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a result, TNF-o, production was not observed in all of US exposure
timing including 10, 20, and 30 min (Fig. 5C—F), and suggests the
involvement of endocytosis on TNF-¢ production. Taking these into
considerations, the high level of gene expression with low TNF-
o production would be achieved when US is exposed at 5 min by
both unmodified and Man-PEGyggp bubble lipoplexes with US
exposure. These results suggested that US exposure timing is
important for gene transfection using both unmodified and Man-
PEGaggo bubble lipoplexes.

Since cytotoxicity is important for carrier development, we
investigated cytotoxicity using both unmodified and Man-PEGz000
‘bubble lipoplexes with US exposure in cultured mouse macro-
phages. As shown in Fig. 5B and C, the cytotoxicity was observed
when US was exposed at 10, 20, and 30 min in the gene transfer
using unmodified and Man-PEGzpgpo bubble lipoplexes with US
exposure. Since TNF-q. is possibly involved in the cytotoxicity via
the interaction with death receptors, such as TNF receptors and
TNF-related apoptosis-inducing ligand (TRAIL) receptors [47,48],
we investigated cytotoxicity on the TLR-9 signal inhibition experi-
ments. In theé inhibitory condition of TNF-¢ production, since the
cytotoxicity was observed when US was exposed at 10, 20, and
30 min (Fig. 5B and C); the produced TNF-« is not involved in the
cytotoxicity in gene transfer using unmodified and Man-PEGz000
bubble lipoplexes and US exposure. Next, it is assumed that the
cytotoxicity followed by the destruction of both bubble lipoplexes
in the endosomes would be higher than that on the cell surface.
Since both bubble lipoplexes are considered to be taken up into the
cells via endocytosis at over 10 min after the addition of lipoplexes
(Fig. 1A), both bubble lipoplexes are assumed to be destructed in
the endosomes followed by US exposure, when US was exposed at
10, 20, and 30 min after the addition of lipoplexes. In the endocy-
tosis inhibitory experiments, the cytotoxicity was not observed
whenever US was exposed while endocytosis was inhibited (Fig. 5B
and C). Therefore, it is suggested that both bubble lipoplexes are
destructed in the endosomes followed by US exposure when US
was exposed at over 10 min, and the destruction of bubble lip-
oplexes in the endosomes may affect the lethal effects to the cells.

5. Conclusions

In the present study, we showed that a large amount of pDNA
was transferred into the cytoplasm followed by US-mediated
destruction of bubble lipoplexes in the gene transfer using
unmodified and Man-PEGgzggg bubble lipoplexes with optimized US
exposure. Moreover, the effective gene expression was obtained
without the production of TNF-« in gene transfer using unmodified
and Man-PEGypgp bubble lipoplexes with US exposure, when US
was exposed until 5 min after the addition of bubble lipoplexes. The
findings obtained from this study suggest that gene transfer using
unmodified and Man-PEGyggg bubble lipoplexes with US exposure
enables to transfer a large amount of pDNA into the cytoplasm, and
optimized US exposure timing is important to achieve the high
levels of gene expression and the low levels of pro-inflammatory
cytokine production in this gene transfection method.
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LIVER INJURY/REGENERATION

Efficient Suppression of Murine Intracellular Adhesion
Molecule-1 Using Ultrasound-Responsive and Mannose-
Modified Lipoplexes Inhibits
Acute Hepatic Inflammation

Keita Un,"* Shigeru Kawakami,' Mitsuru Yoshida,' Yuriko Higuchi,® Ryo Suzuki,’ Kazuo Maruyama,’
Fumiyoshi Yamashita,' and Mitsuru Hashida'>

Hepatitis is often associated with the overexpression of various adhesion molecules. In
particular, intracellular adhesion molecule-1 (ICAM-1), which is expressed on hepatic en-
dothelial cells (HECs) in the early stage of inflammation, is involved in serious illnesses.
Therefore, ICAM-1 suppression in HECs enables the suppression of inflammatory
responses. Here, we developed an ICAM-1 small interfering RNA (siRNA) transfer method
using ultrasound (US)-responsive and mannose-modified liposome/ICAM-1 siRNA com-
plexes (Man-PEGyqqo bubble lipoplexes [Man-PEGygeo BLsl), and achieved efficient
HEC-selective ICAM-1 siRNA delivery in combination with US exposure. Moreover, the
sufficient ICAM-1 suppression effects were obtained via this ICAM-1 siRNA transfer
in vitro and in vivo, and potent anti-inflammatory effects were observed in various types
of inflammation, such as lipopolysaccharide, dimethylnitrosamine, carbon tetrachloride,
and ischemia/reperfusion-induced inflammatory mouse models. Conclusion: HEC-selective
and efficient ICAM-1 siRNA delivery using Man-PEGyg99 BLs and US exposure enables
suppression of various types of acute hepatic inflammation. This novel siRNA delivery
method may offer a valuable system for medical treatment where the targeted cells are
HECs. (HrpaToLOGY 2012556:259-269)

epatitis resulting from conditions such as

drug-induced hepatic inflammation and is-

chemia/reperfusion (IR)-induced liver injury
followed by surgery is a major obstacle for medical
treatment.’” Moreover, it was reported that chronic
hepatitis progresses to cirrhosis and liver cancer™;
therefore, the prevention and early treatment of hepati-
tis are important for patients and medical professionals.
Most drug-induced hepatitis is caused by nuclear factor-
KB activation and proinflammatory cytokine production
followed by various stimulations in medical treatments.”
In IR-induced liver injury, a large amount of reactive

oxygen species producéd by IR stimulation is involved
in the induction of inflammatory responses.® Although
the mechanism for each inflammatory response is differ-
ent, various adhesion molecules, such as vascular cell
adhesion molecule (VCAM) and intracellular adhesion
molecule (ICAM), are abundantly expressed on hepatic
endothelial cells (HECs) in the early stage of inflamma-
tory responses followed by various types of stimulation.”
Among these, ICAM-1 is known as a major molecule
that is highly involved in the adhesion, diapedesis, and
tissue infiltration of leukocytes contributing to the dete-
rioration in inflammatory responses.® During alcohol-

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminovvansferase; BL, bubble lipoplex; CCly carbon tetrachloride; DAPI, 4 ,G-diamidino-2-
phenylindole; DMN, dimethylnitrosamine; FITC, fluorescein isothiocyanase; H&E, hematoxylin and cosin; HEC, hepatic endothelial cell; ICAM, intracellular
adbesion molecules IEN-=y, interferon=y; IL, inverleukin IR, ischemialreperfusion; iv, intravenous; LPS, lipopolysaccharide; MCP-1, monocyse chemoattractant
protein 1; MDA-5, melanoma differentiation-associated gene 5; mRNA, messenger RNA; RIG-1, retinoic dcid-inducible gene I; siRNA, small interfering
ribonucleic acid: TLR, Toll-like veceptor; TNF=, tumor necrosis fusctor oz US, ultrasound.
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induced liver injury, it was reported that ICAM-I
expression and the resultant leukocyte infiltration are
involved in the deterioration of alcohol-induced liver
‘injury.’ Therefore, the suppression of inflammatory
responses may be achieved by selective knockdown of
ICAM-1 in HEG:s.

RNA interference is an important endogenous
mechanism for gene regulation by deaving specific mes-
senger RNA (mRNA) possessing the complementary
sequence using small interfering RNA (siRNA).'%!
Although siRNA is a promising candidate for molecular
therapy, an effective method for siRNA transfer into the
cytoplasm of targeted cells iz vivo is still being developed.
The effective methods for in vive siRNA delivery involve
nonviral carriers, including liposomes, emulsions, micelles,
and polymers.'*'® However, because the nonviral carriers
are taken up into the cells via endocytosis, degradation
‘within endosomes and escape from endosomes are major
obstacles for the improvement of siRNA therapeutics.
Moreover, efficient and selective siRNA delivery into
HEC: is essential to achieve the potent anti-inflammatory
effects produced by ICAM-1 siRNA.

Recently, the benefits have become appreciated of
delivery of nucleic acids into cells using microbubbles
and ultrasound (US) (also known as “sonoporation

~methods”), due to the high transfer efficiency into the
cytoplasm.'”* Our group has developed US-responsive
and mannose-modified liposomes/plasmid DNA com-
plexes for in vivo gene transfer and successfully obtained
efficient gene expression in mannose receptor-expressing
cells, such as HECs and splenic dendritic cells.?3*
Moreover, we demonstrated that a large amount of plas-
mid DNA could. be directly transferred into the cyto-
plasm through a mechanism involving transient pores
created on the cell membrane by the destruction of
microbubbles after US exposure.”® Therefore, the effi-
cient transfer of ICAM-1 siRNA into HECs might be
achieved by applying this method to siRNA delivery. .

In the present study, we developed an ICAM-1
siRNA transfer system based on US-responsive and
mannose-modified liposome/siRNA complexes (Man-
PEG,00 bubble lipoplexes [Man-PEG,00, BLs]) for
anti-inflammatory therapy. ICAM-1 siRNA delivered
by Man-PEGy00 BLs and US exposure was selectively

HEPATOLOGY, July 2012

and efficiently transferred into HECs #n vitro and
in wvivo. Furthermore, sufficient JCAM-1 suppression
and potent ant-inflammarory effects were achieved by
ICAM-1 siRNA transfer against various types of inflam-
mation induced by lipopolysaccharide (LPS), dimethyl-
nitrosamine (DMN), carbon tetrachloride (CCly), and
IR. To our knowledge, this is the first report of a gene
transfer method using Man-PEG,g90 BLs and US expo-
sure for the selective and efficient transfer of siRNA to
HECs. This novel siRNA transfer method could be
valuable for medical treatments that target HEC:s.

Materials and Methods

In vitro siRNA Delivery. After incubation of HECs
for 72 hours, the culture medium was replaced with
Opu-MEM 1 (Invitrogen, Carlsbad, CA) containing
lipoplexes/BLs (1 pg siRNA). At 5 minutes after
siRNA transfer, HECs were exposed to US (frequency, -
2.062 MHz; duty, 50%; burst rate, 10 Hz; intensity,
4.0 W/em®) for 20 seconds. In the siRNA delivery
using naked siRNA and conventional nanobubbles, at
5 minutes after addition of naked siRNA (1 ug) and
conventional nanobubbles (60 pg total lipids), cells
were immediately exposed to US. US was generated
using a Sonopore-4000 sonicator (Nepa Gene, Chiba, Ja-
pan). At 1 hour after US exposure, the medium was
replaced with RPMI-1640 and “incubated for an addi-
tional 23 hours. Lipofectamine 2000 (Invitrogen) was
used according to the recommended procedures with an
exposure time of 1 hour, which is the same exposure
time in other experiments using lipoplexes.

In Vivo siRNA Delivery. Six-week-old C57BL/6
female mice were intravenously injected with BLs con-
taining 10 ug siRNA via the tail vein. At 5 minutes after
the injection of the bubble lipoplexes, US (frequency,
1.045 MHz; duty, 50%; burst rate, 10 Hz; intensity 1.0
W/cm?; time, 2 minutes) was applied transdermally to
the abdominal arca using a Sonopore-4000 sonicator. In
the siRNA delivery using naked siRNA and conventional
nanobubbles, at 4 minutes after intravenous injection of
conventional nanobubbles (500 ug total lipid), naked
siRNA (10 ug) was intravenously injected and US was
exposed at 1 minute after naked siRNA injection.
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Fig. 1. Suppression effects of icam-1 mRNA expression and cytotoxicity followed by ICAM-1 siRNA delivery in LPS-stimulated primary mouse
HECs. (A) In vitro confocal images of cellular associated [CAM-1 siRNA (1 ug SiRNA) transferred by various methods 1 hour after treatment in
primary mouse HECs. US was directly exposed to HECs at 5 minutes after addition of BLs. The lipoplexes were constructed with AlexaFluor-594-~
labeled ICAM-1 siRNA (red), and the endosomes were labeled with AlexaFluor-488 transferrin conjugates (green). Nuclei were counterstained
with 4',6-diamidino-2-phenylindole: (DAPI) (blue). Scale bars, 10 um. (B,C) The level of icam-1 mRNA expression (B) and in vitro confocal
images of ICAM-1 expression (C) obtained by ICAM-1 siRNA transfer (1 ug siRNA) using various types of methods 24 hours after LPS stimulation
in primary mouse HECs. US was directly exposed to HECs at 5 minutes after addition of BLs, and cells were exposed to LPS (100 ng/mL) at 24
hours after the addition of siRNA or lipoplexes/BLs. ICAM-1 was labeled with anti-mouse ICAM-1 antibody and fluorescein isothiocyanate (FITC)-
conjugated secondary antibody (green), and nuclei were counterstained by DAPI (blue). Scale.bars, 10 um. (D,E) Comparison of the suppression
of icam-1 mRNA expression (D) and cell viability (E) obtained by siRNA transfer using Man-PEGygq BLs (1 g SiRNA) and US exposure with
that by Lipofectamine 2000. *P < 0.05, **P < 0.01 versus no treatment. Each value represents the mean + SD (n = 5). N.T, no treatment.

Statistical Analyses. Results are presented as the
mean * SD of more than three experiments. Analysis
of variance was used to test the statistical significance
of differences among groups. Two-group comparisons
were performed using the Student # test and multiple
comparisons between control and other groups were
performed using the Dunnett’s test.

Results ,

Suppression Effects of ICAM-1 siRNA. The sup-
pression of LPS-induced ICAM-1 expression by ICAM-1
siRNAs (Supporting Fig. 1A) was investigated in primary
mouse HECs. As shown in Supporting Fig. 1B, the sup-
pression of ICAM-1 was the highest in ICAM-1 siRNA
with sequence 1, and not observed in scrambled siRNA.
Therefore, ICAM-1 siRNA containing sequence 1 and
scrambled siRNA were used in the following examinations.

Physicochemical  Properties of Man-PEG 3000
BLs. Following enclosure of US imaging gas into
Man-PEG,440 BLs, lipoplexes became cloudy (data not
shown) and the average particle size increased (Sup-
porting Fig. 2A). Following gel electrophoresis experi-
ments, the formation of siRNA complexes in BLs was
confirmed (Supporting Fig. 2B). Moreover, {-poten-
tials of BLs were lower than that of liposomes (Sup-
porting Fig. 2A), suggesting that siRNA was attached
to the surface of cationic bubble liposomes. These
physicochemical properties are consistent with our pre-
vious reports using plasmid DNA.*>2¢

Intracellular Transport Characteristics of ICAM-1
siRNA. The siRNA wansfer efficiency was investigated
in primary mouse HECs expressing mannose receptors
(Supporting Fig. 4). The amount of siRNA delivered
by BLs and US exposure was significantly higher than
that by lipoplexes only (Supporting Fig. 3A).
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Fig. 2. In vivo distribution of ICAM-1 siRNA delivered by Man-PEG,qo0 BLs and US exposure. (A) Tissue distribution and pharmacokinetics of

radiolabeled bare- and Man-PEG,q0o BLs complexed with 10 ug ICAM-1 siRNA after intravenous (iv) administration into mice. Tissue distribution
of lipoplexes was measured at 6 hours after iv administration of lipoplexes. Inset shows blood concentration of lipoplexes at predetermined times
after iv administration. *P < 0.05, **P < 0.01 versus the corresponding group of bare-PEGagoo lipoplexes. Each value represents the mean *+
SD (n = 5). (B) Hepatic celiular localization of AlexaFtuor-594 labeled ICAM-1 siRNA delivered by bare- and Man-PEGoooo BLs (10 ug siRNA)
and US exposure at 6 hours after iv administration of lipoplexes into mice. Liver was separated to hepatocytes, Kupffer cells, and endothelial
cells by collagenase perfusion, one-step density gradient centrifugation, and magnetic cell sorting as described in the Supporting Materials and
Methods. **P < 0.01 versus the corresponding group of hepatocytes. Each value represents the mean + SD (n = 5). (C) Fluorescent images
of hepatic localization of AlexaFluor-594-labeled ICAM-1 siRNA (red) delivered by bare- and Man-PEGagop BLs (10 ug siRNA) and US exposure.
HECs were labeled with anti-mouse CD146 antibody and FITC-conjugated secondary antibody (green), aiid nuclei were counterstained with DAPI
(blue). -Livers were harvested at 6 hours after iv administration of lipoplexes into mice, and magnified images corresponding to the areas

enclosed -in boxes are shown in the inset (i). Scale bars, 100 um.

Moreover, the amount of siRNA delivered by Man-
PEG,pp0 BLs and US exposure was higher than
unmodified BLs. However, the amount of siRINA was
significantly suppressed in the presence of mannan but
not suppressed in the presence of chlorpromazine, an
‘endocytosis inhibitor (Supporting Fig. 3B,C). Confocal
microscopy analysis of cells after siRNA transfer by bub-
ble lipoplexes with US exposure revealed that siRNA
was not colocalized in endosomes (Fig. 1A). These
observations suggest that siRNA is directly transferred
into the cytoplasm of targeted cells and is not mediated
by endocytosis in this siRNA transfer method.
Suppression Effects of LPS-Induced ICAM-1
Expression In Vitro. As shown in Fig. 1B,C, ICAM-1

expression induced by LPS stimulation was suppressed -

by approximately 80% in siRNA transfer using Man-
PEG3000 BLs and US exposure. The suppression effect
of ICAM-1 expression was not observed for scrambled
siRNA. Moreover, this suppression effect was compara-
ble to that by Lipofectamine 2000 (Fig. 1D) burt with
decreased cytotoxicity (Fig. 1E).
In Vivo distribution of ICAM-1 siRNA. We inves-
“tigated the pharmacokinetic profiles and the tissue

distribution of BLs after intravenous administration
into mice. Compared with nonmodified BLs, the
retention time of Man-PEG,4¢ BLs in the blood was
reduced, and localization in both the liver and spleen
were increased (Fig. 2A). Moreover, a large amount of
ICAM-1 siRNA was distributed in HECs that abun-
dantly express mannose receptors when delivered using
Man-PEG,409 BLs and US exposure (Fig. 2B,C).
Suppression  Effects of Drug-Induced Hepatic
ICAM-1 Expression In Vivo. The suppression of
ICAM-1 expression by siRNA delivery was investigated in
an LPS/D-galactosamine-induced acute hepatitis mouse
model  (Fig. 3A). As shown in Fig. 3B-D, ICAM-1
mRNA and protein levels in HECs induced by LPS/D-
galactosamine stimulation were suppressed by approxi-
mately 80% using Man-PEG;q00 BLs and US exposure.
Moreover, ICAM-1 expression induced by CCl; and
DMN stimulation was also significantly suppressed by the
same JCAM-1 siRNA delivery system (Supporting Figs.
6B and 7B). The effects of siRNA dose on ICAM-1 sup-
pression and the duration of ICAM-1 suppression were
examined in an LPS/D-galactosamine-induced inflamma-
tory mouse model. Following siRNA delivery using Man-
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Fig. 3. Suppression effects of ICAM-1 siRNA delivery using Man-PEG,q00 BLs and US exposure on jcam-1 mRNA and protein expression in
HECs of an LPS/D-galactosamine-induced inflammatory mouse model. (A) Evaluation schedule of [CAM-1 expression in LPS/D-galactosamine-stimu-
lated mice. (B-D) The expression level of icam-1 mRNA in celis (B) and protein on the cell membrane (C, D) obtained by SiRNA delivery (10 ug
SiRNA) using various methods in HECs. At 24 hours after siRNA delivery, LPS/D-galactosamine (1 ug/100 mg/kg) was intraperitoneally administered
into mice to induce the acute inflammatory responses. HECs were isolated by collagenase perfusion, one-step density gradient centrifugation, and
magnetic cell sorting as described in the Supporting Materials and Methods. The icam-1 mRNA and protein expression in HECs was determined via
quantitative reverse-transcription ‘polymerase chain reaction (B), western blotting/enzyme-linked immunosorbent assay- (C), and confocal images (D).
The expression levels of mRNA and protein were detected at 3 and 6 hours after LPS/D-galactosamine stimulation, respectively. *P < 0.05,
**p < 0.01 versus no treatment. Each value represents the mean + SD (n = 5). ICAM-1 was labeled with anti-mouse ICAM-1 antibody and FITC-
conjugated secondary antibody (green), and nuclei were counterstained with DAPI (blue). Scale bars, 100  um. N.T., no treatment.

PEGag00 BLs and US exposure, suppression was obtained
at 10 pg of ICAM-1 siRNA (Supporting Fig. 5A), and
was sustained for at least 3 days (Supporting Fig. 5B).

Anti-inflammatory Effects Against Drug-Induced
Hepatitis. First, the suppression of leukocyte infiltration
by ICAM-1 siRNA delivery was evaluated in an LPS/
D-galactosamine~induced inflammatory mouse model
(Fig. 4A). As shown in Fig. 4B,D, the expression of inter-
leukin (IL)-8 and monocyte chemotactic protein 1 (MCP-
1) was suppressed, and a significantly decreased number of
infiltrated leukocytes were detected after siRNA delivery
using Man-PEGyp99 BLs and US exposure. Moreover, the
production ‘of proinflammatory cytokines (tumor necrosis
factor o [TNF-a], interferon-y [IFN-y], and IL-6) were
also suppressed by this siRNA delivery (Fig. 4C).

The anti-inflammatory effects obtained by ICAM-1
siRNA delivery were investigated next. As shown in Fig.
5A, alanine aminotransferase (ALT)/aspartate aminotrans-
ferase (AST) activities in the serum were markedly sup-
pressed by siRNA delivery using Man-PEG;409 BLs and
US exposure (Fig. 5A). As shown in Fig. 5B, hepatic apo-
ptosis induced by LPS/D-galactosamine stimulation was
significantly suppressed by this ICAM-1 siRNA delivery.
Moreover, we performed hematoxylin and eosin (H&E)
staining of liver sections to evaluate the effects on hepatic
structural features. Although the circular and tube forma-
tions of the hepatic central vein were observed in normal
liver section (Fig. 5C, left), they were crushed in the LPS-

stimulated liver section (Fig. 5C, middle). On the other

hand, destruction of the hepatic central vein induced by
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Fig. 4. Suppression effects of ICAM-1 siRNA delivery using Man-PEG,q00 BLs and US exposure on leukocyte infiltration and proinflammatory cyto-
kine production in an LPS/D-galactosamine-induced inflammatory mouse model. (A) Evaluation schedule of leukocyte infiltration and proinflammatory
cytokine production in LPS/D-galactosamine-stimulated mice. (B,C) Levels of IL-8 and MCP-1 expression in the liver (B) and the levels of TNF-c, IFN-y,
and IL-6 secretion in the serum (C) after SiRNA delivery (10 ug siRNA) using various delivery methods 12 hours after LPS/D-galactosamine stimulation.
**P < 0.01 versus no treatment. Each value represents the mean + SD (n = 5). N.T, no treatment. (D) Photomicrographs of infiltrated leukocytes af-
ter siRNA delivery using Man-PEG,oq0 BLs (10 ug SIRNA) and US exposure in LPS/D-galactosamine-stimulated mouse fiver. Leukocytes were labeled
with anti-mouse Gr-1- (Ly-6G) antibody and rhodamine isothiocyanate-conjugated secondary antibody (red), and nuclei were counterstained with DAP)
(blue). Scale bars, 100 um. **P < 0.01 versus no treatment. Each value represents the mean + SD (n = 5). N.T., no treatment.

LPS stimulation was significantly suppressed by ICAM-1
siRNA delivery using Man-PEG;qo BLs and US exposure
(Fig. 5C, right), suggesting that the liver injury induced
by LPS-stimulation is suppressed by this siRNA delivery.
Similar effects by this ICAM-1 siRNA delivery were also

observed for CCls- and DMN-induced inflammatory
mouse models (Supporting Figs. 6C,D and 7C,D).
Anti-inflammatory Effects Against IR-Induced
Liver Injury. The effects of ICAM-1 suppression by
delivery of siRNA was evaluated for IR-induced liver
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Fig. 6. Suppression effects of ICAM-1 siRNA delivery using Man-
PEGao00 BLs and US exposure on icam-1 mRNA and protein expres-
sion in HECs of an IR-induced hepatic inflammatory.mouse model. (A)
Evaluation schedule of ICAM-1 expression in hepatic IR-stimulated
mice. (B,C) Expression level of icam-1 mRNA in cells (B) and protein
on the cell membrane (C) obtained by siRNA delivery (10 ug siRNA)
using various delivery methods in HECs. HECs were isolated via colla-
genase perfusion, one-step density gradient centrifugation, and mag-
netic cell sorting as - described in the Supporting Materials and
Methods. The icam-1 mRNA and protein expression in HECs was
determined via quantitative reverse-transcription polymerase chain
reaction (B) and western blotting/enzyme-linked immunosorbent assay
(C). Expression levels of mRNA and protein were detected at 3 and 6
hours after IR stimulation, respectively. *P < 0.05, **P < 0.01 ver-
sus sham operation. Each value represents the mean + SD (n = 5).

transfer using Man-PEG,gq¢ BLs and US exposure23'26
would be also suitable for siRNA delivery. In the present
study, we applied this gene transfer method for the selec-
tive and efficient delivery of siRNA to HECs iz vivo and
investigated the anti-inflammatory effects in various types
of inflammatory responses.

HEPATOLOGY, July 2012

The innate inflammatory responses based on the
interaction, with siRNA and Toll-like receptor (TLR)-
3, -7, and -8 should be excluded for evaluating the
gene suppression effects of siRNA, but should be con-
sidered for clinical applications of siRNA.*®*’ The
proinflammatory cytokines (such as TNF-o, IFN-y,
and IL-6) can be induced by siRNA interaction with
endosomal TLR-3, -7, and -8.in siRNA transfer using
conventional nonviral carriers.”®*’ Transfer of siRNA
using Man-PEG;q90 BLs and US exposure results in the
direct deposition into the cytoplasm and is not mediated
by endocytosis (Fig. 1A and Supporting Fig. 3C).”

Therefore, the inflammatory responses followed by the
interaction with TLRs are expected to be low, but siRNA
is also recognized by cytoplasmic retinoic acid-inducible
gene 1 (RIG-1)/melanoma differentiation-associated gene
5 (MDA-5) involved in inflammatory responses.”®*°
Because the modification of 3'-overhang sequences is
suppressed by the activation of interferon-responsive fac-
tors 3/7, transcriptional factors that exist downstream of
the RIG-1/MDA-5 pathway;’"** we used siRNAs with
3'-dTdT overhang sequences (Supporting Fig. 1A).

As shown in Figs. 1B-D and 3, ICAM-1 expression
in LPS-stimulated HECs was significantly suppressed
by ICAM-1 siRNA delivery using Man-PEG,qqq BLs
and US exposure, both in vitre and in vive. Similarly,
tissue infiltration of leukocytes and proinflammatory
cytokine production were both suppressed after
ICAM-1 suppression by siRNA delivery using this
method (Fig. 4). Furthermore, potent anti-inflammatory
effects were obtained by this ICAM-1 siRNA delivery
in an LPS-simulated inflammatory mouse model
(Fig. 5). The delivery of siRNA to HECs, which express
mannose receptors (Supporting Fig. 4),%% was selective
and efficient using Man-PEGqg BLs with US exposure
(Fig. 2B,C). Moreover, because a large amount of siRNA
was directly transferred into the cytoplasm (Fig. 1A and
Supporting Fig. 3C),”® endosomal escape and degrada-
tion within endosomes could be evaded. These data may
indicate that nucleic acid transfer using Man-PEG,g0
BLs and US exposure can be applied for siRNA delivery.

Although LPS is widely used to evaluate the induc-
tion of acute inflammatory responses, they are induced
by not only various medicines but also surgical opera-
tions.>® Aiming for the dlinical application of anti-
inflammarory therapy using our siRNA delivery
method, the anti- mﬂammatory effects against various
inflammatory models in mice were investigated. After
evaluation of the anti-inflammatory effects against
CClg-, DMN-, and IR-stimulated inflammation,
ICAM-1 expression in HECs and the inflammatory
responses was significantly suppressed by ICAM-1
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Fig. 5. Suppression effects of ICAM-1 siRNA delivery using Man-PEG,0o BLs and US exposure on liver toxicity in an LPS/D-galactosamine-
induced inflammatory mouse model. (A) The level of serum ALT/AST activities after siRNA delivery (10 ug siRNA) using various methods at pre-
determined times after LPS/D-galactosamine stimulation. Each value represents the mean = SD (n = 5). (B) Fluorescent images of apoptosis
after SIRNA delivery using Man-PEG,g0o BLs (10 ug SIRNA) and US exposure in LPS/D-galactosamine-stimulated mice. Apoptosis (green) was
detected via terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, and nuclei were counterstained with
DAP! (blue). Scale bars, 100 um. (C) Liver histology with H&E staining 24 hours after SiRNA delivery using Man-PEGgq00 BLs (10 ug siRNA)
and US exposure in [PS/D-galactosamine-induced inflammatory mouse model. Black arrows: destruction of tube formation in hepatic central

vein. Scale bars, 100 um.

injury (Fig. 6A). As shown in Fig. 6B,C, ICAM-1
expression induced by IR stimulation was suppressed
by siRNA delivery using Man-PEG,q59 BLs and US
exposure. Moreover, IL-8/MCP-1"expression and proin-
flammatory cytokine production were also suppressed
(Fig. 7B,C). Following the examination of liver toxicity,
ALT/AST activities in the serum and hepatic apoptosis
were significantly suppressed (Fig. 8A,B). Moreover,
after H&E staining of liver sections, the circular and
tube formations of hepatic central vein in the normal
liver (Fig. 8C, left) section is destructed by IR stimula-

tion (Fig. 8C, middle), on the other hand, IR-derived
destruction of hepatic central vein was suppressed by

this ICAM-1 siRNA delivery (Fig. 5C, right).

Discussion

In the sonoporation method, transient pores are cre-
ated on’ the cell membrane followed by the destruction
of microbubbles, and a large amount of nucleic acids
can be directly transferred into the cytoplasm.**%%
Because siRNA is functionalized in the cytoplasm, gene
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Fig. 7. Suppression effects of ICAM-1 siRNA delivery using Man-PEG,q00 BLS and US exposure on leukocyte infiltration and proinflammatory
cytokine production in IR-induced hepatic inflammatory mouse model. (A) Evaluation schedule of leukocyte infiltration and proinflammatory cyto-
kine production in_hepatic IR-stimulated mice. (B,C) Levels of IL-8 and MCP-1 expression in the liver (B) and TNF-a, IFN-y, IL-6 secretion in the
serum (C) after siRNA delivery (10 ug siRNA) using various delivery methods 6 hours after IR stimulation. **P < 0.01 versus sham operation.

Each value represents the mean + SD (n = 5).

siRNA delivery using Man-PEGygq9 BLs and US expo-
sure in these inflammatory mouse models (Figs. 6-8
and Supporting Figs. 6 and 7). Although the mecha-
nisms of inflammatory responses as a result of LPS,
CCly, DMN, and IR stimulation are different,>®3%:36
ICAM-1 expression in HECs is reported in various
types of inflammation, including drug- mduced hepatic
inflammation and IR-induced liver injury.” These data
suggest that anti-inflammatory effects obtained by
ICAM-1 siRNA delivery using Man-PEG;q0¢ BLs and
US exposure may be beneficial for acute hepatitis and
liver injury.

In the present study, efficient ICAM-1 suppression
was obtained at a dose of 1 pug siRNA/mouse
(0.05 mg/kg) for siRNA delivery using Man-PEG,q90
" BLs and US exposure iz vivo (Supporting Fig. 5A).
This dose of siRNA is lower than those reported for
other studies evaluating the therapeutic effects using
siRNA, although the therapeutic mechanism and

delivery methods of each siRNA are likely to be
different.>”° These findings suggest that the increased
distribution of siRNA into HECs by mannose modifi-
cation (Fig. 2) and the enhancement of intracytoplas-
mic siRNA transfer by sonoporation (Fig. 1A and Sup-
porting Fig. 3) could contribute to the potent anti-
inflammatory effects observed at a low dose of siRNA
in our siRNA delivery method.

ICAM-1 suppression effects were only sustained for
72 hours by siRNA delivery using Man-PEG,q09 BLs
and US exposure (Supporting Fig. 5B). However,
because the disease target of this study was acute
inflammation, the potent therapeutic effects might be
obtained in short duration and single administration
of siRNA. Recently, it has been reported that ICAM-1
is involved in various diseases not only for acute/
chronic heparic failure, but also Crohn’s disease, ulcer-
ative colitis, and ileus.***? In addition, antisense oligo-

nucleotides against ICAM-1 (ISIS-2302; Alicaforsen)
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are currently under development for the treatment of
Crohn’s discase and ulcerative colitis.*>** However,
most of these inflammatory diseases are based on
chronic inflammation. In the present study, it is
strongly suggested that transfer of ICAM-1 siRNA
using Man-PEG;g09 BLs and US exposure enables a
large amount of siRNA to be delivered the cytoplasm
of targeted cells (Fig. 1A and Supporting Fig. 3).
Therefore, to prolong the duration of gene suppression
using this siRNA delivery system, future studies using
cholesterol-modified siRNA* or locked nucleic acid,*®

which are forms of stable siRNA resistant to enzymatic -

degradation, might be necessary for application to a
variety of chronic inflammatory diseases.

In conclusion, ICAM-1 siRNA was transferred into
HECs selectively and efficiently, and sufficient ICAM-1
suppression effects were obtained by ICAM-1 siRNA
transfer using Man-PEG,g99 BLs and US exposure, both
in vitro and in vivo. Moreover, potent anti-inflammatory
effects were achieved against various types of inflammation
by this ICAM-1 siRNA transfer. These findings contribute

Fig. 8. Suppression effects of
ICAM-1 siRNA delivery using Man-
PEG,g00 BLs and US exposure on liver
toxicity in an IR-induced hepatic
inflammatory mouse model. (A) The
level of serum ALT/AST activities after
SiRNA delivery (10 ug siRNA) using-
various delivery methods 24 hours af-
ter hepatic IR stimulation. **P <
0.01versus the corresponding sham
operation group. Each value repre-
sents the mean + SD (n = 5). (B)
Fluorescent images of apoptosis fol-
lowed by siRNA delivery using Man-
PEGoggp BLs (10 ug siRNA) and US
exposure in IR-induced hepatic inflam-
matory mouse model. Apoptosis
(green) was detected via terminal de-
oxynucleotidyl  transferase-mediated
deoxyuridine  triphosphate  nick-end
labeling, and nuclei were counter-
stained with DAPI (blue). Scale bars,
100 um. (C) Liver histology at 24
hours after siRNA delivery using Man-
PEGoooo BLs (10 ug siRNA) and US
exposure in IR-induced hepatic inflam-
matory mouse model. Arrows indicate
the destruction of tube formation in
the hepatic central vein. Scale bars,
100 um.

Man-PEG,q, BL + US

Man-PEG,q00 BL + US

to overcoming the poor efficiency of siRNA transfer into
the cytoplasm of the targeted cells using nonviral carriers,
and this novel siRNA delivery method using Man-
PEGy000 BLs and US exposure may offer a valuable system
for medical treatment where the cellular targets are HECs.
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Galactosylated liposomes with proton sponge capacity:
a novel hepatocyte-specific gene transfer system

Saffiya Habib, Mario Ariatti, Moganavelli Singh

Non-viral Gene Delivery Laboratory, Discipline of Biochemistry,
Westville Campus, University of KwaZulu-Natal, Durban, South
Africa ‘

Hepatocyte-directed liposomal gene delivery has received
much attention due to the lack of suitable treatment for several
liver-associated disorders. While targeting of liposomes to the
asialoglycoprotein receptor (ASGP-R), nearly-exclusive to hepa-
tocytes, is a well-documented means of achieving cell-specificity,

endo/lysosomal degradation of the internalised DNA is one of.

several factors which hinder successful gene transfer. This study
has attempted to address this concern by modifying hepatotropic
liposomes with an endosomal escape-inducing proton sponge
moiety. .

Novel galactosylated (SH02) and imidazolylated (SHO04) cho-
lesterol derivatives were successfully synthesised with the aim of
conferring the respective functions of ASGP-R-specificity and
proton sponge capability upon cationic liposome formulations.
These formed unilamellar vesicles with the cytofectin, 3§[N-
(N’,N'-dimethylaminopropane)-carbamoyl] cholesterol (Chol-T)
and co-lipid, dioleoylphosphatidylethanoclamine (DOPE), when
incorporated at 10 mol%. Liposomes effectively bound pCMV-Iuc
plasmid DNA, provided protection against serum nucleases; and
were well tolerated by both hepatocytes and kidney cells in
culture. Competitive inhibition assays showed that liposomes
containing SH02 were internalised predominantly via the ASGP-
R. Acid titration experiments highlighted the endosomal pH-
buffering capacity of SH04. SH04 improved the transfection ac-
tivity of the Chol-T/DOPE system, but not that of its targeted

" counterpart, in kidney cells only. Both SH02 and SHO04 individ-
ually exhibited transfection-enhancing properties and the trans-
gene expression levels using both novel lipids were promising.
With further optimisation of the proton sponge and targeting
abilities, the liposomes may achieve desired fransgene expression
levels for use in vivo.
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Evaluation of skin angiogenesis stimulated by ointment
preparations containing angiogenic genes

Karolina Hajdukiewicz'?, Anna Stachurska'?,
Agnieszka Zajkowska', Maciej Malecki'?

"Medical University of Warsaw, Warsaw, Poland, *Centre of
Oncology, Warsaw, Poland

From a point of view of classic pharmacotherapy genes should
be treated as active substances that condition the biological ac-
tivity of a medicinal product that is used. In the case of angio-
genic genes, a'gene therapy product exerts angiogenic properties
- and after having been introduced into appropriate cells it
stimulates processes leading to the formation of new blood ves-
sels. In this work we performed a series of experiments aimed to
select a group of vehicles, ointment ingredients that could be
useful in the systems that could introduce genes into the skin of
laboratory animals. Experiments were conducted on plasmids
encoding VEGF, FGF, SDF proteins. Appropriate ointment for-

Al41

mulas were prepared for experiments, and they were applied on
the skin of laboratory mice; after pre-determined time mice were
sacrificed, transfected skin specimens were collected and the
presence of a pDNA sequence in samples was analysed with
gPCR. The analysis of angiogenesis stimulation was also per-
formed. The sequences of apllied pDNAs were found in the
mouse skin. Selected vehicles make it possible to introduce
pDNA into skin cells; however, the in vivo transfection capacity is
not high. Based on estimations 10-30% of pDNA molecules ap-
plied in ointment pass into the animal skin cells. Experiments
also indicate that plasmid pVEGF, pSHH, pSDF stimulate an-
giogenesis in animal skin and proangiogenic properties depend
on a plasmid dose which is used. This work was supported by a
grant from Polish Ministry of Science and Higher Education (N N
405 456039).
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Muscle spontaneous regeneration in dwarf mice treated with
a bicistronic vector followed by electrotransfer

E Higuti', NAJ Oliveira’, CR Cecchi’, ER Lima’, P Martins?,
M Vainzof?, CA Thomas®, AR Muotri®, P Bartolini*, CN Peroni’

IBiotechnology Department, IPEN-CNEN, Sio Paulo, Brazil,
2Human Genome Research Center, IB-USP, Sio Paulo, Brazil, 3Dept.
Cellular & Molecular Medicine, University of California, San Diego,
USA

Gene therapy combines the correction of defective or missing
gene with low risk to the patient. Our group has developed an
in vivo gene therapy model for the treatment of growth hormone
(GH) deficiency based on injection of naked DNA followed by
electrotransfer. This strategy provided the presence of human
growth hormone (hGH) for at least 60 days in the circulation of
immunodeficient/dwarf (lit/scid) mice, that presented a weight
gain of up to 33%. The aim of the present work is to verify the
safety of our method, evaluating the presence of inflammatory
infiltrate and the pattern of muscle regeneration at the electro-
poration site. A bicistronic vector containing the murine GH
(mGH) and the GFP. genes under the control of the CMV pro-
moter was utilized. Lit/lit mice were treated with 50 ug of DNA’
or saline (control group), injected into the quadriceps muscle,
followed by electrotransfer using eight 50-V pulses of 20ms at a
0.5s interval. Histological analysis was performed onday 0, 1,3,6
and 12. Muscle damage was verified on the initial days after
treatment, but appeared regenerated on the ‘12th day. GFP max-
imum expression was observed on the third day. Since increased
circulating mGH levels were not observed, GH mediator, i.e.
mouse insulin-like growth factor-I (mIGF-I), will be determined
to evaluate electroporation efficiency. The results indicate that
muscle spontaneously regenerates after this treatment.

Supported by FAPESP and CNPq.
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Novel ultrasound-responsive gene carrier with ternary
structure.

Tomoaki Kurosaki'?, Shigeru Kawakami', Ryo Suzuki®,
Kazuo Maruyama®, Hitoshi Sasaki*, Mitsuru Hashida'®

Department of Drug Delivery Research, Graduate School of
Pharmaceutical Sciences, Kyoto University, 46-29
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Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan, *The
Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo
102-8471, Japan, >Department of Biopharmaceutics, School of
Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku,
Tokyo 173-8605, japan, #Department of Hospital Pharmacy, Nagasaki
University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan,
SInstitute of Integrated Cell-Material Sciences (iCeMS), Kyoto
University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302,

Japan

Backgrounds: Recently, ternary complex constructed with
pDNA, cationic compounds, and anionic compounds were re-
ported to show high gene expressions and low toxicities in vivo.
In this experiment, we newly constructed novel ultrasound-
responsive gene carrier with ternary structure for effective and
secure transfection.

Methods: pDNA was mixed with some cationic polymers and
cationic complexes were formed. The cationic complexes and the
anionic liposomes were mixed for formations of ternary com-
plexes. Then, perfluoropropane gas was entrapped into the ter-
nary complex and ultrasound-responsive gene carriers were
constructed.

Results: The stabilities of the gene delivery vectors were
determined by gel electrophoresis and the stable complex for-
mations were clarified. Furthermore, physicochemical proper-
ties of the gene delivery vectors were determined. Before
entrapment of perfluoropropane gas, the gene carrier showed
approximately 150 to 250 nm particle size and ~20 to —40mV
{-potential. Entrapment of perfluoropropane gas increased
particle size and approximately 550 to 600nm particles were
formed. Intravenous administration of the ultrasound-respon-
sive gene carrier with ultrasound exposure from abdominal
area significantly improved gene expressions in the mouse li-
ver, kidney, and spleen. ) '

Conclusion: This biocompatible ultrasound-responsive gene
carrier with ternary structure would be novel formulation for
effective and secure gene delivery.
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Combining MAR elements and transposon systems
for improved gene expression and integration

D Leyl, S Puttini®, Y Bigotz, N Mermod?

IUnz’versity of Lausanne, Lausanne, Switzerland, 2INRA Centre de
Tours, Nouzilly, France

Safety, integration and long-term expression of a transgene
constitute a major challenge in gene therapy applications. In this
study, we combined the efficiency of transgene integration of the

- transposon system and the anti-silencing properties of a genetic
element called matrix attachment region (MAR). We observed
that the addition of the MAR 1-68 in the PiggyBac transposon
does not interfere with transposition, by maintaining high fre-
quency of transgene integration in CHO cells. Moreover, it seems
that this association leads to higher transgene expression from
few transposon integration events. This property would be par-
ticularly interesting to be tested in muscle progenitor me-
soangioblast cells. These cells are important candidates for future

- stem cell therapy for myopathic patients and known to be diffi-
cult to transfect. Encouragingly, our first experiments show that
PiggyBac and Sleeping Beauty 100X systems are greatly efficient in
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these hard-to-transfect cells. Since in vivo electroporation is a
possible strategy for the local treatment of muscle disorders, we
are currently testing the combination of transposon and MAR
using this method in mice muscle to see if transposon systems
may promote sustained gene expression over time and/or in-
crease transgene integration. Assessing efficiency and the ad-
vantages of this new association may léad to the discovery of a
novel system possessing interesting properties for gene or cell-
based therapy application.
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Novel carotenoid lipid vectors for ocular gene therapy

Susana Machado’, Sofia Calado'?, Ana Vanessa Oliveira'?,
Susana ]orge], Christer L. @pstads, Hans-Richard Sliwka®,
Vassilia Partali®, Michael Pungente®, Gabriela Silva'®

1Gene therapy lab, Institute for Biotechnology and Biocengineering
(IBB/CBME), University of Algarve, Faro, 8005-139, Portugal, 2PhD
program in Biomedical Sciences, University of Algarve, Faro, 8005- -
139, Portugal, *Department of Chemistry, Norwegian University of
Science and Technology, 7491 Trondheim, Norway, *Premedical Unit,
Weill Cornell Medical College in Qatar, Doha, P.O. Box 24144, Qatar,
SDepartment of Biomedical Sciences and Medicine, University of
Algarve, Faro, 8005-139, Portugal ‘

The eye has several advantages for gene therapy: small size,
low immune and inflammatory responses and minimal diffusion
of drug to the systemic circulation. Cationic lipids, one of the
most studied non-viral vectors, possess either rigid or non-rigid
hydrophobic chains, leaving a gap in chain rigidity to be inves-
tigated. Our objective is to evaluate the efficiency of DNA de-
livery to human Retinal Pigmented epithelium (RPE) cells by
novel cationic lipid vectors. These novel vectors, designated as
C30-20 and C20-20, both possess a highly unsaturated, conju-
gated, rigid polyene chain, one of C30:9 and the other C20:5,
respectively, plus a non-rigid saturated alkyl C20:0 chain.

Lipoplexes, formulated by solvent evaporation of ethanolic
mixtures of the new polyene compound with a co-lipid, such as
DOPE or cholesterol, and incubated with DNA, were character-
ized by gel retardation assays, and biocompatibility and trans-
fection assays using RPE cells.

The different. lipid formulations encapsulated DNA, were
biocompatible with RPE cells, with better results for those with
DOPE. The C20-20/DOPE formulation had transfection effi-
ciencies above a commercial transfection agent (GeneJuice).
These results show this new polyene vectors to be promising for
ocular gene therapy. ‘

Support: IBB/LA; PEst-OE/EQB/LA0023/2011; PIRG-GA-
2009-249314; FCT Portugal (SFRH/BD/76873/2011, SFRH/
BD/70318/2010); Qatar National Research Fund- under the
National Priorities Research Program (NPRP08-705-3-144, PI
M. Pungente)

P251

Mitochondrial Gene Targeting in Mammalian Systems using
Novel ‘Mitochondriotropic’ Liposomes

N Narainpersad, M Singh, M Ariatti -
University of Kwazulu-Natal, Durban, South Africa
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