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d 1 chnology

In this paper, to achieve macroscopic equilibrium under the given boundary condition and
a microscopic self-equilibrium condition efficiently, we propose two new algorithms. First, we
show that the algorithm, which is the residual of each scale, decreases simultaneously using
block LU factorization without microscopic convergence in the macroscopic iteration as in the
conventional algorithm. In addition, an algorithm which approximates the homogenization
tangent stiffness using the mode superposition method is proposed. In this method, the same
solution as in the original method is preserved with far less computational cost by solving
the microscopic equilibrium equation alternately with the solution of the mode superposition-
based multi-scale equilibrium equation. Finally, the performance of the proposed method is
examined and compared with the conventional method and an example of a simplified multi-
scale heart analysis is presented.

2. Nomenclature

Y.y :position vector around the deformation in the microstructure
X, x :position vector around the deformation in the macrostructure
u :macroscopic displacement vector
{u} :macroscopic structure nodal displacement vector
{u’) :macroscopic structure nodal displacement vector per element
w :periodic component of the microscopic displacement vector
{w} :periodic component of the nodal displacement

vectors of all microstructures
{w2) :periodic component of the nodal displacement

vector of a single microstructure
{we) :periodic component of the nodal displacement vector per element

F :the deformation gradient tensor

Z :the displacement gradient tensor

c :the right Cauchy-Green lensor

E :the Green-Lagrange strain tensor

It :the first Piola-Kirchhoff stress tensor
I :the identity tensor

I, I, III,  :principal invariants

3. Homogenization Method for Finite Deformation Problem

3.1. Problem Statement and Geometric Prospect

We assume that the material in the body(£2) reveals heterogeneity on a very fine scale and
is characterized by the periodic distribution of a basic structural element(Yy) as shown in Fig.
1. To measure the changes in the spatial domains, we introduce two scales: a macro-scale
X € Q and a micro-scale ¥ € Yp. Thus the actual domain can be regarded as the product
space (2 X ¥p). In the subsequent development, the macroscopic quantity corresponding to
the microscopic one is expressed with a bar symbol over the microscopic symbol. The follow-
ing assumptions of homogenization are employed in the formulation of the homogenization
method.

e A macrostructure that consists of a periodic microstructure can be considered to be an
approximately equivalent homogeneous substance.

e A microstructure is infinitely fine compared with a macrostructure; the variable defined
at each point of the macrostructure corresponds to the volume average of the variables in the
microstructure,

The deformation of the microstructure is assumed to be linked to the local values of the
macro continuum via

y=FY +w, (1)
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Fig. 1 Homogenization method for large deformation problems

where y and Y are position vectors defined on the microstructure.

The deformation consists of a homogeneous part FY and a non-homogeneous super-
posed field w. Consequently, the following relationships exist between the microscopic and
macroscopic deformation gradients.

gy =
= v = —_— = 2
F Yy aY F + Z, (2)
- ox
= v = —_— 3
F= Vyx X’ (3)
s ow
Z=Vyw=—. 4
YW= oo 4)
Thus increment and variation of the deformation gradients become
AF = AF + AZ = AF + VyAw, (5)
6F = 6F + 6Z = 6F + Vyow. (6)
For the assumptions mentioned above, the macroscopic gradients are related via the volume
averages
= 1 1 = = = f =
F—meOFdY—MLO(F+Z)dY-F+mLOZdY, )
where V is the volume of the microstructure Y. Then, the fluctuation field w has to satisfy the
constraint
” ow
LGZdY=medY= [y, N®WdS =0, (8)

where N is an outward normal vector on the boundary 8Yy. This constraint is satisfied when
W is periodic.

3.2. Formulation of Homogenization Method and Finite Element Discretization

We consider the equilibrium problem with a periodic microstructure. For the homoge-
nization assumptions, the macroscopic virtual work is related via the volume averages and the
entire virtual work represents

fnéF TTldX = L ﬁ L OF : IdYdX = F.u(u), ©)

where F,.(6u) is the external virtual work. A similar equation has been reported by Terada et
al.!!V using two-scale convergence theory.

By inserting Eq. (6) into Eq. (9), macro and micro equilibrium equations can be derived
based on the defined space of the variation.

_ 1 _ _
G= fn % fy OF : TdYdX = Lo‘F T0dX = F.u(6u), (10)
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Substituting Egs. (5) and (6) into the above equation yields
1 — —
I i J;e(aF +6Z): A : (AF + AZ)dYdX =

Foxs(Su) - L filf—l fr . (OF + 6Z) : TdYdX.
By finite element discretization using
= [B](Au’),
= [Bl{aw‘},
the left-hand side of Eq. (15) becomes

oy o
+ (0w }IVI %

j [AI[B1dY {Aw?) + (6u’)(B] — |:,|

(6w Q}— (BT [A][B*)dY{Aw?) +

vl /%
€ T
{ou®}[B?] Vi Jr

= [6Ww2IKZ, (AW?} + (sWwIKZ, (Au?} + {6u}KE

while the second term of the right-hand side of Eq. (15) becomes

(oW} — Jy, (BT,

T
— € e T
(6u°)[B7) & fyo[de =R
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(11

(12)

[B°)"[AldY[B*]{Au®} +

f [AldY[B){Au¢)

which achieves equilibrium under the given boundary condition in the macrostructure and self-
equilibrium under the periodic boundary condition Eq. (8) of microscopic displacement in the
microstructure. Thus the homogenization method simultaneously satisfies the two equilibrium
conditions as described above. To solve the nonlinear equation, the Newton-Raphson method
is employed. Then the linearization process provides the following liberalized equations

13)

(14)

(15)

(16)
amn

2 1AW?) + {6u’)KZ {Au’}, (18)

(19)

at each quadrature point of the macrostructure. The symbol Q denotes the quantity that is
evaluated at the macroscopic quadrature point and symbol e the quantity evaluated in the
macroscopic element. By assembling these appropriately on the macro continuum, and con-
sidering the facultative variations, the following semi-positive definite symmetric matrix is

obtained

wa let
K“w Klﬂ‘

Aw)| |1y
Auf I\’
where

Koo= [ (M J 1 [A][B"]dY)dX
K= [ (IVI i [B"]T[A]a'Y) [BFldX
K= fn[F]’(
K= ‘L;[Be] (lvl f [A]dY) [BﬂdX
rod=- [ (M [ [B*]T[H]dY)dX

{ru}=_ﬁe.ﬂ f[Be] (lvl‘j [H]dY)

=k f [A][B‘]dl’) dx

(20)

(21)

(22)

(23)

24)

(25)

(26)
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The nonlinear homogenization method solves Eq. (20) for Au and Aw under the given bound-
ary condition for the macrostructure and the periodic boundary condition (Eq. (8)) for micro-
scopic displacement. The number of degrees of freedom (NDOF) of this matrix is (NDOF of
macrostructure + quadrature point of macrostructure X NDOF of microstructure). An enor-
mous computational cost is also needed for solving the small-scale problem. It is difficult to
solve the form given in Eq. (8) due to the limitations of memory, and generally, a transforma-
tion into the weak form takes place as described below.

3.3. Characteristic Deformation

In a nonlinear problem, to evaluate the response of a microstructure to macroscopic de-
formation in a similar way to that in a linear problem'?, we obtain the following equation by
taking a derivative of Eq. (11) at each quadrature point and substituting Egs. (5) and (14).

.E,oﬁZ:A:dZde—LOJZ:A:dFdY. @27
Since the macroscopic deformation gradient is independent of the microscopic integration
. oz <
6L A: 3—FdY— Lﬂ&Z.A.IdY; (28)

where I is a fourth order identity tensor and the microstructural response of the macroscopic
deformation gradient becomes

dZ ow
o8 .y . 29
oF Y(BF) ot b
ow
e N0 30
i (30)

where y is a third order tensor. This is called the characteristic deformation. The equation
above can be substituted into Eq. (28) yielding

ﬁoaz:A:vde:fYOaZ:A:Idx 31)
By finite element discretization, the gradient of y becomes
Vex = [B°]X°], (32)

in a microscopic finite element. [y*] is the derivative of the microscopic displacement for each
component of F; in other words, it is the matrix given below with nine kinds of characteristic

deformation.
X X - Xis
| Him | -
Xnit Xaiz -+ Xz
where n is the NDOF of one finite element of the microstructure. The matrix equation becomes
Kylx?] = [ry], (34)
K, = [, [BT[AIB1dY, (35)
[, = [, (BT (Al (36)

from Eq. (31) about one microstructure. [y?] denotes that the quantity is evaluated at the
macroscopic quadrature point. The value of [y?] which is a (NDOF of the microstructure)
row X 9 column matrix can be obtained by assembling [y*]. [/] is a ninth order identity matrix,
consisting of nine column vectors {/;}(i = 1...9). Thus nine solutions can be obtained for the
right-hand side of Eq. (36), one for each {/;} corresponding to a component of the deformation
gradient. [y?] can then be obtained by solving each different version of the right-hand side of
the above equation.




AT

i

3._ ; f co.i putational — , _ N Vol3, No.1, 2009

Multiplying by [ﬁ] and dividing by |V] on both sides, Eq. (34) yields

M K, [x?1(B°] = [rxllB‘-'] 37
Now, by using Eq. (18)

l—:}iK K (38)

i ll’xl[B’] = (39
thus

K2,0¢%)(F°) = K, (40)
The total is taken at all macroscopic quadrature points in respect of the above equation

Kuulx1[B] = Ky, (41)

(8] = 2 (5, 42)

bl = Z0e%) 43)

where [y] is a matrix consisting of (quadrature points of macrostructure X NDOF of mi-
crostructure) rows X 9 columns.

The characteristic deformations are the deformation increments for unit macroscopic de-
formation gradients at a particular moment and these describe the material properties and
strain distribution of the microstructure. Equation (27) can also be considered a linear approx-
imation of the microscopic deformation. Therefore, the update of the microscopic deformation
by

Aw = —y : AF, (44)

corresponds to the Forward Euler method for microscopic deformation from Eq. (30).

3.4. Homogenization Method using Characteristic Deformation Mode Superposition

In the mode superposition homogenization method, the microscopic displacement in-
crement is approximately obtained by the linear combination of the previously calculated
characteristic deformationgy and the scaling factor in Eq. (44) as©®

Awy = X ipoApg, (45)

where « is the scaling factor for each mode. Inserting Eq. (45) into Eq. (20) yields the matrix

R i i [ i e [ A

(X1 Kuwlox]  [ox] Kuu | [Ac| _ [ o] T @7
Kuw[QX] Kﬂu Au Ty ’

where [gy] is the same kind of matrix as [y] . The above equation can be represented as

Kaa Kr:m M oa Ty
[KW Ku {Au}_{ru}’ 45
where,
Kao= [, (M = [m?"w’]fmlrsf][mdf)dx “49)
Kou= - [ (|7| Lﬂ[ﬂxe}r{Be}T[A]dY) (BFlax (50)
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Fig. 2 Simplified cell model
Table. 1 Material constants for simplified cell model
E [kPa] v
Material A in Fig.2 0.1 0.3
Material B in Fig.2 60.0 0.3
Material C in Fig.2 100.0 0.3
— 1
g T
Kia= - [,[B] (M fI,O[A][B‘][ox‘]dY) dx €
O i | -
- 4 . 5
Ku= [[B°] ( I f},O[A]dY) (Bldx (52)
— — (1
= = 1T | —
()= Fox — [[[B°] (lVi fmm]dr‘) dx (53)
- L e1T T
(ra)= fﬂ( 77 JrloX 705 [rndY) dx. (54)

We obtain the matrix with unknowns A« and Au. Because the NDOF of the matrix is reduced
to (NDOF of macrostructure + quadrature point of macrostructure % 9), significant computa-
tional cost is saved.

This technique is however, an approximate means of achieving equilibrium in a range
of displacements representing linear combinations of g, as it is clear from Eq. (54) that yq
has an effect on equilibrium. In this way, to approximate the deformation in limited defor-
mation patterns, an approximation error is created depending on the analysis case. This is
illustrated using the simplified cell model shown in Fig. 2. For the constitutive equation,
the St. Venant hyperelastic material is adopted and the material constants are given in Ta-
ble 1. The macrostructure consists of one element. The deformation of mode superposition
method was compared with the exact method under the same load boundary condition. The
initial characteristic deformation used for yg is shown in Fig. 4, while examples of defor-
mation of the microstructure are also shown in Fig. 3. Smooth deformation is achieved for
shear deformation in the exact method, while irregular deformation is generated by the mode
superposition method.

Such a difference has an effect on the convergence solution of the macroscopic deforma-
tion and stress through the framework of homogenization. On the other hand, tensile defor-
mation can be confirmed to be approximately correct. The mode superposition method has
low computational cost, but it has an approximation error, although this agrees globally with
the exact method.

4. Algorithm for Nonlinear Homogenization Method

4.1. Generalized Algorithm
In Eq. (20), {Aw} can be statically condensed at the element quadrature point level. {Aw}
becomes

(Aw} = Kg, (i} = Kui{Au)). (55)
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Fig. 3 Characteristic deformations in the initial state
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(a) Shear

Original Mode superposition
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Fig. 4 Disadvantage of characteristic deformation mode superposition
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{Aw} vanishes when the above equation is substituted in the macroscopic equilibrium equation
(K = KoKy Ku){bu} = (r,} = KoK, {r). (56)
Now, the microscopic equilibrium hypothesized for F at this time is
{ry} =0. (&)
By using Egs. (41) and (55), we obtain"
{Aw} = -K L Ky {Au) = ~[][B]{Au}. (58)
By using Egs. (41), (55), and (56) we can represent
(K — Ku ] [(B]){Au} = {1}, (59)

where (K, — Kuw[xi[ﬁ]) is called the homogenized tangent stiffness.
In differential equation form, from Egs. (11), (15), and (29), this becomes

—. i —
fnaF : (m f%(A o o Vyx})dY) . AFdX

=Fou- ) aF:(% L : lIdY)dX. (60)

Microscopic equilibrium Eq. (57)
ro = [, 6Z: 1Y =0, (61)
1]

is a prerequisite of the above equation. To satisfy this nonlinear prerequisite, a Newton-
Raphson iteration is needed. Thus the above equation is linearized with respect to w while F
is fixed, and then discretized by the finite element method using Eq. (17). Ateach quadrature
point, the linearized self-equilibrated equation becomes

LOLB’F[AJ[B‘]dY{an} = - f,,O[B‘Fm]dx (62)

In the generalized algorithm, three kinds of calculation have to be dealt with in each iteration.

(1) Update macroscopic tangential homogenization y using Eq. (34).

(2) Solve microscopic equilibrium problem Eq. (61) and obtain the convergence solution
{w} while F is fixed.

(3) Solve the linearized macroscopic equilibrium equation Eq. (59) to obtain {u}.
Processes 1 and 2 need to be solved at all quadrature points of the macrostructure and it is
known that this takes up the greatest part of the calculation load®. These processes require
prohibitive computational cost and actual numerical simulation is difficult.

4.2. Block LU Factorization Algorithm

We now present the algorithm that decreases the residual of each scale simultaneously us-
ing the block LU factorization algorithm without microscopic convergence in the macroscopic
iteration as in the conventional algorithm. By Block LU factorization Eq. (20) becomes

Kuw 0”1 | . {Aw}={rw}, 63)
Au Fi

K. S|[0 I
where S is called the Schur-Complement. Referring to Eq. (41), S can represent
S= K. - l{iuuK;;};Kum =Ky - KW{X][E] (64)

which corresponds to the homogenized tangent stiffness of Eq. (59). The solution process for
Eq. (63) is composed of the forward substitution

Kuw 0][AW) _[ry
e sl () &
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and the backward substitution

AW [T KoLK |[Aw
{Aﬁ}_[l} 1 Hau}‘ 64

Then, from Egs. (41), (65), and (66)
Kouu{AW) = {ry}, (67)
S{Au} = {r,} — Ku{AW}, (68)
{Aw} = (AW) - K, K, [Au} = {AW} - [y]AF, (69)

hold. The calculation procedure is described below.

(1) Solve linearized microscopic equilibrium equation Eq. (67) to obtain {Aw}.

(2) Solve linearized microscopic equilibrium equation Eq. (68) to obtain {Au}. In addi-
tion, this equation is equivalent to Eq. (56).

(3) Update {Aw} using Eq. (69). We have already obtained [y] when calculating S.
Three kinds of matrix, namely micro, macro, and Schur-Complement, need to be solved in
each iteration. The computational cost of this algorithm is lower than the generalized al-
gorithm, but the Schur-Complement update is still expensive as described above. A similar
algorithm for a differential equation using the Block-Newton method has been proposed by
Yamada et al.(?,

4.3. Mode Superposition as an Approximation of the Macroscopic Tangent Stiffness
In the block LU factorization algorithm, most of the computational cost is consumed by
updating the Schur-Complement. But the Schur-Complement is part of the macroscopic tan-
gent stiffness as described above and as such does not influence the equilibrium directly. To
avoid updating the Schur-Complement, we propose using Mode superposition as an approxi-
mation of the Schur-Complement. The solution agrees completely with the exact method by
making a convergence judgment for the microscopic and macroscopic residuals. The calcula-
tion procedure is described below.
(1) Solve the linearized microscopic equilibrium equation Eq. (67) to obtain {AW}.
(2) From Eq. (48), solve the mode superposition-based linearized multi-scale equation
Kee Kou |[Aa Tq
Kie Ku ]{A“} B {r,,}’ 70
to obtain {Au}. Then, S is approximated by the range of the mode superposition method and
the update of S can be omitted.
(3) The assumption of the mode superposition method follows from Eqs. (44), (45), and
(69), and {Aw} is updated using
{Aw} = {AW} - [ox]{Aa). (71)
The meaning of the algorithm is now given. Block UL factorization is applied to Eq.

(70).
Kaa{A&} = {re} (72)
(Kuw — Kue K33 Kau){Au} = {r,} — Kio{Ad}, (73)
{Ac) = {Ad) - K Koy {Aul. (74)

In Eq. (73), the macroscopic displacement is updated using
(Klm o KuaK;;Kau)a (75)

which can be considered an approximation of the homogenized tangent stiffness. Then, using
Eqgs. (41) and (64), the Schur-Complement becomes

KuwKoh Ky = K[y 1B
= K () K D) ™ (0 K [X1)B
= K I K ly) ™ [0 Ko
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= Kuwlox1(lox1 KuwloxD) ™ lox] Kuw
= KK Ko (76)

In the mode superposition method, since the homogenized tangent stiffness corresponds to the
exact value with the mode updated at every Newton-Raphson iteration as described above, this
method can give an approximation mean of the homogenized tangent stiffness by decreasing
the number of times that the mode is updated.

In the homogenization method, the micro and macro equilibrium conditions must be
achieved simultaneously. To evaluate the residual in each scale, micro and macro equations
need to be solved in each iteration and this defines the minimum computational cost. Hence, a
requirement for low computational cost in nonlinear homogenization algorithms is to approx-
imate the Schur-Complement effectively and accurately.

5. Numerical Example

5.1. Comparison of Computational Cost and Convergence

We compare computational cost and convergence in the three methods, namely the Gen-
eralized algorithm (GA), Block LU factorization algorithm (BFA) and the algorithm using
mode superposition (MSA). We did a 20% tensile test using the mesh of the block as the
microstructure as shown in Fig. 5, and the mesh of one element of an 8-node element as
macrostructure. The minimum size of the mesh is constructed from 27 (3 x 3 x 3) elements as
shown in Fig. 5(a) and the stiffness of the center element is different.

The NDOF is adjusted by adding the same number of minimum units in each direction
(e.g. Fig. 5(b)). The St. Venant hyperelastic material is used for the constitutive equation

W= %A(:;-E)E +uE : E, 7

S=g—g=(ﬂ®l+2pl):E:C:E, (78)

liji = 6d i, (79)
Ev

o= (80)

A= T2 =i’

where I is a second order identity tensor, A and x are lame constants, and E and v are, respec-
tively, Young’s modulus and Poisson’s ratio. C is a fourth order constant elasticity tensor and
the relationship between S and E is linear. The material constants are shown in Table 2.

The relationship between calculation time and NDOF in each algorithm is depicted in
Fig. 6, while the breakdown of calculation time and number of iterations in each process are
given in Table 3, where the NDOF is 46875. Convergence is judged to occur when the root
sum square is 1 x 107! times the initial value. In the BFA, calculation time is reduced only
20% compared with the GA. Because the microscopic and macroscopic problems are solved
individually in the GA, the Newton-Raphson methods converged after about 4 iterations. On
the other hand, the BFA deals with each system separately and 9 iterations were needed. It
can be confirmed that the reason for only a 20% reduction according to Table 3, is as a result
of the increase in computational cost due to updating the Schur-Complement. In this analysis,
because an iterative solver (GMRES method) is used for the large-scale calculation, it has to
solve 9 different right-hand sides to update the Schur-Complement. If a direct method were
used, because the result of the LU decomposition of the stiffness matrix can be reused for the
different right-hand side solutions and it only solves the equation a single time in practice, the
computational cost of the BFA would show a substantially greater decrease than the GA.

We confirmed that the computational cost of the MSA is far less than the other algo-
rithms. The iterations were terminated at the same level as in the BFA but the homogenized
tangent stiffness was approximated. Since the microscopic equation is approximately solved
in Egs. (70) and (71) with Eq. (67) by the MSA, the microscopic equation is effectively
solved twice. This accelerates convergence. Although we adopted the St. Venant hyperelastic
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Cross section view
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(b)1000 nodes, 729 elements

Fig. 5 FE models for the calculation time evaluation

Table. 2 Material constants for the models in the calculation time evaluation

E[kPa] v
Material A in Fig.5 0.1 0.3
Material B in Fig.5 10.0 0.3

material with relatively weak nonlinearity, iterations did not increase in the large deformation
: although initial characteristic deformation was used for oy. However, a periodic update of oy
REEES is required in the case of a strong nonlinear material such as an elasto-plastic material. If gy
is updated in every iteration, the homogenized tangent stiffness corresponds to the exact value
as described in Eq. (76).

5.2. Application to ventricle-cardiomyocyte analysis

We applied the MSA to a simplified left ventricle-cardiomyocyte model as shown in Figs.
7and 8 with the NDOF of the microstructure being 9657. The St. Venant hyperelastic material
is adopted for the constitutive equation and the material constants are given in Table 4. The
left ventricle model is based on MR imaging, with the ventricle wall divided into three layers,
i.e., endocardial, middle and epicardial layers, with fiber directions of -60, 0, and 60 degrees,
respectively, relative to the plain perpendicular to the long axis of the LV. The fiber direction
in the cardiomyocyte model, shown in Fig. 8, is in the y-direction. The usual St. Venant
hyperelastic material is assumed for the base and apex, while a homogenization method is
applied to the middle part of 792 elements. Since there are 8 quadrature points at each element,
the total number in the cardiomyocyte model is 6336. We use a PC-cluster composed of 99
Pentium 4 (3.2GHz) PCs connected to each other via Myrinet. Considering the size of the
problem, convergence is deemed to occur when the root sum square of the macro and micro
residuals is 1 x 1073 times the initial value. The fiber direction is taken into consideration by
multiplying the rotational tensor when the micro/macro tensors are exchanged. Since the intra-
cellular matrix is a function of the parameter that represents cardiomyocyte excitation, this

[ Generalized algorism(GA)
| & Block LU factorization(BFA)
O Mode superposition(MSA)

2000

1000

Calculation time[s/step]

10000 20000 30000 40000 50000
Degrees of freedom

Fig. 6 Comparison of calculation time
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Table. 3 Calculation time and number of iterations in each process

Calculation of y [s] Calculation of equilibrium in | Total [s] | Iteration
the microscopic model [s]
GA 746 1296 2105 5
BFA 1251 372 1727 9
MSA 16 300 475 8

Extracellular Matrix
. 4~ Gap Junction

Intracellular
Matrix

2632elements, 3219nodes

Fig. 7 FE meshes of microscopic model

parameter is adjusted at every time step to represent the contraction force. The deformation
of the ventricle and microstructure in the diastole is shown in Fig. 9. The calculation time
is 114([s/iteration], 456[s/step] and the number of iterations is about 4 for each step. In this
analysis, dilation of the left ventricle by pressure and excitation contraction is generated as a
result of the 6336 cardiomyocyte model, which shows the different electrical and mechanical
behavior. The proposed methods thus enable us to deal with large scale problems.

Table. 4 Material constants for the cell model

E[kPa] v
Gap Junction 10.0 0.3
Intracellular Matrix 5.0 03
Extracellular Matrix 0.1 0.3

(a) FE mesh (b) Fiber orientation
1224 elements, 8 quadrature points

Fig. 8 FE meshes of macroscopic model
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6. Conclusion

To reduce the computational cost of the nonlinear homogenization method, the two algo-

rithms listed below were proposed.

(1) An algorithm which decreases the residual of each scale simultaneously using the
block LU factorization.

(2) An algorithm which approximates the homogenization tangent stiffness using the
mode superposition method to omit updating the Schur-Complement.
Both the Block LU factorization algorithm and the algorithm using mode superposition can
drastically reduce the computational cost compared with the conventional method. Finally,
the algorithm using mode superposition applied to the left ventricle of the heart with parallel
computation was presented as an example of a large scale calculation.
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Atorvastatin Improves the Impaired Baroreflex
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We have demonstrated that oxidative stress in the rostral ventrolateral medulla
(RVLM), a vasomotor center in brainstem, increases sympathetic nerve activity (SNA)
and that oral administration of atorvastatin inhibited SNA via anti-oxidant effect in the
RVLM of stroke-prone spontaneously hypertensive rats (SHRSPs). The impairment of
baroreflex sensitivity (BRS) is known as the predictive factor of mortality in the hyper-
tension and BRS is impaired in SHRSP. The aim of the present study was to determine
whether oral administration of atorvastatin improved the impaired BRS via anti-
oxidant effect in the RVLM in SHRSP. Atorvastatin (20 mg/kg/day) or vehicle was
orally administered for 28 days in SHRSPs. Systolic blood pressure (SBP), heart rate,
and 24-h urinary norepinephrine excretion as an indicator of SNA were comparable
between atorvastatin- and control-SHRSP. Thiobarbituric acid-reactive substance
(TBARS) levels as a marker of oxidative stress was significantly lower in atorvastatin-
SHRSP than in control-SHRSP. Baroreflex sensitivity measured by the spontaneous
sequence method was significantly higher in atorvastatin-SHRSP than in control-
SHRSP. These results suggest that atorvastatin improves the impaired BRS in SHRSP
via its anti-oxidant effect in the RVLM of SHRSP.

Keywords statin, oxidative stress, brain, hypertension, baroreflex

Introduction

Rostral ven

trolateral medulla (RVLM) in the brainstem is the vasomotor center that

determines basal sympathetic nerve activity, and the functional integrity of the RVLM is

essential for

the maintenance of basal vasomotor tone (1-3). We have demonstrated that oxi-

dative stress in the RVLM increases the sympathetic nerve activity (4), and that nitric oxide

(NO) in the
onstrated th

RVLM decreases the sympathetic nerve activity (5,6). Previously, we also dem-
at overexpression of endothelial NO synthase in the RVLM of Stroke-prone
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spontaneously hypertensive rats (SHRSPs) improved the baroreflex control of heart rate due
to the sympatho-inhibition caused by the increase in NO production in the RVLM (7). How-
ever, it has not been determined whether the inhibition of oxidative stress in the RVLM
improves the impaired baroreflex control of the heart rate of SHRSP or not.

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors
(statins) are potent inhibitors of cholesterol biosynthesis, and statins have reported to have
an anti-oxidant effect (8). Previously, we have demonstrated that orally atorvastatin
increases the expression of NO synthase in the brain of SHRSPs (9), and that NO in the
RVLM improves the impaired baroreflex control of heart rate in SHRSPs (7). These
results suggested that orally atorvastatin might have the potential to improve the baroreflex
control of heart rate in SHRSPs. Moreover, orally atorvastatin also inhibited the sympa-
thetic nerve activity through the decrease in oxidative stress in the RVLM of SHRSPs (10).

Therefore, the aim of the present study was to investigate the effect of oral-administered
atorvastatin on the baroreflex control of heart rate through its anti-oxidative stress in the
RVLM of SHRSPs.

Materials and Methods

Animals and General Procedures

Twelve-week-old male SHRSPs/Izm and Wistar-Kyoto (WKY) rats (280 to 340g; SLC
Japan, Hamamatsu, Japan) were fed a standard rodent diet. Food and tap water were
available ad libitum throughout the study. The rats were kept in a room maintained at a con-
stant temperature and humidity under a 12-h light period between 8:00 AM and 8:00 PM.
After adaptation to these conditions over at least 2 weeks, SHRSPs were divided into two
groups: 1) atorvastatin-treated SHRSP, treated with atorvastatin of 20mg/kg/day for 28 days,
and 2) control-SHRSPs, treated with vehicle (0.5% methyl cellulose). All drugs were dis-
solved in 0.5% methyl cellulose and administered by gastric gavage everyday. Systolic
blood pressure (SBP) and heart rate were measured using the tail-cuff method (BP-98A;
Softron, Tokyo, Japan). We calculated the urinary norepinephrine excretion for 24 h as an
indicator of sympathetic nerve activity, as described previously (4-7,10). To obtain
the RVLM tissues, the rats were deeply anesthetized with sodium pentobarbital (100 mg/kg
IP) and perfused transcardially with phosphate buffer saline (PBS) (150 mol/L NaCl,
3 mmol/L KCl, and 5 nmol/L phosphate; pH 7.4, 4°C). The brains were removed quickly,
and sections 1 mm thick were obtained with a cryostat at —7 £ 1°C. The RVLM was
defined according to a rat brain atlas as described previously (4-7,10), and obtained by a
punch-out technique. This study was reviewed and approved by the committee on ethics of
Animal Experiments, Kyushu University Graduate School of Medical Sciences, and
conducted according to the Guidelines for Animal Experiments of Kyushu University.

Measurement of TBARS

The RVLM tissues were homogenized in 1.15% KCI (pH 7.4) and 0.4% sodium dodecyl
sulfate, 7.5% acetic acid adjusted to pH 3.5 with NaOH. Thiobarbituric acid (0.3%) was
added to the homogenate. The mixture was maintained at 5°C for 60 minutes, followed by
heating to 100°C for 60 minutes. After cooling, the mixture was extracted with distilled water
and n-butanolpyridine (15:1) and centrifuged at 1600 g for 10 minutes. The absorbance of the
organic phase was measured at 532 nm. The amount of thiobarbituric acid-reactive sub-
stances (TBARS) was determined by absorbance, as described previously (4,10).
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Measurement of Baroreflex Sensitivity by Spontaneous Sequence Method

Rats were initially anesthetized with sodium pentobarbital (50 mg/kg IP followed by
20 mg - kg™ - h™' IV). A catheter was inserted into the femoral artery to record arterial
blood pressure, and a heart rate (HR) was derived from the blood pressure recording. The
other catheter was also inserted into the femoral vein to allow for intravenous infusion of
sodium pentobarbital. A tracheal cannula was connected to a ventilator, and the rats were
artificially ventilated. Sequence analysis detected sequences of three or more beats in
which there was an increase both in SBP and pulse interval (up sequence) or a decrease
both in SBP and pulse interval (down sequence). Baroreflex sensitivity (BRS) was esti-
mated as the mean slope of the up sequences (up BRS), the down sequences (down BRS),
and also the mean slope of all sequences (sequence BRS) (11,12).

Statistical Analysis

All values are expressed as mean = SEM. Comparisons between any two mean values
were performed using Bonferroni’s correction for multiple comparisons. ANOVA was
used to compare the blood pressure, HR, baroreflex sensitivity, and TBARS level in
atorvastatin- or control-SHRSP and WKY. Differences were considered to be statistically
significant at a P value of < 0.05.

Results

BP, HR, and Urinary Norepinephrine Excretion

Systolic blood pressure was significantly higher in atorvastatin-SHRSP and control-
SHRSP than in WKY, and atorvastatin did not alter SBP in SHRSP (Figure 1A). Heart
rate was significantly higher in atorvastatin-SHRSP and control-SHRSP than in WKY,
and atorvastatin also did not alter HR in SHRSP (Figure 1B). Urinary norepinephrine
excretion was significantly higher in atorvastatin- and control-SHRSP than in WKY, and
was not different between control- and atorvastatin-SHRSP (Figure 2).

(A) (8)
WGk (bpm)
240 * %
220 - 360 -
200 1
180 1 340 1
160 1
140 1 320 4
120 7 I_:a
300
WKY  SHRSP Atorvastatin WKY  SHRSP Atorvastatin

Figure 1. (A) Effects of the treatment with atorvastatin for 28 days on systolic blood pressure
(SBP) of SHRSP and WKY. Data are shown as mean = SEM (n = 5 for each group). *P < 0.05 vs.
WKY. (B) Effects of the treatment with atorvastatin for 28 days on heart rate of SHRSP and WKY.
Data are shown as mean £ SEM (n = 35 for each group). *P < 0.05 vs. WKY.
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Figure 2. Effects of the treatment with atorvastatin for 28 days on 24-h urinary norepinephrine
excretion of SHRSP and WKY. Data are shown as mean £ SEM (n = 5 for each group). *P < 0.05
vs. WKY.

TBARS Levels in the RVLM Tissues

Thiobarbituric acid-reactive substance levels in the RVLM were significantly higher in
control- and atorvastatin-SHRSP than in WKY, and those of atorvastatin-SHRSP
were significantly lower than those of control-SHRSP (0.70 £ 0.05 umol/g wet wt vs. 0.91 £
0.06 umol/g wet wt, n =5 for each, P < 0.05; Figure 3).

Baroreflex Sensitivity

Baroreflex sensitivity of control-SHRSP was significantly lower than that of WKY (9.2 +
0.7 ms/mmHg vs. 19.1 £ 0.5 ms/mmHg, n = 5 for each, P <0.01), and that of atorvastatin-
SHRSP was significantly higher than that of control-SHRSP (14.8 + 0.7 ms/mmHg vs.
9.2 £ 0.7 ms/mmHg, n =5 for each, P <0.01) (Figure 4).

Discussion

In the present study, we demonstrated for the first time that oral administration of atorvas-
tatin improved the impaired baroreflex control of HR in SHRSP, and the improvement

{ # molig wet wt)
12 ~

1 1 *

*

0.8 4 +

0.6 -

0.4 -+
0.2 -

0
WKY SHRSP Atorvastatin

Figure 3. Effects of the treatment with atorvastatin for 28 days on TBARS levels in the RVLM of
SHRSP and WKY. Data are shown as mean £ SEM (n = 5 for each group). *P < 0.05 vs. WKY;
P < 0.05 vs. control-SHRSP.
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brain of the hypertensive patients. However, in the present study, oxidative stress in the
RVLM is significantly reduced and baroreflex sensitivity is significantly improved by
atorvastatin, whereas BP and sympathetic nerve activity are not altered. These results
suggest that oxidative stress is inhibited and baroreflex sensitivity is improved by
atorvastatin whose dose is insufficient for the reduction of blood pressure or sympathetic
nerve activity. The improvement of baroreflex sensitivity could not be explained by the
effect of atorvastatin on peripheral mechanisms, and we consider that baroreflex sensitiv-
ity is improved by the central action of atorvastatin. Clinical studies suggest that clinical
doses of statins have the beneficial effect on arrhythmic sudden death and ventricular
arrhythmia in the patients with heart failure, and these effects may be due to the improve-
ment of the imbalance between sympathetic and parasympathetic nerve activity (18). It is
necessary to examine the effect of clinical doses of atorvastatin on baroreflex sensitivity
in a clinical study.

There are some limitations in the present study. First, we measured TBARS levels as
the parameter of oxidative stress in the brain. Thiobarbituric acid-reactive substance
levels are an indirect marker of oxidative stress, and there are other methods to measure
oxidative stress. However, we previously measured oxidative stress directly in the brain
of SHRSP and WKY using electron spin resonance spectroscopy and confirmed that
TBARS levels are comparable to the levels of oxidative stress measured by electron spin
resonance spectroscopy in the brain (4). The results suggest that TBARS levels are a
valid parameter of oxidative stress in the brain. Second, we did not examine the TBARS
levels in other areas of the brain, such as caudal ventrolateral medulla, nucleus tractus
solitarii, paraventricular nucleus, cortex, hypothalamus, and cerebellum. We consider
that these effects of atorvastatin was not unique in the RVLM, and we did not exclude the
possibility that atorvastatin influences those areas thereby improving baroreflex control
of HR in the present study. However, RVLM is the vasomotor center, and the integrated
various inputs from other regions to RVLM influence the sympathetic outflow (1-3).
Although it would be interesting to examine these parameters in other regions of the
brain, we targeted the changes of oxidative stress in the RVLM due to atorvastatin in the
present study.

Conclusions

Our results suggest that oral administration of atorvastatin improved the baroreflex control
of heart rate due to the inhibition of oxidative stress in the RVLM of SHRSP.
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