906
BEA 805 107 942 5
MBFA 17 195 273 11
MSA 21 113 186 5
b. Direct solver
GA 19,816 36,949 56,791
BFA 23,689 18,492 42,212 5
MBFA 451 40,050 40,557 11
MSA 457 18,237 18,746 5

of the stiffness matrix can be reused in the computation of
the characteristic deformation, and as a result, the compu-
tational cost of the BFA is 20% less than that of the GA,
despite the BFA using one more iteration than the GA. On
the other hand, the MBFA is much faster than both the BFA
and the GA when an iterative solver is used, although in the
case of a direct solver there is almost no difference between
the MBFA and BFA. This is because the calculation cost of
the mode update in the BFA is similar to that of the increased
iterations in the MBFA. However, convergence in the MBFA
is slow as shown in Fig. 5 and it is anticipated that for strong
nonlinear problems, convergence may not be achieved at all.
Here, the characteristic deformation was approximated by
that obtained at the beginning of the analysis. Convergence
can be improved by incorporating more frequent updates, at
the expense of CPU time. Compared with these methods,
the MSA always exhibits excellent speed and convergence.
The advantage of the MSA is twofold. First, the approxi-
mation of the Schur-Complement is more accurate than in

NN T SO0 T O T T T T A

Trr1irrrrrrrrrrrort

Macrosopic Relative Residual
S

iteration

—3—Generalized algorithm(GA)

—A—Block LU factorization(BFA)
—8—Modified Block LU factorization(MBFA)
—O—Maode superposition(MSA)

Fig. 5 Comparison of convergence property

@_ Springer

the MBFA, i.e., Eq. (80) gives a superior approximation than
Eq. (72). Second, in an iteration of the MSA, the microscopic
equation is solved in Eq. (75) in terms of A« as well as in
Eq. (74) with Eq. (69). These advantages should contribute
to an accelerated convergence of the microscopic equation
as well as the macroscopic equation. Although the St. Venant
hyperelastic material assumed here has relatively weak non-
linearity, the number of iterations does not increase up to a
large deformation range, even with the initial characteristic
deformation being used for ¢x. However, a periodic update
of o is required in the case of strong nonlinear material,
such as an elasto-plastic material. If o x is updated at every
iteration, the homogenized tangent stiffness corresponds to
the exact value as described in Eq. (80).

4.2 Application to ventricle—cardiomyocyte analysis
with parallel computation

As seen in Table2, most of the calculation cost relates to
the microscopic equilibrium (Eq. (69)) when the MBFA or
MSA is used. In addition, as the NDOF of the microscopic
model becomes larger, the computational cost for the mac-
roscopic model becomes more negligible. It is therefore cru-
cial to decrease the time for microscopic calculation in real
problems. Since Eq. (69) holds independently at each mac-
roscopic quadrature point, parallel computation is effective
in the homogenization method. In other words, microscopic
models can be distributed equally to the available cores, and
this directly accelerates the microscopic calculation accord-
ing to the number of cores. Moreover, since the memory is
shared by fewer microscopic models in the parallel compu-
tation, a greater NDOF of the microstructure can be handled.

Figures 6 and 7 show a simplified human cardiomyocyte—
ventricle model, to which we have applied the MSA. As
shown on the left and in the center of Fig.7 a simplified
cardiomyocyte model is constructed with extracellular and
intracellular matrices and gap junctions. The total NDOF is
20385. If the models are arrayed periodically in the three
directions as depicted on the right of the figure, a fairly accu-
rate imitation of a microgram of real tissue is obtained. The

() ®)

6534 clemonts, 1 quadratun: point

Fig. 6 FE meshes of ventricles as macroscopic model. a FE mesh. b
Fiber orientation
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Extracellular Matrix  Intracellular Matrix  Gap Junction

Fig. 7 FE meshes of cardiomyocytes as microscopic model

Table 3 Material constants for the cell model

Cq Cy K
Gap Junction 1x 103 1x10° 2% 10°
Intracellular Matrix 1x 104 1 x 104 2 x 10*
Extracellular Matrix 1x 103 1x 10 2 x 10°

Mooney-Rivlin material using reduced invariants is adopted
for the constitutive equation, with the material constants listed
in Table 3.

W =1, —3)+ Gl —3) + g-UZ (86)
3 I, . I

L=—, H.=—% 87)
Tl T

U=J-1, (88)

where U is the volumetric strain energy function and « is
the bulk modulus. The ventricle model is constructed based
on CT imaging, with fiber directions distributed from —90
to 60 degrees, relative to the plane perpendicular to the long
axis of the ventricle. The fiber direction denotes the long axis
(z-axis) of the cardiomyocyte model, and therefore, proper
rotation is taken into consideration for each micromodel. In
this model, the intracellular matrix is defined as a function
of a parameter that represents the excitation of the myocyte,
and this parameter is varied at every time step to represent
the transient contraction force. The homogenization method
is applied to 6,554 elements covering the greater region of
the ventricle, whereas the conventional Mooney-Rivlin hy-
perelastic constitutive law is assumed for the limited regions
at the base and apex. To reduce the computational cost, a
single myocyte (micromodel) is assigned to each finite ele-
ment of the ventricle, i.e., 6,554 cardiomyocyte models are
embedded in the ventricle model. The total NDOF, including
those of the ventricles, amounts to 133,609,263.

The computer used was an IBM Blade Center consisting
of 336 Power6 (4.0 GHz) processors. Considering the size of

[N I O R L % B =)
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Green-Lagrange Strain

<o

step

—&— Minimum Green-Lagrenge Strain
—o— Maximum Green-Lagrenge Strain
—o— Meam Green-Lagrenge Strain
—e— Number of Iterations

Fig. 8 Green-Lagrenge strains and nunber of iterations at each step

T T T g L
L

| ~==-Ideal Value Pl

L ] L 1
100 200 300
Number of Cores

Fig. 9 Speed up in parallel computation

the problem, convergence was deemed to occur when the root
sum square of the macro and micro residuals was 1 x 107>
times less than the initial value. Figure 8 shows the maxi-
mum, the minimum and the mean Green-Lagrange strains
throughout the ventricle model, and the number of iterations
of the MSA at each time step. The strains are measured in
the fiber direction. Although the maximum and the minimum
strains reach £20%, an excellent convergence property was
observed. Figure 9 shows the resulting scalability, by depict-
ing the speed up rate relative to a hundred-core computation.
As shown in this figure, satisfactory parallel performance
was obtained by the proposed algorithm. The deformations
of the ventricle and a representative myocyte in the diastole
and the systole are exemplified in Fig. 10. The CPU time for
the completion of a cardiac cycle was about 24 h when using
300 cores. The proposed method thus allows us to deal with
large-scale problems.

5 Conclusion

To reduce the computational cost of the nonlinear homoge-
nization method, the theoretical framework was reassessed

@_ Springer
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Systole

Fig. 10 Deformations of macro and microstructures in diastole and
systole

from the perspective of block LU factorization of the micro—
macro coupled equation. Based on the relation between the
characteristic deformation and the Schur-Complement as the
homogenized tangent stiffness, a couple of approximation
methods were introduced, namely, a simple scheme to reuse
the old characteristic deformation (MBFA) and a sophisti-
cated method based on the mode-superposition method
(MSA) developed by our group. It is noted that accuracy
is preserved in these approximation methods by incorporat-
ing the equilibrium conditions in both scales. Then, using a
simplified FE model, the conventional algorithm (GA), a rel-
ative algorithm originating from the block LU factorization
(BFA), the MBFA, and the MSA were compared and dis-
cussed. Of these methods, the MSA was found to be the best.
Then, using the MSA, a large-scale human ventricle—cardio-
myocyte simulation was performed on an IBM Blade Center
consisting of 336 Power6 processors, and good parallel per-
formance was demonstrated. We plan to use the proposed
homogenization algorithm in a whole-heart simulation on a
massively parallel computer in the near future.
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A Parallel Multilevel Technique

for Solving the Bidomain Equation
on a Human Heart with

Purkinje Fibers and a Torso Model*

Takumi Washiot
Jun-ichi Okada'
Toshiaki Hisadat

Abstract. In this paper, we present a multigrid method and its implementation on parallel computers
to solve the bidomain equation that appears in excitation propagation analysis of the
human heart with the torso. The bidomain equation is discretized with the finite element
method on a composite mesh composed of a fine voxel mesh around the heart and a
coarse voxel mesh covering the torso. The extracellular potential problem on the torso is
formulated as a variational problem with a constraint at the interface of the fine and coarse
meshes. We show that this formulation naturally satisfies the conservation property of the
electric currents and fits into the multilevel adaptive solution technique framework. We
also present our special treatment of the Purkinje fiber network in the multigrid algorithm
where it is modeled as multiway branching lines connected to the nodes in the voxel
mesh of the heart. A parallel implementation of the proposed multigrid algorithm on
distributed memory computers is presented and its performance is evaluated using real-life
applications.

Key words. bidomain equation, excitation propagation, torso, multigrid, composite mesh
AMS subject classifications. 65N50, 656N30, 92C30
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I. Introduction. The bidomain equation is a widely accepted mathematical mo-
del for describing the excitation propagation and external stimulation of heart tissue
[18, 23]. Tt consists of two partial differential equations (PDEs) coupled to ordinary
differential equations (ODEs). The two PDEs describe the intra- and extracellular
electrical circuits, respectively, that are separated by cell membranes. The ODEs
incorporate the behavior of the cell membranes (capacitance of the membrane and
the switching of several kinds of ion channels) to determine the currents between
the two circuits. A simplified representation of this bidomain equation can be seen in
Figure 1.1. The upper panel shows an array of cardiac myocytes which are electrically
connected to each other by gap junctions and are surrounded by the extracellular
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liquids. Due to the capacitance effect of the cell membranes (red lines), there are
discontinuities of the electrical potential field across the membranes in this microscopic
view. In the bidomain equation, an electrical analogy of this situation is made as
depicted in the lower left panel of Figure 1.1. Here, we assume that there are two
continuous potential fields, one for the extracellular potential ¢ and the other for the
intracellular potential ¢;, which are separated by the capacitor (cell membranes) and
connected by the ion channels. We also assume that the intracellular and extracellular
potential fields are connected by the conductances corresponding to the gap junctions
and the extracellular liquids, respectively. As the conductance inside the myocyte is
much larger than that of the gap junctions, it can be ignored for the intracellular
potential field. For computation of the ion channel current Iy, the Luo-Rudy model
[13] and the Noble model [21] have been implemented for ventricular myocytes, while
the Nattel model [6] was used for atrial myocytes in our simulator. For example, the
majority of ion channel currents in the Luo—Rudy model are given as

(1.1) Lion = INna + Isi + Ik + Ix1 + -+,

(1.2) INa =GNa-m® - h-j- (Vin = Exa),

(1.3) v Issi=gsi-d- f-(Va — Esi), ...,

where Ina, Isi, Ik, ... are the electrical currents through the individual ion channels

driven by the differences of the transmembrane potential Vi, = ¢; — ¢ and the
potentials in the equilibrium for the individual ions (Exa, Esi,...). The coefficients
of these potential differences are given by the products of the maximal values of the
conductances (Jna, Jsi,--.) and the gating variables (m, h, j, d, f,...). A gating
variable x is time-varying and is governed by the differential equation

(1.4) ’C‘Z”EB‘ = aw(Vm)(l - 93) - ﬁ:c(vm)xy

dt

where the functions o, and [, are given for each gating variable z. Note that there are
other types of ion channel currents that depend on the intracellular ion concentrations.
Further, there are more complex models in which some ion channels are influenced by
the metabolic reactions [5] and mechanical stimulations [11]. Our heart simulator (UT
heart simulator [24]) attempts to integrate these electrophysiological phenomena and
couple them with the mechanical function of the heart as a blood pump. In cardiac
myocytes, Ca®* plays an important role in electrical activity and in controlling the
contraction force of myofibrils. As depicted in the lower right panel of Figure 1.1,
Ca’" release and uptake at the sarcoplasmic reticulum (SR) are also incorporated in
the aforementioned cardiac myocyte models.

In this paper, we utilize the bidomain equation in which the geometries and
material properties of the heart and the torso are incorporated. As depicted in Figure
1.2, let Qg be the domain of the heart muscle and I'y the boundary of Qy. The
explanations for the subdomains Q¢ and §2p outside Q2 are given later in this section.
The bidomain equation for the intracellular potential ¢; and the extracellular potential
¢ coupled through the transmembrane potential Vi, = ¢; — ¢ on the heart muscle
is given by

(1.5) -V aNcbi = *ﬁfm on QH,
(1.6) ’fiH . crngbi =0 on FH,
(17) ~V.0Ve = Bl on Qg,
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Fig. 1.1  The array of cardiac cells (upper panel), its electrical analogy (lower left panel), and the
ion channels at the cell membrane and at the SR inside the cell (lower right panel).

Q) (torso)

Fig. 1.2 Two-dimensional itmage of the heart domain Qp, the torso outside the heart Qc, the
electrodes Q2 p, and their boundaries.

(18) ﬁH-Uav¢e:JH on FH,
OV
(1.9) Iy = Cm_@t_ + Lion(Vim, S) on Q.

Here, o; and o, are the intra- and extracellular conductivity tensors, respectively,
0 is the surface-to-volume ratio of the tissue, Cy, is the membrane capacitance per
unit area, and I, is the transmembrane current per unit area. The transmembrane
current I, is a combination of a capacitive current Cy, 0V, /0t and an ionic current
Tion(Vin, S) passing through several kinds of ion channels, where S is a state vector
composed of gating variables. Jg is a current entering the extracellular domain of
the heart through I'y, and 7y is the outward normal vector on I'y.

The intra- and extracellular conductivity tensors of the myocardium (heart mus-
cle) are anisotropic. They are given by

(1.10) O =cnfR@nys+csNs @Ng + CpNp, @ Ny,
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dium 90° =———————) Epicardium -60°

Papillary Muscles
P Apex

Base

Fig. 1.3 Fiber directions in the ventricles. The orientation of a fiber varies from +90° to —60°
relative to the circumferential direction in a plane perpendicular to the transmural direction
from the endocardiac to the epicardiac layer.

Table 1.1  Conductivities [mS/cm] of the myocardial cells and the surface-to-volume ratio of the

tissue B [1/ecm].

Cells Intra (f,s,n) | Extra (f,s,n) 8
Ventricle | 7.2, 2.4, 2.0 | 6.0,3.0,3.0 | 2000
Atrium 7.0, 7.0,7.0 7.0, 7.0, 7.0 2000

where o = oy or g.. Here, ny,n,, and n, denote the fiber, sheet, and sheet-normal
directions, respectively, in the orthonormal basis [9]. The bases vary depending on
the position in the heart. In general, the conductivity along the fiber direction cg
is the largest of the three. The orientations of the myocytes (fiber directions) have
been modeled based on anatomical observations. Figure 1.3 depicts the distributions
of the fiber directions in our simulation. The muscle fibers have a helical structure
within the left ventricle (LV). Based on histological studies, fiber directions can be
determined as the orientation of a fiber varies from +90° to —60° relative to the
circumferential direction in a plane perpendicular to the transmural direction from
the endocardiac to the epicardiac layer, resulting in a very realistic model for the
fiber directions. Table 1.1 gives the conductivities in the three directions and the
surface-to-volume ratio for our simulations. These conductivities are at least two
times larger than the standard values. Due to the limitation of our computational
resources, the local mesh size is set to 0.4 mm, which is still too large to obtain a
proper wave propagation velocity (less than 0.1 mm is required). The conductivities
have therefore been adjusted in order to obtain a usable wave propagation velocity.

Strong demands from physiological application areas require three-dimensional
simulations to include the torso surrounding the heart as well. Physically, cardiac
electrical activity results in a current flow in the torso via the extracellular potential
field. Thus, the extracellular PDE should be extended from the heart to the torso via
the boundary current Jy in (1.8).

One of the applications that requires the torso model is the simulation of an im-
plantable cardioverter defibrillator (ICD) [12]. This device delivers a strong electrical
shock to the heart through the electrodes when a fatal arrhythmia is detected, as

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Fig. 1.4 Two electrodes of an ICD and a typical voltage profile between them.

depicted in Figure 1.4. By optimizing the arrangement of electrodes and the tem-
poral profile of the electrical current, an ICD can be developed that is much more
comfortable than the device currently used.

The other important application is a simulation of the electrocardiogram (ECG)
routinely used in clinical practice. In order to reproduce the ECG based on the real
physiological system, modeling of the so-called Purkinje fiber network is indispensable.
The Purkinje fibers are located on the inner ventricular walls of the heart with large
free-running sections. They are some of the specialized cardiac muscle fibers that
form the impulse-conducting network of the heart, and they transmit impulses rapidly
from the atrioventricular node to the ventricles. In our simulator, the DiFrancesco—
Noble cell model [7] is used for the Purkinje fibers and the network is modeled from
the atrioventricular node to the myocardium. With this model, we can analyze the
relations between the body surface potential and the excitation propagation in the
heart in a healthy condition and in various conditions involving heart disease. This
research, therefore, contributes to early recognition and treatment through diagnosis
with an ECG. Furthermore, a mechanism of arrhythmia that originates from the
Purkinje fiber network, and the impact of the Purkinje fiber network at defibrillation,
can be clarified by these simulations. Figure 1.5 shows the first half of one normal
heartbeat as computed by our simulator. In the upper part, the membrane potentials
on the Purkinje fiber and the heart muscle, as well as the body surface potentials, are
depicted at typical times. At the bottom of the figure, the second-lead ECG obtained
from this computation is depicted. This agrees well with actual clinical observations.

In our heart simulator, mechanical simulation of the beating heart, including
intracavitary blood flow and movements of valve leaflets, can be also performed using
the fluid-structure interaction finite element method [34, 35] (see Figure 1.6). In
this simulation, the Ca?' concentration data obtained from our electrophysiology
model is applied to an excitation-contraction coupling model of sarcomere dynamics
to compute the contraction force of every finite element of the heart muscle mesh. This
results in the synchronous contraction of the heart and blood ejection. Thus far, we
have been able to retrieve and present the time courses of intracavitary volumes and
blood pressures and so forth for both healthy and diseased hearts. Such a simulation
allows us to examine the influence of various electrophysiological phenomena on the
mechanics of the heart [24].

The mathematical formulation for the extension of the extracellular potential
equation to the torso is given as follows. As depicted in Figure 1.2, let Q¢ be the
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