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FiG. 3.2. A sketch of the local-global multigrid algorithm. In each mesh, the multigrid V-cycle
is applied as a smoother. In particular, the coarsest grid of the local mesh V-cycle has the same
resolution as the finest global mesh.

approximation scheme (FAS) [2, 20], originally proposed to solve a nonlinear problem
with a multigrid. An interesting point here is that MLAT is naturally derived by
extending the Lagrange multiplier in (3.6) at the local-global interface I'ps to the
inside of the fine finite element mesh where it can be interpreted as the residual.
Also note that in the standard implementation of MLAT [20], the residual at the fine
grid boundary is not transferred to the coarse grid, whereas in the above algorithm
the residual components at the local mesh interface boundaries certainly affect the
right-hand side of the coarse mesh equation. As we have seen in section 2.3, this is
an essential point to ensure the conservation property at the local-global interface.
Other techniques to ensure the conservation have been introduced, for example, in
[1, 12, 27] for finite volume discretizations. On the other hand, in common adaptive
finite element approaches, a special refinement strategy is adopted at the fine-coarse
interface so that hanging nodes are not present. In these approaches, conservation is
automatically ensured. However, a method that allows hanging nodes provides easier
mesh generation, in particular, for hexahedral elements.

3.2. Treatment of the Purkinje fiber network. In this section, we describe
the special treatment of the Purkinje fibers in the local-global multigrid algorithm. As
mentioned in section 1, the Purkinje network is modeled by one-dimensional elements,
as is commonly done in the cardiovascular literature. In our simulator, only end-point
nodes of the Purkinje network are connected to the voxel mesh nodes, as shown in
Figure 3.3(a). Although a fairly fine spatial resolution is required for the Purkinje
one-dimensional elements, we can eliminate most of the unknowns before solving the
potential problem. This situation is illustrated in Figure 3.3. Nodes on the Purkinje
network with only two edges connected can be eliminated without increasing the
number of edges. Therefore, we do not apply any coarsening to the matrix on the
reduced Purkinje nodes when constructing the matrix at the coarse level. In this case,
although we have to invert the matrix completely on the reduced Purkinje nodes at
the smoothing steps at each level of the multigrid cycle, this does not result in a
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in the local-global multigrid algorithm. As for the interpolation from the coarse to the
fine mesh, we define two different operators, I/ and I £, as follows. For If, standard
weights are chosen, whereby weights for the voxel mesh nodes that are outside 2 are
set to zero. Note that the sum of the interpolation weights of I f is not equal to one if
one of the neighboring coarse nodes is outside 2. In the definition of I 1, the weights
are adjusted so that their sum is equal to one, except for the fine nodes for which all
the neighboring coarse nodes are outside 2. In our implementation, we apply I as the
interpolation operator and its transpose as the restriction operator in the multigrid
V-cycles, whereas in the determination of the coefficient matrix K° on the coarse
mesh from the coefficient matrix K/ on the fine mesh, we apply I I as follows.

(3.13) K¢ = (INHTK'I!.

In our experience, the above-mentioned strategy (using the different interpolations in
the multigrid cycle and in the determination of the coarse mesh matrix) results in
the best convergence. For example, using I I for both leads to convergence stagnation
when the Purkinje fiber network is connected, while using I for both results in slower
convergence. Further study of this is part of our future research.

The other key issue for robust convergence in the given potential problem is the
choice of smoother in the multigrid. In this application, the electric conductivity has
an anisotropy in the heart muscle along the fabric construction and also jumps in
coefficients at the interfaces between different organs. Furthermore, the torso bound-
aries given on the finest level on the global mesh do not necessarily fit with the coarser
voxel elements. These problems trigger convergence difficulties for the standard multi-
grid method. Therefore, we adopt an incomplete Cholesky (IC) smoother since it is
more powerful than a Gauss—Seidel smoother for jumping coefficient and anisotropic
problems (see, for example, [20] or [29]). Thus, the coarse mesh correction may be
somewhat less accurate. In the case where the Purkinje fiber network is connected,
we apply the IC smoother on the voxel part and a sparse direct solution method on
the reduced Purkinje network part with the two-block representation as in (3.10). In
general, the linear equation to be solved at an arbitrary level can be represented as
follows (see (3.11)).
o [erme e [2)-[e]

KrsI # K T Q"r gr

Here, K is the coefficient matrix on the grid where the smoother is applied, and I*®
denotes the interpolation operator of the shared nodes on the finest local mesh QF
from the grid where the smoother is applied. Under the above notation, one smoothing
step is described as follows.

(3.15) r®) =g — (K + I*TD,*)¢® — PFT K.,
(3.16) Solve MA@F+Y) = p(k)

(3.17) ¢(k+1) - qb(k) 3 A¢(k+l},

(3.18) r (F+1/2) — g K“‘qbl(ﬂk) _ Kl-sfsqb“‘“]-.
(3.19) Solve Ky Ap+h) = p(k+1/2)

(3.20) gt = gl 1 Agli+l),

where M denotes the IC factorization of the matrix K + T 5TDSI B
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terminal area

Fic. 4.1. The Purkinje fiber network. At each terminal, the fiber is attached with 12 shared nodes.

TaBLE 4.2
Elapsed time (in seconds) of one iteration of the local-global multigrid algorithm for the different
divisions of the meshes.

Smoother
Division LtoG GtoL Krylov Noncal Purkinje Total
Ix4x2 | 0.09(35%) | 0.13 (4.9%) | 0.12 (4.4%) | 0.79 (30.1%) | 0.30 (11.5%) | 2.62
Ix4dx3 || 0.07 (3.4%) | 0.00 (4.7%) | 0.08 (4.4%) | 0.56 (20.7%) | 0.27 (14.4%) | 1.89
4x4x4 | 0.05(3.4%) | 0.07 (4.7%) | 0.06 (4.0%) | 0.42 (27.8%) | 0.22 (14.4%) 1.51
4x4x5 | 0.04(3.3%) | 0.06 (4.5%) | 0.05 (3.9%) | 0.33 (27.3%) | 0.20 (16.1%) 1.22

“G to L7 denote the elapsed times for the local-to-global and global-to-local data
transformations in (C.1), respectively. “Krylov” denotes the elapsed time for the
Krylov acceleration. “Smoother” denotes the elapsed time for the smoothing itera-
tions at all levels, where “Voxel” corresponds to the relaxation on the voxel meshes in
(3.16) and (3.17), and “Purkinje” corresponds to the processes on the shared and re-
duced Purkinje nodes in (3.15), (3.18), (3.19), and (3.20). The numbers in parentheses
are the ratios to the total time.

We observe a very satisfactory scaling. The elapsed times for the data transforma-
tions between the local and global meshes are relatively small in all cases. However,
the elapsed time for the smoothing on the reduced Purkinje nodes is more pronounced
as the number of processors increases. In particular, in (3.15) and (3.18), one-to-many
communications are necessary to transfer the data to the shared nodes. It seems that
this influences the parallel performance negatively.

Further, we analyze the convergence of the local-global multigrid algorithm. The
convergence histories with respect to the number of iterations and the elapsed times
are presented in Figure 4.2 for three different approaches. The notations “strong
coupling with Krylov” and “strong coupling without Krylov” denote the local-global
multigrid algorithm, respectively, with and without the Krylov acceleration technique,
where the reduced Purkinje nodes are taken into account in the smoothing at every
level, as described in section 3.3. On the other hand, the notation “loose coupling
with Krylov” denotes the solution algorithm with the Krylov acceleration technique
but solving the reduced Purkinje nodes and the voxel nodes in a decoupled way. This
means that the direct solution on the reduced Purkinje nodes (including the shared
nodes) and the local-global multigrid algorithm on the voxel mesh are performed
alternately. In this case, the coupling with the reduced Purkinje nodes is dealt with
only at the finest level on the local mesh.
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Fic. 4.2. Convergence history with respect to (a) iterations and (b) elapsed time.

In the Krylov acceleration technique, up to five iterants are recombined for the
acceleration, and the acceleration, process is restarted every five iterations. The re-
sults in Figure 4.2 show the effectiveness of the Krylov acceleration technique and
the importance of the smoothing on the reduced Purkinje nodes at every level. The
convergence speed of the loose coupling approach is obviously much slower than that
of the proposed local-global multigrid algorithm. Even though there is considerable
overhead in dealing with the reduced Purkinje nodes at every level, the proposed al-
gorithm is still significantly faster than the loose coupling approach also with respect
to the elapsed time. In our real-life simulations, we commonly adopt 10~° as the con-
vergence tolerance for the relative L2-norm of the residual. Therefore, one solution
takes approximately 8 seconds. If we solve the potential problem every 1 or 0.2 ms,
about 8000 or 40000 seconds, respectively, are needed for the solutions to a 1 second
simulation with 80 processors. This is approximately 40 or 7T0%, respectively, of the
total elapsed time in the ECG simulation to obtain the results given in Figure 2.2.

5. Conclusions. A parallel solution to the bidomain equation that appears in
the excitation propagation analysis of the human heart was constructed. The stability
of the explicit scheme was analyzed and an efficient multigrid technique to solve the
potential problem with the torso model was introduced. In our approach, the potential
problem was discretized on the composite mesh composed of a fine local mesh around
the heart and a coarse global mesh covering the torso. A conservative finite element
discretization adopting the Lagrange multiplier approach was introduced and a multi-
grid solution technique for this discretization was naturally derived. Furthermore, a
method to combine the Purkinje fiber network with the multigrid solution technique
was shown, whereby the matrix on the Purkinje network was reduced before entering
the multilevel solver and the reduced matrix on the network was dealt with by a direct
solution method at every level. The parallel efficiency and good convergence results
were proved through an experiment with a realistic simulation model.

Appendix A. Stability analysis for the bidomain integration scheme.
In order to evaluate the spectral radius of M in (2.12), we construct a matrix as
described below.

LEMMA A.1. Assume that the spectral radius of D' K; is less than 1. Then M
in (2.12) is similar to the following matriz.

I-S8T =(F=88T1t 8T

(2L & —PTST(T — S8T)k TESTYT ’
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calculated by Equation 5:

Co=C4F, Ci=CaF, Co=CuF, C;
= Cu3F, Cq4 = CoyF?, C5 = C,s5F2. (10)

To reproduce the stress—strain relationships at different
Ca; values obtained from the excitation-contraction coupling
model formulated by Negroni and Lascano,'” we adjusted
the coefficients as follows: C,o = 0.00 GPa/M, C,; = —1.60
GPa/M, C,2 =4.49 GPa/M, C ;3 =4.34 GPa/M, C,4 =0.476
GPa/mM?, and C,5 = 1.21 GPa/mM?. We fitted the curves
to those obtained with the Ca; corresponding to each F, that
is, Ca; = 2.5 uM when F = 15.3 uM, Ca; = 0.63 uM when
F =69 uM and Ca; = 0.16 uM when F = 1.4 uM. The
stress—strain relationships at these Fs followed similar pat-
terns to those found experimentally at the corresponding Ca;
values.2* As F increased, the stress—strain relationship shifted
upward and leftward, and became concave. Subsequently, the
equilibrium states broke and the muscles deformed. The de-
formation of muscles was reflected in the SL and changed
! greren @s mentioned before.

Using a finite element method, we solved Equation 1, the
equilibrium equation, and constraints of slight compressibil-
ity. We constructed a midmyocardial layer of 75 x 75 x 0.2
mm using 140,625 mixed hexahedral solid elements (eight
nodes for the bilinear displacement or transmembrane poten-
tial interpolation/constant pressure field). The total amount
of freedom is 1,271,633, and the average volume of the finite
element is 0.008 mm?> (0.2 x 0.2 x 0.2 mm). The total ionic
transmembrane current, /;,,, was calculated at each node.
We developed an efficient dynamic finite element method
(see Appendix 2) for computation. By virtue of this method
and parallelization, we calculated the whole process from the
electrophysiological level to the mechanical level using the
same time-step of 0.01 ms.

The Neumann boundary conditions were used for the elec-
tric boundary conditions. On the other hand, the mechanical
boundary conditions were prescribed from swine experimen-
tal data,”> where the left ventricular (LV) muscle volume was
62 mL and the LV inner volume was 28 mL under unloaded
conditions and 38 mL during VF. The LV pressure (LVP) dur-
ing VF is supposed to be 10 mmHg. Idealizing the LV as a
spherical shell, we estimated that the isotropic in-plane strain
is about 6% in the midmyocardial layer during VF. Assum-
ing material incompressibility, this in-plane strain indicates
that the thickness of the layer is reduced by about 11%. To
realize such geometric conditions, we prescribed anisotropic
tractions on the side boundary of the midmyocardial layer
(Table 1; LVP = 10 mmHg). We prescribed additional trac-
tions corresponding to 6 and 20 mmHg (Table 1), where out-
ward tractions are defined as positive.

TABLE 1
Boundary In-Plane Stresses Correspond to LVPs

LVP Along Fiber Cross-Fiber
6 mmHg —5 mmHg —100 mmHg
10 mmHg (Control) 45 mmHg =120 mmHg
20 mmHg 70 mmHg —130 mmHg

LVP = left ventricular pressure.
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Figure 1. Basic characteristics of the model. A: Current-voltage relation-
ships of Istretch for 0%, 2%, 49, 6%, 8%, 10%, 12%, and 14% stretches.
All curves were obtained with 11.6 mM [Na™]i, 1383 mM [K*]i , and
0.0002 mM [Ca*t]i. The reversal potentials are =30 mV for all stretches.
B: Current—stretch relationships of I sweien for =90, =60, =30, 0, and 30 mV
of transmembrane potentials. C: Phase-dependent effects of stretches on the
action potential. The upper line indicates the transmembrane potential and
the lower line indicates the stretches. Under 2-Hz pacing, 7% stretches were
applied at phase 2 (100-150 ms after the electric stimulus) and phase 3 (280—
320 ms after the electric stimulus). Action potentials with no stretches are
also shown (dashed line). D: Mechanically induced ectopic excitations. The
upper line indicates the transmembrane potential and the lower line indicates
the stretches. Stretch pulses (duration 50 ms) were gradually strengthened.
Stretches of >10% caused ectopic depolarizations, whereas those of <9%
did not.

Protocols

Giving the midmyocardial layer 6 mmHg of LVP and in-
activating the SACs, we induced SWs using the basic pacing
stimulus (S1)-premature stimulus (S2) cross-field stimulation
protocol. After the SWs stabilized, we activated the SACs
and increased LVP by the following protocols: in protocol 1,
LVP was kept at 6 mmHg; in protocols 2 and 3, LVP was lin-
early increased to 10 and 20 mmHg, respectively; in protocol
4, SACs were not activated and LVP was kept at 6 mmHg.
We also examined other protocols in which SACs were not
activated and LVP was increased to 10 or 20 mmHg. The
data for these latter two protocols are not shown because the
dynamics of the SWs in these protocols were almost the same
as those in protocol 4.
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Figure 2. Effects of stretches on the conduction velocity (CV) and action potential duration (APD). A: Effects of stretches on the CV under 1-Hz pacing.
Both the longitudinal and transverse CVs decrease as the stretches increase. B: Effects of constant stretches on the APD restitution curve at a basic pacing
cycle length (S1-81) of 1,000 ms. APD restitution curves were obtained under the 0% (red), 2% (blue), 4% (black), and 6% (green) stretch condition in which
the stretch was kept constant. C, APD restitution curves were obtained under dynamic stretch conditions in which the stretches were altered by active tissue
contraction. The insets show the histories of the stretches. The last 81 stimuli were applied at time 0. The premature (S2) stimuli were applied after a diastolic

interval (DI) of 90 ms.

Results
Basic Characteristics of the Model

With constant intracellular ion concentrations ([Na*]; =
11.6 mM, [K*]; = 138.3 mM, and [Ca®*]; = 0.0002 mM),
[ grercn values were calculated for various values of the SL
and V,,. I seren Was linearly correlated with V,,, and the re-
versal potential of /gecn was —30 mV (Fig. 1A). These
results are consistent with experimental data.’’ The ampli-
tude of [ geren increased with stretches and became saturated
at around +15% stretch (Fig. 1B). Under constant pacing
(2 Hz), we applied stretch pulses at various phases of the ac-
tion potential. A stretch pulse applied during phase 2 of the
action potential resulted in quick repolarization and short-
ened the action potential duration (APD), whereas a stretch
pulse applied at late repolarization (late phase 3 of the action
potential) prolonged the APD (Fig. 1C). Figure 1D shows
the responses of V,, to a series of stretch pulses (pulse du-
ration 50 ms) of successively increasing amplitudes. The
stretch pulses induced transient diastolic membrane depolar-
izations, which increased in parallel with the increases in the
stretch amplitude. Above a certain amplitude (stretch thresh-
old), these stretch-induced depolarizations triggered ectopic
excitation. The stretch threshold was 9.5% in this simulation,
consistent with the threshold of 9.517% in an experimental
study using rectangular pieces of frog heart tissue.??

Effects of Stretches on Conduction Velocity and the APD

Figure 2A depicts the relationship between stretches and
the conduction velocity (CV) under 1-Hz pacing. We de-
fined the CV as the unstretched length of the tissue excitation
propagated in a unit time. Both the longitudinal and trans-
verse CVs decreased with stretches. The electrical restitution
curves for various stretches are shown in Figure 2B and C.
Under constant stretch conditions (Fig. 2B), the stretches
were kept constant. Under dynamic stretch conditions
(Fig. 2C), the stretches were estimated from the relative force,
F, and altered by active tissue contraction. Constant stretches
decreased the maximal slope of the restitution curve, while
dynamic stretches slightly increased the maximal slope of
the restitution curve. Both constant and dynamic stretches
shortened the APDs at the plateau of the restitution curve.

Effects of Stretches on SW Dynamics

The electromechanical activities during spiral reentry at
10 mmHg of LVP are illustrated in Figure 3A. As a result of
the contraction force generated by the SWs, the strains were
irregularly distributed from about —3% to about +10%, de-
spite the homogeneous mechanical boundary conditions. In
particular, complex strain distributions were observed around
the core of the SW,

Figure 3B shows the transmembrane potential distribu-
tion during spiral reentry at various levels of LVP, and the
locations of the SW tips are marked with circles. Under the
condition in which the SACs were inactivated (SAC[-]), the
transmembrane potential distribution had smooth contours
for the SW. Under the conditions in which SACs were ac-
tivated (SAC[+]), the transmembrane potential distribution
became irregular as LVP increased. At 20 mmHg of LVP, the
SW frequently broke up at several sites of the wavefront, pro-
ducing new tips, and a single SW became fragmented into a
complex pattern of activation. After colliding with each other
or against the boundaries, most of the new tips disappeared.
However, some tips survived and increased the number of
stable tips, as shown in the panel for the 3,435-ms time point.
At lower pressures, a meandering SW was sustained, and
showed various trajectories of the tip. Figure 4A shows the
trajectories of tips under the SAC(—) condition and at LVPs
of 6 and 10 mmHg under the SAC(+) condition. The tips
drew S-shaped lines, which rotated and drew shapes like a
flower. At 6 mmHg of LVP, the trajectory was similar to the
one under the SAC(-) condition, where the tip moved be-
tween dotted lines and the center of the S-shaped lines was
stationary on a dashed line. At 10 mmHg, the center of the
S-shaped lines drifted toward the right, and the tip moved
around a wider area, compared with the SAC(-) condition.
The trajectories that divided into S-shaped lines are shown
in Figure 4B. The S-shaped lines rotated faster at 10 mmHg
than at 6 mmHg. At 10 mmHg, we frequently found a serial
process of wave breaks, and mutual annihilation resulted in
a switch of trajectories. We have illustrated a typical pattern
of this process in Figure 4C. In the left panel, the trajectories
of three tips are plotted in x and y time space. In the right
panel, the transmembrane potential distributions during this
process are shown. At 2,770 ms, the wavefront of the SW
broke up in the vicinity of the core and a pair of new tips (red
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Figure 3. A: Electromechanical activity during spiral reentry at 10 mmHg of left ventricular pressure (LVP). A time series of transmembrane potential
distributions (colors) and strain distributions (heights) is shown. Complex strain distributions can be observed around the core of the spiral waves (SW). B:
Transmembrane potential patterns during spiral reentry at stretch-activated channel (SAC)(-), 10 mmHg of LVP and 20 mmHg of LVP. The locations of tips
are marked with circles. A blue circle denotes a tip with clockwise rotation of the activation wavefront, whereas a red circle denotes a tip with counterclockwise
rotation of the activation wavefront. In the SAC(-) condition, the SW has smooth contours. In the SAC(+) condition, the contours become irregular as the

pressure increases.

and blue) was generated. One of the new tips (red) and an old
tip (green) came close to each other. At 2,794 ms, the red tip
collided with the green tip, resulting in mutual annihilation.
The blue tip survived and traced a new trajectory. This se-
ries of processes was observed twice in every S-shaped line
marked by a single asterisk, and once in every S-shaped line
marked by two asterisks in Figure 4B.

A time series of the distribution of transmembrane poten-
tials and strains at 10 mmHg is shown in Figure 5A, where
the contracted area is covered with white. This figure depicts
the process by which the wavefront broke up and a pair of
new tips was generated (2,770 ms). The myocardium around
the core was stretched at phase 0 of the action potential and
at late recovery, as shown in Figure 5B, which contains the
histories of the V,, and the strain recorded at the point corre-
sponding to the asterisk in Figure SA. Stretches at these time
points prolonged the APD and allowed the SW wavefront to
hit the wavetail, resulting in a wave break in the vicinity of
the core. In cases in which the APD prolongation was insuf-
ficient to generate a wave break, the tip traced the boundary
of the enlarged refractory area and the bend of the S-shaped
line was sharpened (Fig. 5C).

Discussion

We have conducted simulations of the effects of mechan-
ical stresses on SW dynamics. The electrical activity and de-
formation during spiral reentry were simulated using a fully
coupled electromechanical model of the myocardium. The
strain distribution during spiral reentry was complex, and a

high strain-gradient region was located in the core of the SW.
Pressure overload promoted meandering and wave breaks of
spiral reentry through MEF.

Electromechanical Model of the Myocardium

In the present study, we have proposed a new mathe-
matical model of the human ventricular myocardium that
couples all the processes of electrical activity, excitation—
contraction coupling, deformation, and MEF. A number of
simulation studies have investigated the effects of electrical
activity on myocardial contraction using various models of
excitation-contraction coupling.’®?’ However, these studies
did not account for the effects of MEF. On the other hand,
simulation studies that investigated the effects of myocardial
deformation on electrical activity did not account for the ef-
fects of excitation—contraction coupling.'%?® Recently, Nash
and Panfilov reported a framework for studying the combined
effects of cardiac mechanics and electrical activities during
arrhythmia.!! However, their study used a simple FitzHugh-
Nagumo type model, and many biological details were
absent.

Our model includes detailed biological processes and
enables us to investigate the effects of specific biological
processes on arrhythmogenesis. Our model quantitatively re-
produced the features of MEF, such as the reversal potential
of / grerch and the stretch threshold required to induce ectopic
excitation. To achieve this, we employed the following pa-
rameters: Ggn, = 30.0 S/F, Gk = 0.544 S/F, and Ggc, = 0.3
S/F. These parameters indicate that Na™ is the main carrier
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Figure 4. Dynamics of spiral waves (SW) tips. A: Trajectories of SW tips from 600 to 4,000 ms under SAC(-), 6 mmHg of left ventricular pressure (LVP) and
10 mmHg of LVP. B: Time series of S-shaped lines at 6 and 10 mmHg of LVP. At 10 mmHg, switches of the trajectories are frequently observed. Colored lines
indicate the new trajectories. Double switches are observed in the S-shaped trajectories marked by single asterisks, while single switches are observed in
S-shaped trajectories marked by two asterisks. C: Typical switching process of tips. The trajectories of three tips are shown on the left. The colors correspond
to those in the right-hand figures, which show the transmembrane potential patterns near the core. After a pair of new tips (red and blue) is generated, one
of the new tips (red) collides with an old tip (green), resulting in mutual annihilation. The other new tip (blue) survives and traces a new trajectory.

of I greten, and that Ca?* does not act as a significant carrier,
as reported in an experimental study.?!

Effects of Stretches on the CV and APD

Our calculated values for CVs under unstressed conditions
are consistent with the CVs reported in a clinical study.”® We
found that severe stretches decreased the longitudinal and
transverse CVs, whereas mild stretches minimally affected
these CVs. These results are in concordance with the findings
of previous experimental studies.’>3! Using optical trans-
membrane potential mapping in the isolated rabbit heart,
Sung et al. found a decrease in the CV when the LV was
loaded to 30 mmHg (/+4% stretch in the longitudinal di-
rection and ~+3.2% stretch in the transverse direction).’
The decrease in CV with LV loading was not significantly
affected by the nonspecific SAC blocker, streptomycin, sug-
gesting that SACs are unlikely to play a primary role in this
effect. Our findings also suggest that mild stretches (<+4%)
minimally affect the CV through SACs.

Shortening of the APD and effective refractory period
(ERP) with mechanical loading has been reported in var-
ious species, including rabbits,’" dogs,?*** and humans.*
However, some investigators have reported prolongation of
the APD during stretches.’> The manner in which stretches

affect the APD is the result of the balance among several
competing effects, including SACs and a length-dependent
modulation of intracellular calcium handling. Therefore, the
effects of stretches on the APD depend on the timing, du-
ration, and intensity of the stretches, which are determined
by the conditions of the experimental preparation. We found
that stretches applied during phase 2 shortened the APD,
while stretches applied during late repolarization prolonged
the APD. These results are consistent with the findings of
previous experimental®® and mathematical'* studies.
Horner et al. reported that transient aortic occlusion re-
duced the APD at the plateau of the restitution curve and in-
creased the maximal slope of the electrical restitution curve
in swine hearts.’” We also found that dynamic stretches in-
creased the maximal slope of the APD restitution curve in
our simulation. However, the increase in the maximal slope
was small and may not be sufficient to induce frequent wave
breaks of SWs. On the other hand, the strains were irregularly
distributed during spiral reentry (Fig. 3A) and some myocar-
dial tissue was strongly stretched at the wavefronts of SWs.
To examine the effects of stretches at the wavefronts on the
action potentials and ionic currents, we applied stretch pulses
during arestitution protocol. In Figure 6, a S2 was delivered at
320 ms after the last S1 and a 5% stretch pulse (pulse width 60
ms) was applied at 290 ms after the last S1. Stretches applied
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Figure 5. A, C: Transmembrane potentials and strain distributions during
spiral reentry at 10 mmHg of left ventricular pressure (LVP). Colors indi-
cate transmembrane potentials, and contracted areas (strains of <I1%) are
covered with white. B: Time series of transmembrane potentials and strains
recorded at the asterisk in (A).

during the diastolic phase depolarized the resting membrane
potential and decreased the inward Na™ current (/, ), thereby
resulting in decreases in the amplitudes of phases 0 and 1.
The termination of phases 0 and 1 at more negative potentials
diminished the availability of the L-type Ca®* current (/ c,-1)
and slowed the emergence of the phase 2 dome. Although
SAC currents were increased by stretches during phases 0
and 1, the changes in these currents were much smaller than
those in /', and / ¢,- . Decreases in the amplitudes of phases
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Figure 6. Diastolic stretch-induced changes in ion currents and transmem-
brane potentials. A premature electric stimulus (S2) was delivered at 320
ms after a basic pacing cycle length (S1-51) of 1,000 ms. A 5% stretch pulse
(solid bar) was applied at 290-350 ms after §1. Values were computed with
(solid lines) and without (dashed lines) a stretch pulse. A: Transmembrane
potential. B: Stretch-activated current. C: L-type Ca®* current. D: Fast
Na™* current. E: Slow delayed rectifier potassium current. F: Rapid delayed
rectifier potassium current.

0 and 1 also altered the intensities and kinetics of other ionic
currents, including /g, and /. The decrease in /g, and in-
crease in /c,-p during phase 2 augmented the amplitude of
the dome and delayed repolarization, resulting in prolonga-
tion of the APD. During VF, irregularly distributed strains
at the wavefronts would prolong APD inhomogeneously and
induce wave breaks of SWs. In heart failure, previous stud-
ies®® have shown that alterations in various ionic currents,
including the late sodium current (/na),"’ predispose the
myocardium to APD prolongation. In addition to action po-
tential modulation, an increase in /'y, in heart failure would
lead to diastolic Ca** overload and modify the strain dis-
tribution during VE. These changes may act synergistically
with mechanical stresses and facilitate the development and
maintenance of VF in heart failure. Experimental studies are
required to verify these hypotheses.

Effects of Stretches on SW Dynamics

Around the core of a SW, the stretched region and con-
tracted region were adjacent to each other in a small area. The



