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and mineralocorticoid receptor-independent yENaC
enhancement in AB-R mice and AB-H mice. The amount
of BENaC did not differ between groups. Although it is
generally accepted that ENaC activation occurs through
mineralocorticoid receptor activation [7,8], mineralocor-
ticoid receptor-independent ENaC activation has been
reported [30]. The mechanisms of mineralocorticoid
receptor-independent yENaC activation, however, are
unknown. We did not measure Na concentration in the
CSF in the present study because of technical difficulties,
and we did not directly evaluate the effects of ENaC
activity on Na transport. Furthermore, ENaC expression
levels may reflect both epithelial components and neural
components [6]. We did not address these issues in the
present study, and further studies are needed.

In conclusion, the present findings strongly suggest that
activation of brain aENaC and ATIR through miner-
alocorticoid receptor contributes to the acquisition of Na
sensitivity to induce sympathoexcitation. High salt
intake accelerates sympathetic activation and L'V systolic
dysfunction in a pressure overload model. '
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BASIC RESEARCH STUDIES

Nanoparticle-mediated endothelial cell-selective
delivery of pitavastatin induces functional
collateral arteries (therapeutic arteriogenesis) in a
rabbit model of chronic hind limb ischemia

Shinichiro Oda, MD,* Ryoji Nagahama, MSc,” Kaku Nakano, PhD,” Tetsuya Matoba, MD,"
Mitsuki Kubo, MD, PhD,® Kenji Sunagawa, MD, PhD,” Ryuji Tominaga, MD, PhD,* and
Kensuke Egashira, MD, PhD,® Fukuoka, Japan

Objectives: We recently demonstrated in a murine model that nanoparticle-mediated delivery of pitavastatin into vascular
endothelial cells effectively increased therapeutic neovascularization. For the development of a clinically applicable
approach, further investigations are necessary to assess whether this novel system can induce the development of collateral
arteries (arteriogenesis) in a chronic ischemia setting in larger animals.

Methods: Chronic hind limb ischemia was induced in rabbits. They were administered single injections of nanoparticles
loaded with pitavastatin (0.05, 0.15, and 0.5 mg/kg) into ischemic muscle.

Results: Treatment with pitavastatin nanoparticles (0.5 mg/kg), but not other nanoparticles, induced angiographically visible
arteriogenesis. The effects of intramuscular injections of phosphate-buffered saline, fluorescein isothiocyanate (FITC)-loaded
nanoparticles, pitavastatin (0.5 mg/kg), or pitavastatin (0.5 mg/kg) nanoparticles were examined. FITC nanoparticles were
detected mainly in endothelial cells of the ischemic muscles for up to 4 weeks. Treatment with pitavastatin nanoparticles, but not
other treatments, induced therapeutic arteriogenesis and ameliorated exercise-induced ischemia, suggesting the development of
functional collateral arteries. Pretreatment with nanoparticles loaded with vatalanib, a vascular endothelial growth factor receptor
(VEGF) tyrosine kinase inhibitor, abrogated the therapeutic effects of pitavastatin nanoparticles. Separate experiments with mice
deficient for VEGF receptor tyrosine kinase demonstrated a crucial role of VEGF receptor signals in the therapeutic angiogenic
effects.

Conclusions: The nanotechnology platform assessed in this study (nanoparticle-mediated endothelial cell-selective delivery
of pitavastatin) may be developed as a clinically feasible and promising strategy for therapeutic arteriogenesis in patients.
(J Vasc Surg 2010;52:412-20.)

Clinical Relevance: Restoration of tissue perfusion in patients with critical limb ischemia is a major therapeutic goal.
Recent clinical trials designed to induce neovascularization by administering exogenous angiogenic growth factors or cells
failed to demonstrate a decisive clinical benefit. A controlled drug delivery system for a new approach to therapeutic
neovascularization therefore would be more favorable. In the present study, we applied nanoparticle-mediated delivery
system and report that endothelial cell-selective delivery of pitavastatin increased the development of collateral arteries
and improved exercise-induced ischemia in a rabbit model of chronic hind limb ischemia. This nanotechnology platform
is a promising strategy for the treatment of patients with severe organ ischemia and represents a significant advance in
therapeutic arteriogenesis over current approaches.

The vascular endothelium is a major target for the
pleiotropic (nonlipid-related) vascular protective effects of
the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors
(statins).’ Statins improve endothelial dysfunction'® and
exert multiple vascular protective properties, mainly by
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enhancing the activity of endothelial nitric oxide synthase.
Statins increase the angiogenic activity of mature endothe-
lial cells, as well as that of endothelial progenitor cells, and
augment neovascularization (arteriogenesis, vasculogen-
esis, and angiogenesis) in the ischemic hearts and limbs of
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experimental animals.**® Statins also attenuate atheroscle-
rosis formation” and pose little potential risk for tumor
angiogenesis, in contrast to angiogenic growth factors.®

Most of these beneficial effects of statins on therapeutic
neovascularization, however, were observed after the daily
administration of high doses in experimental animals, a
regimen that could lead to serious adverse side effects in a
clinical setting. A clinical study of 500 patients with coro-
nary artery disease reported no effects of statins within the
clinical dose range on indices of functional collateral devel-
opment (arteriogenesis).”

To optimize the therapeutic effects of statins in the
induction of therapeutic neovascularization, we recently
applied nanotechnology and reported that nanoparticle
(NP)-mediated pitavastatin delivery into vascular endothe-
lial cells effectively increased therapeutic neovascularization
with no serious side effects in a murine model of acute hind
limb ischemia.’® The beneficial effects induced by pitavastatin-
NP were mediated by increased activity of endothelial nitric
oxide synthase (eNOS) and multiple endogenous angio-
genic growth factors, suggesting that this NP-mediated
cell-selective delivery produces a well-harmonized integra-
tive system for therapeutic neovascularization. Impor-
tantly, this NP-mediated delivery system was as effective at
a dose that is approximately 100 to 300 times lower than
the cumulative systemic dose. To translate our experimen-
tal findings in the murine model of acute hind limb isch-
emia to clinically applicable approaches, it is desirable to
determine whether NP-mediated statin delivery into vascu-
lar endothelial cells induces the development of collateral
arteries (arteriogenesis) and thus restores tissue perfusion in
a setting of chronic ischemia in larger animals.

Recent evidence suggests that arteriogenesis is a very
important adaptive mechanism for the restoration of perfu-
sion to critically ischemic tissue.'* Arteriogenesis is the
process whereby a preexisting arteriole from the resistance
vessel class matures into an artery of the conductance vessel
class, whereas angiogenesis is the process by which a sprout-
ing capillary originates from a preexisting capillary. Vascu-
logenesis represents the differentiation of bone marrow-
derived endothelial progenitor cells to form a primitive
vasculature. The structure and molecular interactions of
arteriogenesis differ from those of angiogenesis and vascu-
logenesis.

Contrary to conventional paradigms,’* angiogenesis
and vasculogenesis by themselves cannot replace the con-
ductance capacity of collateral arteries in the absence of
arteriogenesis.’"'* According to the results of clinical
trials, the question has been raised about whether the
angiogenesis/vasculogenesis induced by single angiogenic
growth factors can induce functional collateral arteries.****
A high local concentration of angiogenic growth factors
increases the risk of atherosclerosis’®*® and tumor angio-
genesis.'® Therefore, an attempt to stimulate the develop-
ment of functional collateral arteries through the process of
arteriogenesis represents an evolution toward a new thera-
peutic strategy for patients with severe ischemia due to
atherosclerotic vascular disease.
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The primary aim of this study was to test the hypothesis
that NP-mediated delivery of pitavastatin to endothelial
cells can be a realistic strategy for promoting functional
collateral arteries and for improving exercise-induced isch-
emia in a rabbit model of chronic hind limb ischemia.

MATERIALS AND METHODS

The study protocol was reviewed and approved by the
Committee on Ethics in Animal Experiments, Kyushu Uni-
versity Faculty of Medicine. The experiments were con-
ducted according to the Guidelines of the American Phys-
iological Society.

Preparation of NP. Anionic poly(lactic-co-glycolic
acid) (PLGA) NP incorporated with fluorescein-isothiocyanate
(FITC), pitavastatin, or vatalanib®® (an inhibitor of recep-
tor tyrosine kinase of vascular endothelial cell growth factor
[VEGF] receptors 1-3; a gift of Novartis Pharma) were
prepared by a emulsion solvent diffusion method.*® The
FITC-, pitavastatin-, and vatalanib-incorporated NP con-
tained (w/v) 5% FITC, 6.3% pitavastatin, and 6.1% vata-
lanib, respectively. The diameter of PLGA NP was 196 =
29 nm. Additional details are provided in the Appendix
(online only).

Angiogenesis activity of human endothelial cells.
Angiogenesis of human endothelial cells (HECs) was tested
by 2-dimensional Matrigel assay, as previously described.*®
Additional details are provided in the Appendix (online
only).

Rabbit model of chronic hind limb ischemia and
treatments. Male Japanese White rabbits were used. To
induce chronic hind limb ischemia, the left femoral artery
was completely excised from its proximal origin at the
branchpoint of the external iliac artery to the bifurcation of
the saphenous and popliteal arteries.>**? For intramuscular
injection, drugs incorporated with or without NI were
suspended in 5 mL of phosphate-buffered saline (PBS) and
injected into 10 different sites in the left medial thigh
muscles with a 27-gauge needle 7 days after femoral artery
excision (Appendix Fig I, online only). To define the
dose-response relationship of the proarteriogenic effects of
pitavastatin-NP, animals were randomly divided into a PBS
group and three other treatment groups that received an
intramuscular injection of pitavastatin-NP containing the
three different doses of pitavastatin (0.05, 0.15, and 0.5
mg/kg).

In another set of experiments, animals were randomly
distributed in groups receiving intramuscular injections of
PBS, pitavastatin (0.5 mg/kg), FITC-NP, or pitavastatin
(0.5 mg/kg)-NP. The effect of vatalanib-NP on arterio-
genesis induced by pitavastatin-NP was also examined in
another set of animals treated intramuscularly with vatalanib-
NP or with vatalanib-NP and pitavastatin-NP. Additional
details are provided in the Appendix (on-line only).

Effects of pitavastatin-NP on collateral arterjal
development 28 days after treatment

Internal iliac angiography. A 4Fr end-hole infusion
catheter was introduced into the right common carotid
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Fig 1. Effects of six statins on angiogenic capacity of human endothelial cells in vitro is shown by quantitative analysis
of tube formation (tube length in mm per well) in six independent experiments. * P < .01 vs control by one-way analysis

of variance with the Dunnett multiple comparison test.

artery and advanced to the left internal iliac artery at the
level of the interspaces between the seventh lumbar and the
first sacral vertebrae. After an intra-arterial injection of
nitroglycerin (0.25 mg), 5 mL of contrast medium was
injected at a rate of 1 mL/s. The 3-second angiogram was
used for analysis of the angiographic score. A composite of
5-mm? grids was placed over the angiogram. The total
number of grids that were crossed by visible arteries was
divided by the total number of grids in the area of the
medial thigh, as previously described.?!??

Capillary and arteriolar density. Histologic evaluation
was performed for 5-um frozen sections or 5-um paraffin-
embedded sections of the adductor skeletal muscles of the isch-
emic limb. CD31" (Dako, Tokyo, Japan) capillary endothelial
cells were counted. Arterioles were determined by immunostain-
ing with a-smooth muscle actin (a-SMA; Dako) and anti-mouse
immunoglobulin G secondary antibody (Alexa 546; Molecular
Probes, Invitrogen, Carlsbad, Calif), and vessels surrounded by
smooth muscle cells were counted. Nuclei were counterstained
with 4’ ,6-diamidino-2-phenylindole (Vector Shield, Vector Lab-
oratories, Burlingame, Calif). Capillary and arteriolar density
were calculated as capillaries/mm? and arterioloes/mm? aver-
aged from five randomly selected fields.?!*? To ensure that the
density was not overestimated or underestimated as a conse-
quence of myocyte atrophy or edema, the capillary/muscle and
arteriolar /muscle fiber ratios were also evaluated.

Tissue oximetry, Tissue oxygen content was mea-
sured by fluorescence quenching technique using an
OxyLab PO, monitor (Oxford Optronix Ltd, Oxfordshire,
UK) fiberoptic probe mounted to a micromanipulator, as
previously described.?® Ischemic limb was exposed on an
anesthetized animal, and a 18-gauge needle was used to
insert the fiberoptic probe to the adductor skeletal muscles
of the ischemic limb at a 90° angle to contact the adductor
skeletal muscles. The stable Po, reading, before a rapid rise

to at least 60 mm Hg that signaled loss of tissue contact,
was used as the tissue oxygen partial pressure.

Effects of pitavastatin-NP on forced ischemia in-
duced by electrical pulses. The functional status of collat-
eral arterial development was examined 28 days after treatment
with PBS, FITC-NP, pitavastatin only, and pitavastatin-
NP. After anesthesia, 21-gauge catheters were inserted into
the right femoral artery and the left femoral vein for blood
sampling. Two 21-gauge needles were inserted into the left
medial thigh and the left gastrocnemius muscle. The elec-
trode wires were then connected to the needles and plugged
into the stimulator (Electronic Stimulator, Model SEN-7203,
NIHON KOHDEN, Tokyo, Japan). The stimulating volt-
age was set at 5 V for 1 millisecond to cause noticeable
contraction of the left hind limb. The stimulation fre-
quency was 3 Hz, and the left hind limb was electrically
stimulated for 30 minutes. Arterial and venous blood was
sampled to measure the oxygen saturation before stimula-
tion and at 15 and 30 minutes after stimulation.

A mouse model of hind limb ischemia and treatments.
Male wild-type and Flt-1 tyrosine kinase deficient (Flt-1
TK ") mice®* were used. After anesthesia, unilateral hind
limb ischemia was induced in the mice as previously de-
scribed.*®?% Additional details are provided in the Appen-
dix (online only).

Statistical analyses. Data are expressed as mean *
standard error of the mean. Statistical analysis was assessed by
one-way or two-way analysis of variance with post hoc test.
Values of P < .05 were considered statistically significant.

RESULTS

Effects of statins and pitavastatin-NP on the angio-
genic capacity of HECs in vitro. Treatment with pitavas-
tatin increased angiogenic activity in HECs, whereas other
statins had no effect (Fig 1). Treatment with pitavastatin-
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Fig 2. Effects of pitavastatin and pitavastatin nanoparticles (NP)
are shown on the angiogenic capacity of human endothelial cells in
vitro by quantitative analysis of tube formation (tube length per
well) of six independent experiments. *P < .01 vs control by
two-way analysis of variance with the Dunnett multiple compari-
son test.

NP increased angiogenic activity in HEGs. The angiogenic
activity of statin-NP was greater than that of 10 nM pitavas-
tatin alone (Fig 2).

Effects of pitavastatin-NP on angiographically vis-
ible collateral arterial development. Because only a sin-
gle dose of pitavastatin (0.4 mg/kg)-NP was previously
examined in the mouse model,'® the dose-response rela-
tionship of pitavastatin-NP with angiographically visible
collateral arterial development (arteriogenesis) was exam-
ined in the present study. Treatment with pitavastatin (0.5
mg/kg)-NP, but not with those with pitavastatin at 0.05 or
0.15 mg/kg, increased the arteriogenic response, as as-
sessed by the angiographic score (Fig 3, A). Representative
angiograms 28 days after treatment demonstrate corkscrew-
like collateral arterial development only in the pitavastatin-
NP group (Fig 3, B). Treatment with pitavastatin (0.5
mg,/kg)-NP significantly increased the angiographic score
(Fig 3, C). In contrast, no treatment effects on the angio-
graphic score were noted in the FITC-NP or pitavastatin-
only groups.

Effects of pitavastatin-NP on histopathologic an-
giogenesis and arteriogenesis. Treatment with pitavasta-
tin (0.5 mg/kg)-NP, but not with FITC-NP or statin only,
significantly increased the capillary density and capillary/
muscle fiber ratio, which are indices of angiogenesis (Fig 4,
A). The beneficial effects of pitavastatin-NT were not asso-
ciated with significant changes in serum biochemical mark-
ers (Table). Treatment with pitavastatin-NTP also signifi-
cantly increased the a-SMA™ arteriolar density and arteriole,/
muscle fiber ratio, which are indices of arteriogenesis (Fig
4, B), indicating that pitavastatin-NP treatment induced
angiogenesis and arteriogenesis.

Examination of hematoxylin-eosin-stained sections
revealed no abnormal histopathologic findings (inflam-
mation and fibrosis) among the four groups (data not
shown). There was no significant difference in muscle
fiber density among the four groups (PBS groups: 129 =
8,145 = 4/mm?; FITC-NP groups: 130 = 3 and 129 =
6/mm?).
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Fig 3. Effects of pitavastatin nanoparticles ( NP) on angiographi-
cally visible collateral arterial development are shown 28 days after
treatment. A, Effects of pitavastatin-NP containing 0.05, 0.15, or
0.5 mg/kg pitavastatin on the angiographic score (n = 3 each). B,
Representative angiograms are shown of the phosphate buffered saline
(PBS), pitavastatin-only, fluorescein isothiocyanate (FITC)-NP, and
pitavastatin-NP groups at 28 days after treatment. Corkscrew-like col-
lateral arteries were observed only in the pitavastatin-NP group. C,
Summary of the angiographic scores obtained for the four groups
in panel B (n = 6 each).

Effects of pitavastatin-NP on tissue oxygen saturation.
The tissue oxygen pressure in adductor skeletal muscles of
the ischemic limb was measured 28 days after treatment.
Treatment with pitavastatin (0.5 mg/kg)-NP significantly
increased tissue oxygen pressure compared with the other
groups (Appendix Fig II, online only).

Endothelial cell-selective delivery of NP. The cellu-
lar distribution of FITC was examined 3, 7, and 28 days
after the intramuscular injection of FITC-NP or FITC
only. On day 3 after injection, strong FITC signals were
detected in FITC-NP-injected ischemic muscle (Fig 5, A4),
whereas no FITC signals were observed in control nonisch-
emic muscle (Fig 5, A) or in ischemic muscle injected with
FITC only (data not shown). The FITC signals were local-
ized predominantly to the capillaries and arterioles. Weak
FITC signals were also detected in myocytes at day 3t. On
day 7 and 28, FITC signals remained localized predomi-
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Fig 4. Effects of pitavastatin nanoparticles ( NP) on angiogenesis
and arteriogenesis are shown 28 days after treatment. A, CD-31%
capillary density and capillary /muscle fiber ratio (indices of angio-
genesis) is shown in ischemic muscles (n = 6 each). B, a-Smooth
muscle actin (a-SMA)-positive arteriolar density and arteriole/
muscle fiber ratio is shown in ischemic muscles (indices of arterio-
genesis; n = 8 each). FITC, Fluorescein isothiocyanate; PBS, phosphate-
buffered saline; SMC, smooth muscle cells.

nantly to capillarics and arterioles (Fig 5, A). Immunoflu-
orescent staining revealed that FITC signals localized
mainly to CD31" endothelial cells in FITC-NP-injected
ischemic muscle 28 days after ischemia (Fig 5, B). In
contrast, no FITC signals were observed in skeletal muscle
myocytes on day 7 and 28 or in contralateral nonischemic
hind limbs or remote organs (liver, spleen, kidney, and
heart) at any time point (data not shown).

Effects of pitavastatin-NP on exercise-induced isch-
emia induced by electrical stimulation. To assess the
functional efficacy of pitavastatin-NP on collateral arterial
development, the effects of pitavastatin-NP on exercise-
induced ischemia by electrical stimulation were examined.
In the control PBS group, venous oxygen saturation in
ischemic muscle decreased, and thus the difference in arte-
riovenous oxygen saturation increased after 15 and 30
minutes of electrical stimulation (Fig 6, A), suggesting the
occurrence of exercise-induced ischemia. Treatment with
pitavastatin-NP, but not with FITC-ND or pitavastatin
only, abrogated the increase in arteriovenous oxygen dif-
ference in the ischemic limb (Fig 6, B). There were no
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significant differences in systemic blood hemoglobin levels
among the four groups (data not shown).

Effects of vatalanib-NP on angiogenesis and arte-
riogenesis induced by pitavastatin-NP. We recently re-
ported in a murine model that therapeutic neovasculariza-
tion induced by pitavastatin-NP was mediated by increased
eNOS activity and multiple endogenous angiogenic growth
factors, such as VEGF.'®*® Consequently, we examined
VEGEF expression in the four groups 28 days after treatment
by immunohistochemistry and found increased VEGF pos-
itivity in CD317" endothelial cells of the capillaries and
arterioles in the pitavastatin-NP group compared with
other groups (Appendix Fig III, online only). Interestingly,
positive VEGF staining was also detected in myocytes in the
pitavastatin-NP group.

Vatalanib was selected because this molecule inhibits
receptor tyrosine kinases of VEGR receptor types 1-3.
Treatment with vatalanib-NP elicited no effects on angio-
graphically visible collateral arterial development induced
by hind limb ischemia in animals treated with PBS; how-
ever, it abrogated the arteriogenic response induced by
pitavastatin-NP (Fig 7, A4 and B). In addition, treatment
with vatalanib-NP abrogated histopathologic, angio-
genic (capillary density), and arteriogenic (arteriolar den-
sity) responses induced by pitavastatin-NP (Fig 7, C).
Vatalanib-NP elicited significant effects on histopathologic
arteriogenic (arteriolar density) responses under baseline
conditions (Fig 7, C).

Effects of pitavastatin-NP on angiogenesis and ar-
teriogenesis in flt-1 TK™~ mice transfected with and
without the sFl/t-1 gene. To examine the role of VEGF
receptors (flk-1 and flt-1), the effects of pitavastatin-NP on
ischemia-induced neovascularization were examined in
wild-type and flt-1 TK~ mice (Appendix Fig IV, online
only). Compared with wild-type mice, the therapeutic ef-
fects of pitavastatin-NP decreased but were still observed in
flt-1 TK~ mice. To further examine the role of flk-1,
sFlt-1 gene transfer was performed into flt-1 TK™™ mice.
The sFit-1 gene transfer blunted the therapeutic effects of
pitavastatin-NP.

DISCUSSION

The present study demonstrates that NP-mediated en-
dothelial cell-selective delivery of pitavastatin increased the
development of collateral arteries (arteriogenesis) and im-
proved exercise-induced ischemia in a rabbit model of
chronic hind limb ischemia, indicating that this novel cell-
selective delivery system is feasible for therapeutic arterio-
genesis. We selected this rabbit model for translation to
clinical settings in humans because it represents a preclinical
model of arteriogenesis after femoral artery occlusion,?® as
observed in patients with severe peripheral artery disease.

Stimulation of the growth of collateral arteries (arterio-
genesis) is evolving as a new therapeutic option for patients
with atherosclerotic occlusive vascular disease, even though
induction of additional angiogenesis or vasculogenesis is
beneficial,!*'® We assumed that the vascular endothelium
would be an appropriate cellular target for the development
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Table. Serum biochemical profiles

Odnetal 417

Variable" PBS FITC-NP Pitavastatin only Pitavastatin-NP
CPK (U/L)
Day 7 345 = 30 766 = 270 445 = 98 385 = 44
Day 14 279 = 8 486 + 38 459 + 118 296 = 18
Day 21 242 + 16 535 = 58 396 £ 72 252 +12
Day 28 275 = 60 229 £ 15 275 * 33 259 = 31
AST (IU/L)
Day 7 10 £ 1 19x3 16 =2 10 £ 1
Day 14 7%+0.3 193 19+ 6 8§=3
Day 21 15x1 20+2 22 %7 19 = 4
Day 28 31 =11 29x6 18 x2 20+2
ALT (IU/L)
Day 7 369 36 =10 38 x5 29 x 11
Day 14 261 34=x6 37x7 339
Day 21 38x7 33=x5 37 x8 43 x11
Day 28 42 + 8 41 =10 35 =11 53 =19
BUN (mg/dl)
Day 7 24 0.2 173202 18 x1.5 242
Day 14 23 %] 19.6 =2 24 2 25 %1
Day 21 19 1 18 x4 20x2 19 =04
Day 28 26 x1 17 = 0.3 17 £ 0.4 292
Creatinine (mg/dL)
Day 7 0.66 + 0.01 0.82 £ 0.07 0.89 = 0.01 0.80 = 0.11
Day 14 0.70 + 0.04 0.81 = 0.09 0.87 = 0.08 0.73 £ 0.05
Day 21 0.95 = 0.02 0.80 = 0.06 0.95 = 0.01 1.03 £ 0.02
Day 28 0.85 = 0.08 0.91 £ 0.06 0.86 = 0.03 092 £0.03
Total cholesterol (mg/dL)
Day 7 31 =10 31x1 195 46 x5
Day 14 26+ 8 24 + 3 19 +1 31 x4
Day 21 29 10 18 +1 18+ 3 326
Day 28 18+ 3 18 £2 21 %1 17 +2

ALT, Alanine aminotransferase; AST, aspartate transaminase; BUN, blood urea nitrogen; CPK, creatinine phosphokinase.

*Data are mean * standard error of the mean (n = 3 each).

of collateral arteries after arterial occlusion because the
endothelium plays a central role in the mechanism of arte-
riogenesis by expressing multiple growth factors and by
recruiting monocytes and smooth muscle cells. We found
that FITC signals were localized mainly to the vascular
endothelium for up to 4 wecks after the injection of
FITC-NP into ischemic skeletal muscles of rabbits in vivo,
indicating that this NP-mediated delivery system may be
useful as an innovative strategy for a therapy targeting
endothelial cells. We recently reported that after cellular
delivery of NP by endocytosis into endothelial cells, the
PLGA NP escapes from the endosomal compartment to the
cytoplasmic compartment and is retained in the cytoplasm,
where release of the encapsulated drug occurs slowly in
conjunction with the hydrolysis of PLGA. %2729

Daily administration of statins at high doses has been
reported to augment arteriogenesis in normocholester-
olemic rabbits.® These pleiotropic effects of statins are
mediated through reduced levels of cholesterol biosynthe-
sis pathway intermediates that serve as lipid attachments for
post-translational modification (isoprenylation) of pro-
teins, including Rho and Rac. Pitavastatin was selected as
the NP compound because (1) pitavastatin elicited the
most potent effects on the angiogenic activity of HECs in
vitro compared with other statins, and (2) NP-mediated
intracellular delivery of pitavastatin showed greater angio-

genic activity of HECs compared with pitavastatin alone
(Figs 1 and 2).

We also found in an in vivo rabbit model that (1) a
single intramuscular injection of pitavastatin-NP increased
the angiographic score in a dose-dependent manner, (2)
pitavastatin (0.5 mg/kg) -NP significantly increased arte-
riogenesis and tissue oxygen pressure (tissue perfusion),
and (3) the treatment of pitavastatin-NP increased immu-
noreactive VEGF expression selectively in vascular endo-
thelial cells in the ischemic limb. Therefore, it is likely that
that after NP-mediated endothelial delivery, pitavastatin is
slowly released from the NP into the cytoplasm, resulting in
significant therapeutic effects. Sata et al® reported that
systemic daily administration of pitavastatin (1 mg/kg/day X
49 days = 49 mg/kg) has significant therapeutic effects in
mice with hind limb ischemia. In our previous study, we
reported the efficacy of pitavastatin (0.4 mg/kg)-NP in a
murine model.'® Therefore, at an approximately 100-fold
lower dose, our NP-mediated delivery system is as effective
as the cumulative systemic dose.

In clinical trials that examined the effects of a single
vascular growth factor on peripheral and coronary artery
disease, clinical end points such as increased exercise toler-
ance were negative or disappointing, although increased
vascularity was noted.'**® It has been reported that limb
hemodynamics, such as ankle-brachial index or muscle
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Fig 5. Cellular distribution of nanoparticles is shown in ischemic

28 days

CD31

muscles. A, Fluorescent photomicrographs show cross sections of
control nonischemic muscle and ischemic muscles at 3, 7, and 28
days after fluorescein isothiocyanate (FITC) nanoparticle (NP)
injection. Nuclei were counterstained with 4',6-diamidino-2
phenylindole (blue). Fluorescence microscopic settings (exposure,
filter, excitation light intensity, etc.) were the same for all images.
Scale bar = 100 pm. B, Photomicrographs of cross sections of
ischemic muscle 28 days after FITC-NP injection stained immu-
nohistochemically with the endothelial marker CD31 (red). Most
FITC signals colocalized with the vascular endothelium (arrows).
Scale bars = 20 pm.

blood flow at rest, are not correlated with functional capac-
ity (claudication time or walking distance) in patients with
peripheral arterial disease.®” Therefore, assessment of the
functional capacity of neovessels is needed in preclinical
studies in animals. In other words, the improved functional
capacity of collateral arteries must be a clinically important
therapeutic goal in preclinical studies; however, few previ-
ous preclinical studies have addressed this point.

In the present study, we demonstrate that the arterio-
venous oxygen difference in the ischemic hind limb in-
creased in response to exercise in the PBS group, suggesting
the development of exercised-induced ischemia. Treatment
with pitavastatin-NP, but not with FITC-NP or pitavasta-
tin only, prevented the development of exercise-induced
ischemia. These data suggest that therapeutic arteriogen-
esis induced by pitavastatin-NDP is associated with improved
functional capacity.
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Fig 6. Effects are shown of pitavastatin nanoparticles (NP) on

Difference in arterio-venous
oxygen saturation (%)

exercise-induced ischemia induced by electrical stimulation. A,
Oxygen saturation in the femoral artery and vein in ischemic
muscle is shown before and 15 and 30 minutes after muscular
exercise by electrical stimulation in the phosphate-buffered saline
(PBS) group (n = 6 cach). B, The difference in arterial and venous
oxvgen saturation after 30 minutes of electrical pulse is shown in
the four groups (n = 6 cach). FITC, Fluorescein isothiocyanate.

We previously reported that the beneficial therapeutic
effects induced by pitavastatin-NP are mediated by in-
creased eNOS activity and multiple endogenous angio-
genic growth factors in a murine model.'® Recent reports
by others have shown that mice lacking VEGF receptor 1 or
placenta growth factor (a specific agonist of VEGR receptor
1), but not those lacking VEGF receptor 2, display im-
paired development of ischemia-induced angiogenesis and
arteriogenesis.*' ** However, roles of endogenous angio-
genic growth factors in the mechanism of therapeutic ef-
fects of pitavastatin-NP have not been addressed.

In the present study, vatalanib-NP abrogated arterio-
genic and angiogenic responses to pitavastatin-NP in rab-
bits. Furthermore, experiments with flt-1 TK*~ mice
transfected with or without the sF/t-1 gene showed partial
contribution of both flt-1 and flk-1 to therapeutic angio-
genic effects of pitavastatin-NP. These findings suggest that
pitavastatin-NP produces an integrative system to form
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Fig 7. Effects of vatalanib nanoparticles (NP) are shown on an-
giogenesis and arteriogenesis induced by pitavastatin-NP. A, Rep-
resentative angiograms show vatalanib-NP only and vatalanib-NP
plus pitavastatin-NP groups 28 days after treatment. B, Summary
of the angiographic scores obtained for the four groups (n = 3
cach). C, Effects of vatalanib-NP are shown on histopathologic
angiographic (capillary density) and arteriogenic (SMC-positive
arteriolar density) responses induced by pitavastatin-ND.

functionally mature collaterals by controlled expression of
endogenous VEGF and its receptor signals.

There are several limitations to the present study. First,
only a single intramuscular injection of pitavastatin-NP was
examined. In clinical settings, repetitive administration of
an optimal dose may produce greater therapeutic effects.
Second, we did not examine the contribution of bone
marrow-derived progenitor cells because appropriate anti-
bodies for detecting endothelial or smooth muscle progen-
itor cells are not available in rabbits. Further studies are
neceded to examine whether therapeutic eftects afforded by
pitavastatin-NP are associated with an increase in circulat-
ing endothelial progenitor cells.

CONCLUSIONS

This nanotechnology platform for vascular endothelial
cell-selective delivery of pitavastatin is a promising strategy
for the treatment of patients with severe organ ischemia and
represents a significant advance in therapeutic arteriogen-
esis over current approaches. The nanotechnology platform
may be further developed as a more effective and safer
approach for therapeutic neovascularization.
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REVIEW

Oxidative Stress and Central Cardiovascular Regulation

— Pathogenesis of Hypertension and Therapeutic Aspects —
Yoshitaka Hirooka, MD; Yoji Sagara, MD; Takuya Kishi, MD; Kenji Sunagawa, MD

Oxidative stress is a key factor in the pathogenesis of hypertension and target organ damage, beginning in the
earliest stages. Extensive evidence indicates that the pivotal role of oxidative stress in the pathogenesis of hyper-
tension is due to its effects on the vasculature in relation to the development of atherosclerotic processes. It
remains unclear, however, whether oxidative stress in the brain, particularly the autonomic nuclei (including the
vasomotor center), has an important role in the occurrence and maintenance of hypertension via activation of the
sympathetic nervous system. The aim of the present review is to describe the contribution of oxidative stress in
the brain to the neural mechanisms that underlie hypertension, and discuss evidence that brain oxidative stress is
a potential therapeutic target. (Circ J 2010; 74: 827—-835)

Key Words: Blood pressure; Brain; Heart rate; Hypertension; Sympathetic nervous system

nervous system plays an important role in the patho-

genesis of hypertension.'? Activation of the sym-
pathetic nervous system is involved in the stages, clinical
forms, 24-h blood pressure patterns, end-organ damage, and
metabolic abnormalities of hypertension.'* Although periph-
eral factors are also involved, the central nervous system
(CNS) mechanisms are considered crucial.*7 The results
of recent studies strongly suggest that central sympathetic
outflow is increased in hypertension.*” Increased oxidative
stress is also involved in the pathogenesis of hypertension.’
Although there have been many studies regarding target
organ damage in hypertension, relatively few studies have
addressed the role of oxidative stress in sympathetic nervous
system activation.”'! Based on the role of angiotensin II
(Ang II) in the generation of reactive oxygen species (ROS),
the relationship between brain angiotensin and central sym-
pathetic outflow has been examined.'>'* Our group was the
first to report that increased ROS generation in the brain-
stem contributes to the neural mechanisms of hypertension
in hypertensive rats,' and we and other investigators have
reported additional evidence to support this concept and the
potential therapeutic aspects.”!! This review focuses on the
role of oxidative stress within the brain in the neural patho-
genesis of hypertension.

! ccumulating evidence indicates that the sympathetic

Increased Oxidative Stress
in the Brain in Hypertension
Among the target organs of hypertensive vascular diseases,

the brain is most affected by aging and oxidative stress.!1¢
Cell membranes in the brain contain a high concentration

of polyunsaturated fatty acids. These fatty acids are targeted
by ROS, which elicit chain reactions of lipid peroxidation.
Oxidative stress is determined by measuring levels of thio-
barbituric acid-reactive substances (TBARS), end products
of lipid peroxidation. The levels of TBARS reflect those of
malondialedehyde, although the assay is not specific for
malondialedehyde.!®!'7 There are some important points,
however, for assessing the levels of TBARS.'? The medium
used for tissue preparation needs to contain a chelating agent
and an antioxidant, and conditions for the assay must be kept
constant. Therefore, we used another method for assessing
the ROS production, which is electron spin resonance (ESR)
spectroscopy. The amount of ROS was quantified by moni-
toring the time-dependent decay of the amplitude of the ESR
spectra produced by the nitroxide radical 4-hydroxy-2,2,6,6-
tetramethyl-piperidine-N-oxyl (hydroxyl-TEMPO) as a spin
probe.”!¥ The signal decay of ESR spectroscopy reflects
oxidative stress more directly. Also, it has an advantage for
in vivo study.'® We evaluated oxidative stress in the brains
of stroke-prone spontaneously hypertensive rats (SHRSP)
compared with normotensive Wistar—Kyoto (WKY) rats.”4
The rostral ventrolateral medulla (RVLM) is the major vaso-
motor center that determines basal sympathetic nervous sys-
tem activity and it is essential for the maintenance of basal
vasomotor tone.*7 Spontaneously hypertensive rats (SHR)
or SHRSP exhibit increased sympathetic nervous system
activity during the development of hypertension and are
commonly used in experimental studies as models of human
essential hypertension.*” We previously investigated whether
ROS are increased in the RVLM of SHRSP.™ First, we found
that ROS levels measured by TBARS and ESR spectroscopy
were increased in the RVLM of SHRSP compared with WKY
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Figure 1. In vivo gene transfer of dominant-negative Rac1 into the rostral ventrolateral medulla (RVLM). (A) Schematic diagram
showing the transfection sites. Gene transfer of adenovirus encoding dominant negative Rac1 (AdDNRac1) bilaterally into the
RVLM (1.4x10° pfu/ml; 500nl/site). (B} Transfection sites were confirmed by prior microinjection of L.-glutamate. (C) Time course

of AdDNRac1 expression levels in the RVLM on western blot. HA, hemagglutinin.

rats. In addition, superoxide dismutase (SOD) expression and
activity, which are ROS scavenging factors, were decreased
in the RVLM of SHRSP compared with WKY rats. Func-
tionally, microinjection of the membrane-permeable radical
scavenger tempol into the RVLM decreased blood pres-
sure, heart rate, and sympathetic nervous system activity in
SHRSP but not in WKY rats. More importantly, overexpres-
sion of Mn-SOD, an antioxidant enzyme, in the RVLM of
SHRSP decreased blood pressure and sympathetic nervous
system activity. These findings strongly indicate that oxida-
tive stress in the RVLM is increased in SHRSP and contrib-
utes to the neural mechanisms of hypertension. As described
here, brain ROS is one of the results of generalized target
organ damage, appearing earlier in the brain due to its sus-
ceptibility. The brain ROS would increase blood pressure
via activation of the sympathetic nervous system and this
would ultimately result in a vicious cycle. It would be pos-
sible, however, that brain ROS is involved in the early stage
of hypertension in SHR or SHRSP, because we found that
oxidative stress in the brain assessed on in vivo ESR was
enhanced in young (6-week-old) SHR or SHRSP compared
with age-matched WKY rats (unpublished data). The levels
of TBARS were not different, probably because the levels
of TBARS reflect lipid peroxidation caused by ROS. Other
investigators also found that an increase in superoxide anions
in the RVLM is associated with hypertension in SHR,'” and
reduced expression and activity in Cu/Zn-SOD and Mn-SOD
within the RVLM contribute to oxidative stress and neuro-
genic hypertension in SHR.?® An increase in oxidative stress
within the RVLM also plays an important role in maintaining
high arterial blood pressure and sympathetic activation in 2-
kidney 1-clip (2K-1C) hypertensive rats, which is a renovas-
cular hypertension model.?! In that study, Oliveira-Sales et al

demonstrated that the mRNA expression of NAD(P)H oxi-
dase subunits (p47rhox and gp9 1#hox) in the RVLM was greater
in 2K-1C than in the control group. Interestingly, there were
no differences in Cu/Zn-SOD expression between the two
groups. TBARS levels in the RVLM were significantly greater
in the 2K-1C than in the control group, suggesting enhanced
oxidative stress. Functionally, microinjection of vitamin C into
the RVLM decreased blood pressure and renal sympathetic
nerve activity in 2K-1C but not in controls. Importantly, in a
subsequent study, these authors suggested that the paraven-
tricular nucleus of the hypothalamus is also involved.?? Nota-
bly, although 2K-1C is a model of renovascular hypertension,
suggesting that circulating Ang II is increased, angiotensin
type I (AT1) receptor gene expression levels within the RVLM
and paraventricular nucleus were upregulated in this model,
indicating that ROS was produced via the activation of nico-
tinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase.

Sources of ROS Production in the Brain

As a source of ROS production in the CNS, NAD(P)H oxi-
dase is a major player. NAD(P)H oxidase is composed of two
membrane-bound subunits, gp917%* and p22rhex; several cyto-
plasmic subunits, p47rtex, p40rhes and p677hex; and the small
G-protein Racl.**2¢ Stimulation of AT receptors activates
NAD(P)H oxidase by which the cytoplasmic subunits of
RacINAD(P)H oxidase such as Racl bind to the membrane
subunits, thereby activating the enzyme leading to super-
oxide generation. Racl requires lipid modification to migrate
from the cytosol to the plasma membrane, which is a neces-
sary step for activating ROS-generating NAD(P)H oxidase.
NAD(P)H oxidase activity is greater in the brainstem of
SHRSP than in that of WKY 2728 We transfected adenovirus
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Figure 2. Rac1 activity is elevated in
the rostral ventrolateral medulla of stroke-
prone spontaneously hypertensive rats
(SHRSP) compared to Wistar—Kyoto
(WKY) rats. GDP, guanosine 5'-diphos-
phate; GTP-yS, guanosine 5'-0-(3-thio-
triphospahte).

encoding dominant-negative Rac! into the RVLM of SHRSP
and WKY rats (Figure 1).27 Racl activity in the RVLM tissue
was increased in SHRSP compared to WKY rats (Figure 2).27
Importantly, we demonstrated that inhibition of Racl-derived
ROS in the RVLM decreased blood pressure, heart rate, and
urinary norepinephrine excretion in SHRSP (Figure 3).27 A
similar response occurs after inhibition of Racl-derived ROS
in the nucleus tractus solitarius (NTS).*

In addition to the cytosolic production of ROS, mitochon-
dria are the primary source of ROS production in many cells.
Ang Il increases mitochondrial ROS production in the RVLM,
leading to sympathoexcitation.?” Furthermore, NAD(P)H oxi-
dase-derived ROS might trigger Ca?* accumulation, which
leads to mitochondrial ROS production.?® This suggestion
is based on the finding that gene transfer of dominant nega-
tive Racl attenuated the Ang lI-induced increase in reduced
Mito-Tracker red fluorescence.? In contrast, impairment
of mitochondrial electron transport chain complexes in the
RVLM might be involved in the neural abnormality underly-
ing hypertension in SHR.*® This issue was recently discussed
by Zimmerman and Zucker.?! Although we did not detect
impairment of brain mitochondrial respiratory complexes in
SHRSP, we propose that mitochondria-derived ROS mediate
sympathoexcitation via NAD(P)H oxidase activation.?®

Another possibility for ROS generation is uncoupling nitric
oxide synthase (NOS). In the absence of L-arginine or with
tetrahydrobiopterin, NO production from inducible NOS
(iINOS) causes uncoupling from the oxidation of NADPH,
resulting in superoxide generation.® iNOS overexpression in
the RVLM causes hypertension and sympathoexcitation that
is mediated by an increase in oxidative stress.*? This might
be relevant to our observation that iNOS expression levels
in the RVLM are greater in SHRSP than in WKY rats.** In
addition, microinjection of iNOS antagonists into the RVLM
reduces blood pressure only in SHR, but not in WKY rats.*

ROS-Mediated Activation
of Transcriptional Factors

It has been suggested that an Ang [I-mediated influx of Ca?*

in neurons depends on increased superoxide generation by a
Racl-dependent NAD(P)H oxidase.* Ang II also regulates
neuronal activity via inhibition of the delayed rectifier potas-
sium current.*® Ang II-mediated upregulation of L-type Ca?*
currents in neurons isolated from the NTS is inhibited by
scavenging ROS, indicating a role for NAD(P)H oxidase-
derived superoxide in the activation of Ca* channels in the
NTS >4

NAD(P)H oxidase-derived superoxide mediates an Ang
II-induced pressor effect via the activation of p38 mitogen-
activated protein kinase (MAPK) in the RVLM.* Recently,
we suggested that ATI receptor-activated caspase-3 acting
through the Ras/p38 MAPK/extracellular signal-related pro-
tein kinase pathway in the RVLM is involved in sympatho-
excitation in SHRSP.?” These pathways may be downstream
effectors of ROS in the RVLM, which in turn plays a crucial
role in the pathogenesis of hypertension. Interestingly, the
pro-apoptotic proteins Bax and Bad were enhanced and the
anti-apoptotic protein Bcl-2 was decreased in the RVLM of
SHRSP, and inhibition of caspase-3 normalized these changes
in pro- and anti-apoptotic protein levels.’” These alterations
in the RVLM of SHRSP were stimulated by Ang II via acti-
vation of the AT] receptors, which are upregulated in this
strain and other hypertensive models.* It would be reason-
able to consider that different mechanisms may be responsi-
ble for sympathoexcitation in different brain sites (influx of
Ca?* for RVLM, apoptosis for NTS), and activation of the
apoptotic pathway is involved in sympathoexcitation in the
RVLM.* The exact physiologic implication of these obser-
vations requires further evaluation.

Effects of Angiotensin Receptor Blockers
on Brain Oxidative Stress

The existence of an independent renin—angiotensin system
in the brain is well established. Activation of the brain renin—
angiotensin system substantially contributes to the develop-
ment and maintenance of hypertension through activation
of the sympathetic nervous system, vasopressin release, and
drinking behavior.**# There is considerable evidence that
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peripherally administered angiotensin receptor blockers
(ARBs) penetrate the blood—brain barrier, although there are
some differences among ARBs.*'4* AT1 receptors are abun-
dant in the circumventricular organs, such as the subfornical
organ and the organum vasculosum lamina terminalis, and
the area postrema, which lack a blood—brain barrier.3*2
Therefore, peripherally administered ARBs can also bind to

those areas, thereby inhibiting the central actions of Ang II.
Oral treatment with the ARB telmisartan appears to inhibit
the central responses to Ang Il in awake rats.*® Although
other ARBs also inhibit the central actions of Ang II within
the brain beyond the blood-brain barrier,*#2# these effects
might differ depending on the pharmacokinetics and prop-
erties of each drug (ie, lipophilicity etc).** We evaluated the
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effect of treatment with telmisartan at either a high dose
(10mg-kg'-day!) or a low dose (3mg-kg'-day'), or
hydralazine for 30 days on hypertension.* Systolic blood
pressure (SBP) and heart rate were measured using the tail-
cuff method. Urinary norepinephrine excretion was measured
as a marker of the sympathetic nervous system activity. We
evaluated ROS in the brain (cortex, cerebellum, hypothal-
amus, and brainstem) of SHRSP on ESR spectroscopy and
TBARS. Oral treatment with telmisartan reduced SBP dose-
dependently and hydralazine reduced SBP to a similar level to
the high dose of telmisartan (Figure 4). Telmisartan reduced,
while hydralazine increased, urinary norepinephrine excre-
tion (Figure 4). TBARS levels were significantly increased
in each area of the brain of SHRSP compared with WKY
rats (Figure 5). Oral treatment with telmisartan reduced the
TBARS levels, but hydralazine did not (Figure 5). These
findings suggest that (1) anti-hypertensive treatment with

telmisartan reduces ROS in the brain of SHRSP; (2) telmis-
artan decreases blood pressure, at least in part, via a reduc-
tion of the sympathetic nervous system activity in SHRSP;
and (3) these effects induced by telmisartan might be associ-
ated with protection of the brain of SHRSP from oxidative
stress. We also measured the concentration of hydroxyl radi-
cals using a modified procedure based on the hydroxylation
of sodium salicylate by hydroxyl radicals,* leading to the
production of 2,3-dihydroxybenzoic acid (2,3-DHBA).2*47
Inhibition of Racl in the RVLM and oral treatment with
telmisartan significantly decreased the production of hydroxyl
radicals in the RVLM (Figure 6).47

Recently, we used in vivo ESR to assess oxidative stress
in the brain, and found that oral treatment with another ARB,
olmesartan, reduces oxidative stress in the brain of SHRSP
without inducing reflex activation of the sympathetic nervous
system.*¥ In that study we evaluated the in vivo ESR signal
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decay rates of the brain using methoxycarbonyl-PROXYL, a
nitroxyl radical species, as a blood-brain barrier-permeable
spin probe.* Oral treatment with olmesartan attenuated the
exaggerated pressor response to an excitatory amino acid,
L-glutamate, in the RVLM of SHR compared to WKY rats.5®
Further, the pressor response to microinjection of Ang Il into
the RVLM was diminished in SHR treated with olmesartan.™
Thus, the importance of oxidative stress in the brain and
hypertension is supported by our studies as well as those of
others.!

Several questions, however, remain to be answered. A

recent study suggested that systemic administration of can-
desartan reduces brain Ang II levels because it attenuates the
mRNA expression of both angiotensinogen and angiotensin-
converting enzyme in Ang [I-infused rats.5! Whether systemic
treatment with ARBs indirectly regulates brain Ang I re-
mains to be determined.*?

Effects of Other Cardiovascular Drugs
on Brain Oxidative Stress
Considering that ARBs act to inhibit NAD(P)H oxidase activ-
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ity, it is reasonable that ARBs have an antioxidant effect,
although there are some unresolved questions, as mentioned
previously. Calcium channel blockers, azelnidipine and amlo-
dipine, but not nicardipine, which also have antioxidant
properties, have a sympatho-inhibitory effect on the brain.3354
In particular, treatment with azelnidipine reduces oxidative
stress in the RVLM associated with a decrease in the activity
of NAD(P)H oxidase, Cu/Zn-SOD, and Mn-SOD.3* These
effects might be related to an improvement in NO produc-
tion,** because we also demonstrated that overexpression of
endothelial NOS in the NTS or RVLM decreases blood pres-
sure and heart rate via the inhibition of sympathetic nervous
system activity.*%-5° Surprisingly, we also found that atorvas-
tatin inhibits the sympathetic nervous system as a result of
upregulating NO activity and reducing oxidative stress.®*-63
Further studies are needed to determine if this mechanism is
also applicable in humans.

Salt-Sensitive Hypertension
and Brain Oxidative Stress

Activation of the sympathetic nervous system, in particular,
an increase in central sympathetic outflow, plays an impor-
tant role in the pathogenesis of salt-sensitive hypertension
as well as that of kidney diseases.® 65 Recent studies suggest
that oxidative stress in the brain contributes to blood pres-
sure elevation in salt-sensitive hypertension.®®5” We dem-
onstrated that high salt intake exacerbates blood pressure
elevation and sympathetic nervous system activity during
the development of hypertension in SHR, and these responses
are mediated by increased ROS generation, probably because
of an upregulation of ATI receptors and NAD(P)H oxidase
in the RVLM.% The findings of a recent study from Kyushu
University Graduate School of Medical Sciences indicate that
mice with pressure overload acquired brain salt-sensitivity.®
This means that high salt intake increases the transport from
the blood to the cerebrospinal fluid and the response of the
sympathetic nerve activity to salt administered into the brain.
These results suggest that pressure overload affects salt sen-
sitivity, thereby enhancing central sympathetic outflow and
cardiac function.®® Left ventricular hypertrophy is an inde-
pendent risk of cardiovascular event and high salt intake is an
important environmental factor of hypertension, both of which
increased ROS, and sympathoexcitation may be involved in
the pathogenesis of the development of hypertension. A recent
clinical trial suggested that left ventricular hypertrophy is
related to cardiovascular events in Japanese high-risk hyper-
tensive patients.®

Summary and Future Perspectives

Currently in Japan, many patients with hypertension also
have metabolic syndrome. Importantly, the prevalence of
metabolic syndrome increases linearly with an increase in
heart rate among Japanese men and women,” suggesting that
activation of the sympathetic nervous system is involved in
the pathogenesis of hypertension.” The prevalence of obstruc-
tive sleep apnea has increased as a result of the increase in
the number of obese patients with hypertension. Obese
patients with sleep apnea have enhanced central sympathetic
outflow, which worsens hypertension and leads to cardiovas-
cular events.” Further, there is considerable evidence that
psychological stress is a major risk factor for cardiovascular
diseases and events associated with hypertension.” Another
therapeutic target for the treatment of hypertension is heart

failure with a preserved ejection fraction.”™ As suggested
here, salt-sensitivity might also be enhanced in these patients,
thereby further enhancing central sympathetic outflow.®
Oxidative stress in the brain as well as other organs might
underlie these mechanisms. Future studies of the effects of
oxidative stress in the brain are warranted and will provide
useful information for the treatment of hypertension.
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BACKGROUND

Central blood pressure (CBP) has been reported to be superiorto
brachial blood pressure (BP) as a cardiovascular risk predictor in
hypertensive patients; however, the effects of antihypertensives on
CBP have not been fully examined. This cross-sectional hypothesis-
generating study aimed to tentatively characterize all classes of
antihypertensives in relation to CBP.

METHODS

Calibrated tonometric radial artery pressure waveforms were
recorded using an automated device in 1,727 treated hypertensive
patients and 848 nonhypertensive (non-HT) participants. Radial
artery late systolic BP (SBP) has been reported to reflect central SBP.
The difference between late and peak SBPs (ASBP2} was assessed
with linear regression model-based adjustments. Separate regression
models for ASBP2 were constructed for both participant groups as
well as specified sub-populations.

RESULTS

ASBP2 was 3.3 mm Hg lower in patients treated with any single-
vasodilating (VD) antihypertensive agent without significant
interclass difference than with non-VD agents, and was 2.0 mmHg

From the physical viewpoint, central blood pressure (CBP)
more directly imposes mechanical stress on the left ventricle,
large arteries and the vital organ vasculature than brachial
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lower than estimated in nonhypertensive subjects. Combinations

of two vasodilators were 6.6 and 2.9 mm Hg lower in ASBP2 than
nonvasodilator combinations and nonhypertensive subjects,
respectively (P < 0.001 for all comparisons). Nonvasodilators and their
combination showed high ASBP2, 1.1 and 3.7 mm Hg higher than in
nonhypertensive subjects (P < 0.001 for both). Additional adjustment
of the pulse rate reduced high ASBP2 with -blockers (BBLs).

CONCLUSIONS

This cross-sectional observation suggests that vasodilatory
antihypertensives lower CBP independently of peripheral BP levels
without evident class-specific differences, whereas nonvasodilators
may raise CBP.

Keywords: angiotensin receptor blockers; angiotensin-converting
enzyme inhibitors; antihypertensive agents; blood pressure; calcium
channel blockers; central blood pressure; diuretics; hypertension;

late systolic blood pressure; nonvasodilating antihypertensive agents;
pulse waveform; radial artery tonometry; vasodilating antihypertensive
agents; a-blockers; B-blockers
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blood pressure (BP). This impact of CBP was suggested by
large-scale intervention trials and population-based studies,
such as the Conduit Artery Function Evaluation (CAFE) study
of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)*
and Strong Heart Study (SHS).> In the CAFE study, only
calcium channel blocker (CCB) and B-blocker (BBL)-based
treatments were compared in estimated CBP. Prior to the study,
several small-scale investigations assessing therapeutic altera-
tions in CBP or aortic wave reflection had been reported.3-!!
Various theoretical explanations of the benefit of vasodilators
to lower CBP have also been published;'?** however, only
limited classes of antihypertensive drugs, such as angiotensin-
converting enzyme inhibitors (ACEI) and PBL, including
nitrates, have been investigated comparatively or noncom-
paratively. Hence, the effects of various antihypertensives on
CBP are not fully understood. Randomized intervention trials
are necessary to assess the effects of each antihypertensive
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