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FIGURE 6. (a) Averaged (n = 8) time series of CSP, AP, and HR obtained in the absence (Control, /eff) and presence of
phenylbiguanide (PBG, right). CSP was increased from 40 to 160 mmHg in 20 mmHg increments, resulting in changes in AP and
HR through the carotid sinus baroreflex. Time-series transfer functions of total loop (b) and cardiac baroreflex (c) in the Control
(leff) and PBG (righf) conditions. Average (n = 8) gain (top) and phase (bottom). Transfer functions of total loop (d) and cardiac
baroreflex (e) estimated by wavelet analysis in the Control (/eff) and PBG (righf) conditions.
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TABLE 2. Parameters of the transfer functions for the total loop and cardiac baroreflex before and during PBG infusion.

Low CSP (40-60 mmHg)

Middle CSP (80-100 mmHg)

High CSP (120-140 mmHg)

Control PBG Control PBG Control PBG

Total loop

Goos 0.32 + 0.07 0.39 + 0.09"" 1.39 + 0.15 0.59 + 0.09**" 0.35 + 0.04""  0.15 + 0.02"

Slope (dB/decade) ~11.6 +3.3 -8.0+42 -17.8 £ 21 -15.0 £ 3.2 -65+25 7.4 + 53"

Lag time (s) 2.90 + 0.71 1.43 + 0.68 1.44 + 022 2.21 + 0.59 3.48 + 0.61 2.74 + 0.89
Cardiac baroreflex

Go.os (beats/min/mmHg) 0.14 + 0.02 0.26 + 0.10" 0.78 + 0.21 0.75 + 0.18 0.54 + 0.13 0.35 + 0.08"

Slope (dB/decade) -18+22 -125+29 -134+27 -—-116=x2.1 -126+27 -6.6 + 4.0

Lag time (s) 2.99 + 0.89 2.91 + 0.55 2.06 = 0.30 2.28 + 0.54 2.65 + 0.72 2.47 £ 0.77

Gy .04, transfer gain at 0.04 Hz. Slope, average slope of gain between 0.1 and 0.4 Hz. PBG, phenylbiguanide.
** p < 0.01 and * p < 0.05, PBG vs. Control at the same CSP; ' p < 0.01 and ' p < 0.05, all conditions vs. CSPgo_10o of Control.
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FIGURE 7. The ratio in the transfer functions of the cardiac baroreflex (CSP-HR) to the total loop (CSP-AP) (n = 8). The ratio of
dynamic gain (fop) and the phase difference (bottom). Control (a) and PBG (b) conditions.

transform that can adjust the analysis window at every
frequency level and extract the localized data. When
the mother wavelet is appropriately used for any pur-
pose, the fields of the application of wavelet analysis
might be extended. We used the traditional and rea-
sonable Morlet function;''*** however, the compar-
ison with other wavelet functions such as Mexican hat,
Haar, and Daubechies™ will be required in future
studies. In addition, the convolutions within the
transfer function of Eq. (3) may lose the temporal
information; however, because the wavelet transform
reflects the effect of reasonably changed time window,
the gain and phase updated every 0.2 s can continu-
ously express the representative property at the center
point of the time window during the time-course
change.

Physiological Perspective

The powers of the RSNA, AP, and HR responses to
CSP changes showed maximum values at CSPgqy 00
change (Fig. 3b), which was almost consistent with
APpp (94.3 and 99.7 mmHg) from static analysis.
In contrast, the power responses at CSPyy o and
CSP 40160 changes were lower than those at APgp,
resulting from the nonlinear characteristics of the
baroreflex around threshold and saturation to AP in-
puts as indicated by the static analysis. The gain and
phase were revealed within the physiological range
including nonlinear points in normal rabbits (Figs. 4
and 5). Whereas the static analysis cannot show the
dynamic characteristics at higher frequencies (e.g.
>0.01 Hz'®). the proposed wavelet-based analysis
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FIGURE 8. (a) Block diagram of cardiac baroreflex under closed-loop AP response. AP,.;s. indicates the external disturbance to
AP. APghange and HRchange Show the actual changes of AP and HR. Gap and Gyp are transfer functions under open loop responses
in the total loop and cardiac baroreflex. (b) APpgise 0f +20 mmHg as input and APchange @s output under the closed loop (top). HR
responses under the open- and closed-loop AP changes (bottom). (c) Time-series transfer functions of cardiac baroreflex under
open- and closed-loop AP changes. (d) Transfer functions of cardiac baroreflex estimated under the open (/eff) and closed (right)
AP responses. Gain (top) and phase (bottom). Dotted lines, theoretical values. Squares, estimated values by our wavelet analysis.

could derive them from the same step input protocol,
which may be able to reduce the number of experi-
ments and duration of data acquisition.

Clinical Implications for Cardiac Patients

The wavelet-based system identification indicated a
possibility to acquire pathophysiological understand-
ing under various responses with cardiac diseases. The
proposed analysis revealed that the dynamic charac-
teristics in the total loop and neural arc were signifi-
cantly attenuated at various pressure changes
containing nonlinear points under PBG condition
(Fig. 6 and Table 2), in addition to the previous

studies.'®?° The Gy o4 at APop in Control (1.39 £ 0.15)
was decreased to almost half during PBG condition
(0.59 + 0.09); it was attenuated to 1/3-1/4 times as
small as that under PBG condition (0.39 £ 0.09) at
low CSPy4y 4o change, which may be induced by the
decrease of peripheral pump function in heart failure,
suggesting the risk of further bluntness of baroreflex
ability during the BJR.

In carotid-cardiac response, HR may be related to the
assessment of AP regulation by the product of HR,
stroke volume, and total peripheral resistance, rather
than RR interval.”® Because it may be difficult to
evaluate the baroreflex to regulate AP under the
carotid-sinus closed loop condition (i.e. CSP = AP), we
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explored the possibility to evaluate the baroreflex
dynamics from the HR response related to AP regula-
tion, considering the dissociation between animal and
human studies and applying the proposed method. The
transfer functions of the cardiac baroreflex were similar
to those of the total loop around the operating point
(Fig. 7a). On the other hand, the dynamic characteris-
tics in nonlinear CSP points and during the BJR were
greater than those around the operating point in Control
condition (Fig. 7b), suggesting the effect of cardiac
sympathovagal activity. Next, to consider human bar-
oreflex assessment, the dynamic transfer function was
estimated by the closed-loop model response (Fig. 8),
resulting in the effective assessment. Even when the
system input is modulated by the nature of closed-loop
response, it would be crucial to be able to estimate the
dynamic baroreflex characteristics.

The spontaneous baroreflex method is commonly
used in clinical assessments.’’ This method may have
some limitations because of the highly complex and
interconnected  cardiovascular ~ mechanisms  in
short-term AP regulation®”*"*? and the unclear system
input might induce the different pathophysiological
understandings.*> On the other hand, our focus was to
explore the possibility of the evaluation of the baro-
reflex to regulate AP against great external distur-
bances in patients with cardiovascular diseases and
unstable hemodynamics. To identify the system
dynamics of the carotid-sinus baroreflex for AP regu-
lation with sympathovagal activity,”' this study
improved the standard analyses, particularly consid-
ering the pure time delay. Using the transfer function
corresponding to the independent step input fre-
quency, the proposed analysis was able to indicate
some novel aspects of the dynamic baroreflex proper-
ties during the BJR as mentioned above.

For clinical application, the other indexes (e.g. AP
to muscle SNA response'?) for AP regulation might be
tested. In addition, in the time-course data, there are
some effective methods such as complex demodulation
method'? based on the low pass filter, focusing on a
frequency band such as LF and HF; it has good tem-
poral resolution. However, the complex demodulation
method might concentrate on the information of
amplitude in a frequency band. not on each frequency
level within the band. This limitation makes it impos-
sible to perform the system identification in this study
to reproduce the response corresponding to a wide
frequency. Furthermore, the continuous estimation of
the dynamics might connect to an effective index of the
real-time control of hemodynamics such as an auto-
mated drug infusion system.'”"”

Because we kept the bilateral vagi intact, low pres-
sure baroreflexes from the cardiopulmonary region

might have interacted with the arterial baroreflex,
affecting estimation of carotid sinus baroreflex transfer
functions. After the vagotomy, the dynamics from
isolated aortic depressor nerve to AP responses was
almost preserved and AP remained unchanged despite
a HR decrease.”®* Our previous data of dynamic
baroreflex properties with™ and without*' vagal nerves
were compared. The dynamic characteristics of the
total loop and cardiac baroreflex around the operating
point were similar, whereas the corner frequency was
slightly greater under intact vagal condition. Next, the
static gain may be increased during the rising pressure
protocol, compared with the falling one.*® Hysteresis
induced by the rising and falling pressure protocols
may also modulate the dynamic baroreflex. However,
the vagal effect of the cardiovascular receptors on the
dynamics may not be large.” Third, the phases at
lower or higher CSP changes in the transfer functions
varied with the observed frequency because of non-
linear characteristics in the neural arc and the input
power in the peripheral arc decreased by the neural arc.
Especially at high frequencies, the phases appear to be
modulated because of the step input showing low
power with the high frequency. Finally, the simple
models used for the simulations in this study have
some limitations, such as a lack of information of non-
parametric components or nonlinearity.”

CONCLUSIONS

The wavelet-based time-frequency analysis was
capable of identifying the dynamic baroreflex proper-
ties over wide frequencies at various pressure levels
both in normal and BJR conditions. Because the
dynamic baroreflex properties to physiological pressure
inputs as well as static characteristics can be simulta-
neously extracted from the short-term responses with
background noise, the proposed method is potentially
applicable to assess human dynamic baroreflex func-
tion under carotid-sinus closed-loop condition.

APPENDIX

Model Response of Arterial Baroreflex

We used the following model'” as the carotid sinus
open loop baroreflex for the simulation study (Figs. 1
and 2). The neural arc transfer function [Gn(/)] using a
first-order high-pass filter can be expressed as

Gn(f) = —KN(I + S

j—r—f) exp(—2nfiLy)
C
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Abstract

It is well known that the compressibility or incompressibility of biological tissue stems
from its microscopic structure, which is generally composed of material with var-
ied compressibility, including incompressibility. This paper proposes a framework
for a homogenization method in which the compressibility/incompressibility of the
macrostructure properly reflects that of the microstructure. The formulation is based
on the mixed variational principle with a perturbed Lagrange-multiplier. It is shown
that the rate of volumetric change of the macrostructure can be controlled through the
homogenization procedure by introducing the constraint on the microstructure only. A
couple of numerical examples are given to demonstrate the validity of the proposed
method. By comparing the numerical results with theoretical solutions, the method is
also confirmed to be free from locking.

Key words : Homogenization Method, Mixed Finite Element Analysis, Incompressible
Materials, Compressible Materials, Hyper-Elasticity, Heart

1. Introduction

The homogenization method is a mathematical modeling technique for efficiently ana-
lyzing inhomogeneous material with a periodic microstructure. To measure the change in the
spatial domain, we introduce two scales, namely, a scale for the microunit, and a scale for
the whole material. By solving the governing equations of both scales with coupling, we can
obtain the macroscopic characteristic as an equivalent homogeneous body and variable distri-
bution in the microstructure. To investigate the effect of intracellular structure on heartbeat,
we are developing the necessary finite element method in which the heart is analyzed as the
macrostructure, and the cardiomyocyte as the microstructure.

In biomaterial, the periodicity hypothesized in the homogenization method is not strictly
established. However, Terada et al.(V) have shown that an appropriate equivalent characteristic
is obtained in material with an irregular microstructure, if the periodic boundary condition is
applied. Thus it is possible to evaluate the effect of each component in the microstructure on
the macroscopic behavior, if the microstructure modeling is appropriate. The homogenization
method for biomaterial has been applied to bone by Hollister et al.?), while a two-dimensional
analysis of engineered tissue cells has been conducted by Breuls et al.®. In an example using
the heart, Wanda et al.**) have applied an excitation propagation phenomena.

“Received20Nov., 2008 (N0 T1:07-0579] Biomaterial is usually modeled by hyperelastic material. However, the myofibril in the
Japanese Original: Trans. Jpn. Sac. cardiomyocyte generates contraction forces and stiffness changed by chemical reaction and
2;8:;015???% :2’;::;‘:’;2?3" r‘:e (223_’?]] includes anisotropic high nonlinearity. In addition, the organization of cytoplasm, mitochon-
[DOI: 10.1299/cst.3.89] : dria, nucleus, microtubule, and so on are different intra-cellularly and these also have different
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Young and bulk moduli. To treat such material in an unified way, a mixed finite element
method based on the perturbed Lagrange-multiplier method is suitable®. Although the dis-
placement finite element method is used with only displacement as the unknown independent
variable, the characteristic of the mixed finite element method treats pressure as an unknown
independent variable in addition to the displacement. A few studies have been reported using
a mixed finite element method for homogenization. Yamamoto et al.®) showed a formulation
in which the compressibility control condition is imposed as a penalty method by eliminating
the pressure variables analytically. Heguri et al.”® reported a formulation which applied the
Perturbed/Augmented Lagrange-multiplier method to the compressibility control condition,
where it is assumed that the existence of a solution with an asymptotic expansion type also
applies to the pressure. Recently, to extend the formulation of Heguri et al. to anisotropic
material, Matsui et al.*”) attempted a Mixed Finite Element formulation in an infinitesimal
deformation problem based on the generalized convergence theory. In the formulations by
Heguri and Yamamoto, the pressure in the microstructure is also defined, and an incompress-
ibility condition is given, thus achieving the incompressibility condition of the macroscopic
structure. However, the theoretical background and process of numerical realization have not
been clear.

The purpose of this study, is to formulate a homogenization method for hyperelastic
material using mixed finite element analysis based on two-scale convergence theory‘'?, while
considering the compressibility control and process of numerical realization. As described be-
low, this is achieved using two-scale convergence theory in that the rate of volumetric change
of the macrostructure can be controlled by the volume average of the volumetric change of
the microstructure corresponding to a point of the macrostructure. From this relationship, the
compressibility control condition of the microstructure is considered to be a sufficient condi-
tion for the compressibility control of the macrostructure and it is also confirmed under finite
element discretization.

2. Nomenclature

Y.y :position vectors before and after deformation in the microstructure
X, x :position vectors before and after deformation in the macrostructure
u :macroscopic displacement vector

A :periodic component of the microscopic displacement vector

F :the deformation gradient tensor

Z :the displacement gradient tensor

E :the Green-Lagrange strain tensor

II :the first Piola-Kirchhoff stress tensor

I :the identity tensor

I, I, Il :principal invariants

J det F

3. Homogenization Method for the Finite Deformation Problem

3.1. Problem Statement and Geometric Prospect
We assume that the material in the body() reveals heterogeneity on a very fine scale

and is characterized by the periodic distribution of a basic structural element(Yy) as shown in
Fig. 1. The following assumptions of homogenization are employed in the formulation of the
homogenization method.

e A macrostructure that consists of a periodic microstructure can be considered to be an
approximately equivalent homogeneous substance.

e A microstructure is infinitely fine compared with a macrostructure; the variable defined
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Fig. 1 Homogenization Method in Large Deformation Problem

at each point of the macrostructure corresponds to the volume average of the variables in the
microstructure,

To measure the changes in the spatial domains, we introduce two scales: a macro-scale
X € Q and a micro-scale ¥ € ¥. Thus these scales are characterized by

Y =X/e, 1)

where € represents the ratio of the two scales. Thus the actual domain can be regarded as the
product space (Q x Yj).

The physical value ¢ defined in Q° is a function dependent on € and is represented by
¢*(X) using e. This can be written as

¢(X) = X, X/e) = o(X,Y) in QxYo, (©))

where X and Y are independent variables in the micro- and macro-scales, respectively' V. In
the subsequent discussion, a macroscopic quantity defined in Q corresponding to the micro-
scopic one is expressed by adding a bar symbol over the microscopic symbol.

¢ : Yo — yo represents the deformation of the microstructure Y. This ¢ maps a point
Y € Y of the reference configuration onto a corresponding point i = ¢(¥) € y of the current
configuration. The associated gradient map of deformation is expressed by F = Vyy and is
called the deformation gradient. To indicate components of tensors, we use an orthogonal
coordinate system. For instance, F;; = y;; = dy;/8Y;. The deformation of the microstructure
is assumed to be linked to the local values of the macro continuum via

y=FY +w, 3

where y and Y are position vectors defined on the microstructure. Briefly, the deformation
of the microstructure is assumed to be composed of a homogeneous part FY, in which F
is constant in the microstructure, and a non-homogeneous superimposed periodic field w,
usually referred to as the fluctuation field. As illustrated in Fig. 1(b), the deformed thin-
line quadrilateral is the homogeneous deformation caused by the macroscopic deformation
gradient, and onto it a fluctuation is superimposed. Consequently, the following relationships

o = =

=V e e—
F = Vyy 7Y F+Z, “
- ax

:V = —
F=Vgx X’ (5)
- ow
VA —Vyw— -a'-.?," (6)

exist between the microscopic and macroscopic deformation gradients. Thus increment and
variation of the deformation gradients become

AF = AF + AZ = VAl + VyAw @)
6F = 6F + 67 = Vyéil + Vyow (8)
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For the assumptions mentioned above, the macroscopic gradients are related via the volume

averages

= 1 1 = A = 1 -

¥ YaFdY—mLO(F+Z)dY—F+mLDZdY, 9)
where V is the volume of the microstructure ¥p. Then, the fluctuation field w has to satisfy the
constraint

ow

J;OZdY—fYU 554¥ = [, Nowds =0. (10)
Here, N is an outward normal vector on the boundary dYy. This constraint is satisfied when w
is periodic.

3.2. Governing Equation

We now consider the equilibrium of material consisting of a periodic microstructure
which is modeled by hyperelastic material. Using the principle of stationary potential en-
ergy, the equilibrium condition becomes a functional stationary problem. According to the
perturbed Lagrange-multiplier method®, the total potential energy is defined by the func-
tional

A¢
€ — € € € S € € €
Q] = deV +.£r’1 (U -—K)dV +f t.u%dS*, (11)

where A is a Lagrange-multiplier corresponding to —% of the pressure and which can be con-
sidered as two-field variational problems about 1 and u. W€ is the energy function for the
deviatric elastic response defined by the deviatric part of the deformation gradient (FJ ).
On the other hand, U* is the energy function for the volumetric elastic response and is de-
fined by J. U(J) = 0, when J = 1. k is the penalty coefficient for volume change control
and compressibility can be controlled using this value. The incompressibility condition can
be achieved completely as k — oco. t is the traction force and we assume a conservative
force. The homogenization method for hyperelastic material can thus be reduced to solving
the stationary problem of the above functional under the assumption of homogenization. The
stationary condition becomes

2A1¢
! T . (3 £ (3 € (3 "
50 —L‘(o‘F‘.H +62 (U = ))dV + [ t.outdse =0, (12)
owe  aus
HE = H;-w‘l“ﬂjo{: ﬁ-‘. i[f
where Iy, is the stress due to the deviatric deformation, and I, is the stress due to volume

change. To establish the above equation for arbitrary 6u® and 64°, the necessary and sufficient
conditions are

A5 (13)

Gow = [, 6F : IEdVe + [ t.ouds® =0, (14)
Gox = [, 62° (U‘ - %)dw =0, (15)

Here, Eq. (14) is the equilibrium equation. Because it can also deal with compressible mate-
rial, Eq. (15) shall be called the compressibility control condition. Thus the pressure p can be
described as

pe=-24° = —xU", (16)
3.3. Multi-scale Boundary Value Problem

We adopt the formulation for homogenization based on the two-scale convergence theory
proposed by Terada et al.*?.




A sequence of the function 1¢(X) € L*(Q) is said to have a two-scale convergence limit
u(X,Y) € LX(Q x Yo), if for any function ¢(X, Y) € D(Q; Ci,(Yp)), we have

lim f E(X)(p( )dv‘ fn T I f u(X, Y)e(X, Y)dYdX. (17)

where V = [ dY and D(Q; pe,(Yg)) denotes each point X € Q of the macrostructure cor-
responding to the smooth and periodic functional space Cp,,(Yp), that is, the microstruc-
ture. It is also proved that two-scale convergence can be achieved, i.e., the gradient Vyr¢(X)
converges to the combination of the macroscopic and microscopic displacement gradients
Vxr(X) + Vyr(X, V)10,

Using the above relationships, Eq. (14) becomes‘'®

1
Gsp= fﬂ = j; (Vx0u(X) + Vyou(X, Y)) : (X, Y)dYdX

+fmt.éﬁ(7i)d§=0 (18)
1 — _
=J;1ﬂ 4 (6F + 6Z) : dYdX + G = 0, (19)
where
Gon(60) = fa . 6uds, (20)

and Eq. (15) also becomes

W)dm{ = @1)

1
Gow = [ - Ji, sax.¥) (U(X, Y) -

Because of the arbitrary nature of variation, the arbitrary function can choose any variation in
the admissible functional space. The macroscopic equilibrium equation and compressibility
control condition can thus be obtained as

G = L SF(X) : TIdX — Gon(60) = 0, 22)
g AW QU
16 o [, 11 =i b f ( —i)dY (23)
f 5,1()() ( 2) dydx =0, (24)
V] Jx: K

by choosing a variation that only depends on X. In contrast, the following microscopic equi-
librium equation and compressibility control condition are obtained

Gou = fY SZ(Y) : MdY =0, (25)
2
Gsy = J;  OA(Y) (U - T)dY =0, (26)

where the volume average of the microscopic volume change determines the macroscopic
volume change at an arbitrary point. When Eq. (26) is satisfied for an arbitrary variation 64,

24
U-==0, @7

K

is satisfied at an arbitrary point in the microstructure. Therefore, if the compressibility control
condition is satisfied at a point in the microstructure corresponding to an arbitrary point of
the macrostructure, the macroscopic compressibility control condition (Eq. (24)) will auto-
matically be satisfied and this is sufficient using only the microscopic compressibility control
condition. This is considered under finite element discretization in the next subsection.
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3.4. Finite Element Discretization

We solve Egs. (22), (25), and (26) using finite element methods. In the hyperelastic
material, IT is a function of F and A as described above. To solve the nonlinear equation about
two variables (u, 4), a Newton-Raphson method is employed. Then, the linearization process
of the microscopic equilibrium equation from Eqgs. (25) and (26) provides

AGg= f 67 (311 AF + ‘mm)d}’

oF o1

= [ oz (A AF + %’m)ﬂ 28)
AGsi= [, 61 (‘;—g : AF - %AA)dY, (29)
= g—;{ + ;—;’;A. (30)

By using Eq. (7), the linearized microscopic equilibrium equation Gg, + AGg, = 0, and the
linearized incompressibility condition G4, + AGs, = 0 become

faz ( (AF +AZ) + g—gAA}dY- faz Tdy, (31)
Lﬂm(g—g:(AF+AZ)w%A,I)dY:—£,06,I(U—gfl)dY (32)

Next, we consider the macroscopic equilibrium equation. When Eq. (22) is solved using
the Newton-Raphson method, G + AG = 0 becomes

fgéF A AFdX = Gy — fnaF - TIdX. (33)
When the homogenized tangent stiffness is defined as
ATl = @ :AF = A : AF, (34)
OF

using Eqs. (4) and (23), it becomes
— 0 1 ol Ol OF QI A
A=z — = — = =T37 dy
6F Vi aE Vi Yo(r?F oF 04 aF)

a(F + Z) AU dA
=W f,,o( )dY

oF 3F5F
1 aZ U A
_M-Ye(A'(l+ﬁ)+§a_F)dx ”

By inserting Eq. (33) into the above, the linearized macroscopic equilibrium equation is

| oF: (ﬁ LO(A : (AF + AZ) + %M)d}’)d}f

= = f
e e fn 6F : (Tﬁ ff : HdY)dX. (36)
Here we use
BZ : AF = AZ, a—f 1 AF = AL 37
9F

Finally, we obtain three linearized equations, that is, the linearized macroscopic equilib-
rium equation (31), the linearized microscopic equilibrium equation (32) and the linearized
incompressibility condition (36). We now apply a finite element procedure and discretize

these equations using
= [B]AG, (38)
AZ = [BlAw, (39)
A = {MTAA. (40)
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Then, by multiplying the weight of the macroscopic quadrature point and dividing both sides
by |V|, the following semi-positive definite symmetric matrix is obtained on the whole macrostruc-

ture.
Kz Ki K |(Au T
Ki Kiw Kip|{Awi=ir,7, @D
Ka Ko K, |lAA X5
where
Ka= [ [B]T(|V| ) O[A]dr) (Blax (“2)
Ku,= [ (B (M L [A][B}dr)dx “3)
K;,= T T
Kar= [ (IV! [ ]{M} dY) e
K= [ (M I, [B]’[A]dr) (BldxX (45)
L(? [B]T[A][B]dY)dX (46)
1
Kup= L(;V E [BJ*’[ ]{M}Tdr)dx @)
fn(!l 3 [M}[ ]dY)[TB]dX (48)
o= f (IVI f {M}[ ][B]dY)dX 49)
= L
= f (IVI f M= {M} dY)dX (50)
i =P [ [W(m L {mdr)dx 1)
== (IVI [ [B]T{ﬂ}dY)a'X (52)

it (m fh{m(y . ?)dY)dX. (53)

These are solved about the macroscopic displacement increment Au, the microscopic displace-
ment increment Aw, and the Lagrange multiplier increment AA under the given boundary
condition of the macrostructure and periodic boundary condition of the microscopic displace-
ment. If the above equations are statically condensed and both scales are calculated using
the weak coupling method as in the study by Miehe et al.'#), a generalized solution using the
characteristic deformation y, including the compressibility control condition, can be obtained.

From Eq. (53), when {r,};; = 0 for component j of all pressure nodes of the microstruc-
ture corresponding to the quadrature point 7, that is,

{rp}‘_ﬁ{% J;qu(U u]dY} 0, (54)

is established, by summing the components of pressure node j,

{%ﬁfhm(yﬂ) }; {Mfz (U-z_")d}f} 0. (%)

Since £; M; = 1 from the nature of the shape function of the finite element method,

1 21
(2 -

The compressibility control condition of the macrostructure, Eq. (24), is also satisfied in a
discrete representation at all the quadrature points.
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(a)Model 1
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5851 nodes (Displacement:3219, Pressure:2632)
(b) Model 2
Fig. 2 Microscopic FE mesh

4. Numerical Example

For the microstructure, we use the mesh of a block which contains 27 (3 X3 X 3) elements
as shown in Fig. 2(a) as Model 1, and a model simulating cardiomyocyte which is shown in
Fig. 2(b) as Model 2. These models are composed of 8/1d elements. Model 2 is an example
of the general multiple NDOF (number of degrees of freedom) problem with the distribution
of the physical property in the structure. In an element of an 8-node element, there are 8
quadrature points as the macrostructure, and the validity of the proposed method is proved
using simple tensile and shear tests. The Mooney-Rivlin material using reduced invariants is
assumed for the constitutive equation as

W = Ci(I. - 3) + G (1. - 3), (57)
oL o L

e = W’ I. = W‘ (58)
U=J-1, (59

where U is the volumetric strain energy function. Then, « in the above equations becomes
the bulk modulus. In addition, when the microstructure includes anisotropic material, it can
be described in a similar way by making W a function of /V,, V. and so on, that is, Pseudo-
Invariants®.

First, a basic examination is done using Model 1. The material constants of the mi-
crostructure are uniform with C, = 1[kPa], C; = 1[kPa], and k = 10* x £[kPa]. When a
25[%] uniaxial tensile deformation is given in the y-direction under a nearly incompressible
condition (¢ = 1), a comparison of the macroscopic and microscopic deformation gradients is
given in Table 1 for each of the components. In the case of a uniaxial tensile condition, the
deformation gradient is uniform at all the macroscopic quadrature points. Since the material
constants of the microstructure are uniform, Z = 0, that is, the deformation gradient at all
quadrature points in the microstructure becomes F. If this is confined to the case of infinites-
imal deformation, Young’s modulus E, Poisson’s ratio v, and the shear modulus G of nearly
incompressible Mooney-Rivlin material can easily be derived as®

18(Cy + Co)k

e 2C; +Co) (o8




(
L4
¥
:

Table. 1 Deformation gradients for each scale (Model 1)

ij Fy Fy
xx_| 0.89446810049879 | 0.89446310049879
Xy | 0.00000000000000 | 0.00000000000000
xz_| 0.00000000000000 | 0.00000000000000
yx_| 0.00000000000000 | 0.00000000000000
yy_| 1.25000000000000 | 1.25000000000000
yz_| 0.00000000000000 | 0.00000000000000
zX_| 0.00000000000000 | 0.00000000000000
zy | 0.00000000000000 | 0.00000000000000
2z | 0.89446310049879 | 0.89446810049879

detF | 1.00009147851239 | 1.00009147851239
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~-& -Young's modulus E(Theoretical solution)
—8—Young's modulus E(Finite element analysis)
—&—Shear modulus G{ Theoretical solution)
—O—Shear modulus G(Finite element analysis)

Young's modulus E[kPa]
Shear modulus G[kPa)

; 1
+ 107 107 10° 107 107 10°
g
Fig. 3 Homogenized elastic moduli vs. magnitude of bulk modulus (Model 1)

3k 4(C +C)
= Sk +4(Cy + Cy) (61)
G=2(C; +Cy) (62)

which satisfies the relationship of linear elastic material in an infinitesimal deformation

_E _E
T 3(1-2v) T2(1+v)

In the case of an incompressible condition (¢ — o0), E = 6(C} + C;) and v=0.5, and the shear
modulus does not depend on the bulk modulus in an infinitesimal deformation.

Here, if material constants C; and C, are uniform in the microstructure, the response
which is obtained by finite element analysis has to coincide with the theoretical solution Egs.
(60)~(62). The relationship between the homogenized elastic modulus and bulk modulus,
which is calculated from macroscopic displacement and loading force is shown in Fig. 3.
Young’s modulus and the shear modulus agree completely with the theoretical solution. Since
the constraint condition is added to all 8 quadrature points of the macrostructure in this anal-
ysis, the hardening phenomena occurring due to over-constraint, which is called locking, is
anticipated. However, in the incompressible region (near x = 10*[kPal), no unnatural increase
in stiffness is identified. This also agrees with the theoretical solution and thus locking is not
observed.

Next we examine Model 2 which simulates the cardiomyocyte. The material constants
C;, C; and k have distributions as given in Table 2. In a uniaxial tensile deformation, the rela-
tionship between stretch and volume change of the macrostructure for various bulk moduli of
the microstructure using Case 1 parameters is shown in Fig. 4. At ¢ = 1, a nearly incompress-
ible condition is achieved. Each graph is associated with a different bulk modulus and we can
confirm that the magnitude of volume change decreases with a decrease in the bulk modulus of
the microstructure. A comparison of the volume change of the microstructure (& Jy, detFdY)
and the value of detF at the corresponding macroscopic quadrature point is given in Table 3.
We can confirm that both values agree almost completely. This is a result of the prediction
from Eqs. (24), (26), (54), and (56). Thus it is clear that the proposed method controls macro-
scopic volume change using the compressibility condition of the microstructure constraining
J(= defF) at the macroscopic quadrature point.

K

(63)
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Table. 2 Material constants [kPa] (Model 2)

Case | Case 2
o x |GG «
Gap Junc. 10|10 [10°x&| 1 [ 1 |10°%x¢
Intra. Matrix 1 1 1< 1] 1 |10°x¢
Extra. Matrix 01]0T[10°xe] 1 [ 1 ] 10°%x£

Table. 3 Verification of compressibility control condition (Model 2, Case 1)
(a) 10% Tension (Nearly Incompressible £ = 1)
quadrature point | g fy, detF dY detF
1.00002878349178 | 1.00002878374920
1.00002878348170 | 1.00002878373912
1.00002878349414 | 1.00002878375156
1.00002878348402 | 1.00002878374145
1.00002878349418 | 1.00002878375160
1.00002878348403 | 1.00002878374145
1.00002878349654 | 1.00002878375397
1.00002878348636 | 1.00002878374378
Macroscopic volume change = 1.00002878374904
(b) 10% Shear (Nearly Incompressible & = 1)
quadrature point i Jy, detF dY detF
1 1.00000098498314 | 1.00000098226455
1.00001102789837 | 1.00001102513974
1.00000098461793 | 1.00000098243829
1.00001102799754 | 1.00001102577960
1.00000080584643 | 1.00000080272925
1.00001084609298 | 1.00001084293560
1.00000080548317 | 1.00000080290299
8 1.00001084619396 | 1.00001084357545
Macroscopic volume change = 1.00000591347420
(c) 10% Tension (Compressible £ = 10™%)
quadrature point ﬁ Jy, detF dY detF
1.07417781782060 | 1.07417781839972
1.07417780557111 | 1.07417780615024
1.07417781819000 | 1.07417781876911
1.07417780594056 | 1.07417780651967
1.07417781819010 | 1.07417781876920
1.07417780594049 | 1.07417780651960
1.07417781855948 | 1.07417781913859
1.07417780630092 | 1.07417780688904
Macroscopic volume change = 1.07417781211192
{d) 10% Shear (Compressible £ = 10-)
quadrature point | 5 fy, detF dY detF
1 1.00674045147491 | 1.00674044838057
1.02716634652040 | 1.02716634338197
1.00674045143295 | 1.00674044845830
1.02716634668573 | 1.02716634367135
1.00668414073269 | 1.00668413663882
1.02710856617705 | 1.02710856201589
1.00668414069160 | 1.00668413671656
1.02710856634320 | 1.02710856230527
Macroscopic volume change = 1.01692486392233

o) ~J| On| Wi =) W ba =

=] | La| =] W2

ool <3| | | - LI B2| =

o 3| O | | w12

Volume change

Em—h— o OO0

N oy F Bl (TR o Bl
Stretch

Fig. 4 Volume change in uniaxial tension (Model 2, Case 1)
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(b)Case 2

Fig. 5 Homogenized elastic moduli vs magnitude of bulk modulus (Model 2)

Next, we examine uniaxial tensile and simple shear tests in infinitesimal deformation us-
ing the parameters in Table 2 for Cases 1 and 2. The relationship between the homogenized
elastic modulus and bulk modulus is shown in Fig. 5. Since the values of C; and C, for the pa-
rameters in Case 2 are constant in the microstructure, Young’s modulus and the shear modulus
obtained in the macrostructure also coincide with the theoretical solution in Egs. (60)~(62).
The graphs for Case 1 show the same trend as for Case 2 and a steep increase in stiffness is
not observed as the bulk modulus increases. Young’s modulus and the shear modulus in Case
1 are far smaller than in Case 2 reflecting the stiffness distribution of the microstructure. It
is thus proved that each macroscopic material property, such as Young’s modulus, the bulk
modulus, and so on, is determined by the corresponding microscopic material property. No
locking is identified in this analysis, and it is thus confirmed that this is a locking free finite
element method.

5. Conclusion

The purpose of this paper is to formulate of a homogenization method for hyperelastic
material using mixed finite element analysis based on two-scale convergence theory, taking
into consideration the compressibility control and process of numerical realization. The pro-
posed method controls macroscopic volume change by constraining J(= detF) at the macro-
scopic quadrature point without the compressibility condition of the macrostructure. The fi-
nite element analysis is demonstrated for verification using two different models. The volume
change in both the micro and macro structures is compared in both models and the validity of
the method is confirmed by comparing these results with the theoretical solution for infinitesi-
mal deformation. In addition, locking of the macrostructure that stems from an incompressible
constraint is checked and this method is confirmed to be locking free.
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Abstract

An efficient homogenization method for nonlinear problems is introduced. We have
already developed a homogenization technique using characteristic deformation mode
superposition that avoids prohibitive computational cost. However, in the mode super-
position technique, the approximation error created depends on the analysis case. In
this paper a new method is proposed, in which the same accuracy as the exact method
is preserved by solving the microscopic equilibrium equation, while approximating the
tangential matrix of the multi-scale equilibrium equation using the mode superposition
method. The performance of the proposed method is examined together with the block
LU factorization algorithm, and satisfactory results are obtained.

Key words : Homogenization Method, Nonlinear, Finite Element Analysis, Algorithm,
Block LU Factorization, Heart

1. Introduction

The homogenization method is a mathematical modeling technique for efficiently ana-
lyzing inhomogeneous material with a periodic microstructure. To measure the spatial change
in the domain, we introduce two scales, that is, a scale for the unit period, and a scale for
the whole material. By solving the governing equations of both scales with coupling, we can
obtain the macroscopic characteristic as an equivalent homogeneous body and variable distri-
bution from the microstructure. To investigate the effect of intracellular structure on heartbeat,
we are developing the necessary finite element method which is calculated with the heart as
the macrostructure, and the cardiomyocyte as the microstructure.

Biomaterial is usually modeled by hyperelastic material. However, the myofibril in the
cardiomyocyte generates contraction forces and stiffness that is changed by chemical reaction
and includes high nonlinearity. In the conventional nonlinear homogenization method®®, it
is necessary to calculate microscopic equilibrium and macroscopic tangential homogenization
updates at all quadrature points in every Newton-Raphson iteration, resulting in huge compu-
tational cost. To reduce this computational cost, various techniques have been devised. These
include, for example, the construction of a database with the homogenized properties®®, sen-
sitivity analysis®, Fast Fourier Transforms®, and so on. In a previous paper, to circumvent
these difficulties, we proposed the basic framework of a homogenization method that reduces

“RacewediiNov,2008(No.Ti07:0747) ~ computational cost by using characteristic deformation mode superposition. This method is
Japanese Original: Trans. Jpn. Soc. applicable to the microstructure, which is composed of nearly incompressible and viscoelastic
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