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Development of a gene delivery system to transfer the gene of interest selectively and efficiently into
targeted cells is essential for achievement of sufficient therapeutic effects by gene therapy. Here, we
succeeded in developing the gene transfection method using ultrasound (US)-responsive and mannose-
modified gene carriers, named Man-PEGaggo bubble lipoplexes. Compared with the conventional lipo-
fection method using mannose-modified carriers, this transfection method using Man-PEG;qg¢ bubble
lipoplexes and US exposure enabled approximately 500 ~800-fold higher gene expressions in the
antigen presenting cells (APCs) selectively in vivo. This enhanced gene expression was contributed by the
improvement of delivering efficiency of nucleic acids to the targeted organs, and by the increase of
introducing efficiency of nucleic acids into the cytoplasm followed by US exposure. Moreover, high anti-
tumor effects were demonstrated by applying this method to DNA vaccine therapy using ovalbumin
(OVA)-expressing plasmid DNA (pDNA). This US-responsive and cell-specific gene delivery system can be
widely applied to medical treatments such as vaccine therapy and anti-inflammation therapy, \}!hich its
targeted cells are APCs, and our findings may help in establishing innovative methods for in-vivo gene
delivery to overcome the poor introducing efficiency of carriers into cytoplasm which the major obstacle
associated with gene delivery by non-viral carriers.
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1. Introduction

In the post-genome era, the analysis of disease-related genes has
rapidly advanced, and the medical application of the information
obtained from gene analysis is being put into practice. In particular,
the development of effective method to transfer the gene of interest
selectively and efficiently into the targeted cells is essential for the
gene therapy of refractory diseases, in-vivo functional analysis of
genes and establishment of animal models for diseases. However,
a suitable carrier for selective and efficient gene transfer to the tar-
geted cells is still being developed. Although various types of viral
and non-viral carriers have been developed for gene transfer, they
are limited to use by viral-associated pathogenesis and low trans-
fection efficiency, respectively. For the cell-selective gene transfer,

* Corresponding author. Department of Drug Delivery Research, Graduate School
of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan. Tel.: +81 75 753 4545; fax: +81 75 753 4575.
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0142-9612/$ — see front matter © 2010 Elsevier Ltd. All rights reserved.
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many investigators have focused on ligand-modified non-viral
carriers such as liposomes [1—4], emulsions [5], micelles [6] and
polymers [7], because of their high productivity and low toxicity. On
the other hand, since the gene transfection efficiency by non-viral
carriers is poor, it is difficult to obtain the effective therapeutic effects
by gene therapy using non-viral carriers. Moreover, in the gene
transfection using conventional ligand-modified non-viral carriers,
since the carriers need to be taken up into cells via endocytosis
following by interaction with targeted molecules on the cell
membrane, the number of candidates which are suitable as ligands
for targeted gene delivery is limited.

Some researchers have attempted to develop the transfection
method using external stimulation, such as electrical energy [8],
physical pressure [9] and water pressure [10], to enhance the gene
transfection efficiency. Among these, gene transfection method
using US exposure and microbubbles enclosing US imaging gas,
called “sonoporation method"”, have been focused as effective drug/
gene delivery systems [11—14]. In the sonoporation method,
microbubbles are degraded by US exposure with optimized inten-
sity, then cavitation energy is generated by the destruction of
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microbubbles. Consequently, the transient pores are created on the
cell membrane, and large amount of nucleic acids are directly
introduced into the cytoplasm through the created pores [13,15,16].
However, the in-vivo gene transfection efficiency by conventional
sonoporation method administering the nucleic acids and micro-
bubbles separately is low because of the rapid degradation of
nucleic acids in the body [17], the large particle size of conventional
microbubbles [15] and the different pharmacokinetic profiles of the
nucleic acids and microbubbles. Moreover, to transfer the gene into
the targeted cells selectively by sonoporation method in vivo, the
control of in-vivo distribution of nucleic acids and microbubbles,
which are separately administered, is necessary.

In our previous report [16], we have demonstrated the effective
transfection by combination-use method using our mannosylated
lipoplexes composed of Man-C4-chol: DOPE [1], and conventional
Bubble liposomes (BLs) [12] with US exposure. However, this
combination-use method is complicated because of the necessity
for multiple injections of mannosylated lipoplexes and BLs; there-
fore, it is difficult to apply for medical treatments using multiple
transfections. In addition, the difference of in-vivo distribution
characteristics between mannosylated lipoplexes and BLs might be
decreased -its transfection efficacy. Therefore, it is essential to
develop the US-responsive and cell-selective gene carriers con-
structed with ligand-modified gene carriers and microbubbles.

Taking these into considerations, we examined the gene trans-
fection system for effective DNA vaccine therapy using physical
stimulation and ligand-modification. First, we developed US-
responsive and mannose-modified gene carriers, Man-PEGyp00
bubble lipoplexes (Fig. 1), by enclosing perfluoropropane gas into
mannose-conjugated PEGgg0-DSPE-modified cationic liposomes
(DSTAP: DSPC: Man-PEGz000-DSPE (Fig. 1))/pDNA complexes. Then,
we evaluated the enhanced and cell-selective gene expression in
-the APCs by intravenous administration of Man-PEGaggp bubble
lipoplexes and external US exposure in mice. Finally, we examined
high anti-tumor effects by applying this method to DNA vaccine
therapy using OVA-expressing pDNA,

2. Materials and methods
2.1. Mice and cell lines
Female ICR mice (4~5 weeks old) and C57BL/6 mice (6~8 weeks old) were

purchased from the Shizuoka Agricultural Cooperative Association for Laboratory
Animals (Shizuoka, Japan). All animal experiments were carried out in accordance

Bare-PEGyg¢ bubble !ipoplei

with the Principles of Laboratory Animal Care as adopted and promulgated by the US
National Institutes of Health and the guideline for animal experiments of Kyoto
University. CD8-OVA1.3 cells, T cell hybridomas with specificity for OVA 257 ~264-
kb, were kindly provided by Dr. C.V. Harding (Case Western Reserve University,
Cleveland, OH, USA) [18]. EL4 cells (C57BL/6 T-lymphomas) and E.G7-OVA cells (the
OVA-transfected clones of EL4) were purchased from American Type Culture
Collection (Manassas, VA). CD8-OVA1.3 cells and EL4 cells were maintained in
Dulbecco’s modified Eagle's medium and E.G7-OVA cells were maintained in RPMI-
1640. Both mediums were supplemented with 10% fetal bovine serum (FBS),
0.05 mm 2-mercaptoethanol, 100 IU/mL penicillin, 100 pg/mL streptomycin and 2 mm
L-glutamine at 37 °C in 5% CO;.

2.2, pDNA

pCMV-Luc and pCMV-0OVA were constructed in our previous reports [19,20].
Briefly, pCMV-Luc was constructed by subcloning the Hindll/Xba I firefly luciferase
¢DNA fragment from pGL3-control vector (Promega, Madison, WI, USA) into the
polylinker of pcDNA3 vector (Invitrogen, Carlsbad, CA, USA). pCMV-OVA was con-
structed by subcloning the EcoRI chicken egg albumin {ovalbumin) cDNA fragment
from pAc-neo-OVA, which was kindly provided by Dr. MJ. Bevan (University of
Washington, Seattle, WA, USA) into the polylinker of pVAX 1. pDNA were amplified in
the E. coli strain DH5¢, isolated and purified using a QIAGEN Endofree Plasmid Giga
Kit (QIAGEN GmbH, Hilden, Germany).

2.3. Synthesis of Man-PEG9p0-DSPE and preparation of Man-PEGzg0p bubble
lipoplexes

Man-PEG,000-DSPE was synthesized in a one-step reaction by covalent binding
with NH2-PEG000-DSPE (NOF Co., Tokyo, Japan) and 2-imino-2-methoxyethyl-1-
thiomannoside (IME-thiomannoside). IME-thiomannoside was prepared according
to the method of Lee [21]. Next, NH-PEG3000-DSPE and IME-thiomannoside were
reacted, vacuum dried and dialyzed to produce Man-PEG2900-DSPE, and then, the
resultant dialysates were lyophilized. To produce the liposomes for bubble lip-
oplexes, DSTAP (Avanti Polar Lipids Inc., Alabaster, AL, USA), DSPC (Sigma Chermicals
Inc,, St. Louis, MO, USA) and Man-PEG2000-DSPE or NH2-PEG,000-DSPE were mixed
in chloroform at a molar ratio of 7:2:1. For construction of BLs, DSPC and methoxy-
PEG000-DSPE (NOF Co., Tokyo, Japan) were mixed in chloroform at a molar ratio of
94:6. The mixture for the construction of liposomes was dried by evaporation,
vacuum desiccated and the resultant lipid film was resuspended in sterile 5%
dextrose. After hydration for 30 min at 65 °C, the dispersion was sonicated for
10 min in a bath sonicator and for 3 min in a tip sonicator to produce liposomes.
Then, liposomes were sterilized by passage through a 0.45 um filter (Nihon-Milli-
pore, Tokyo, Japan). The lipoplexes were prepared by gently mixing with equal
volumes of pDNA and liposome solution at a charge ratio of 1.0:2.3 (-:+). For
preparation of BLs and bubble lipoplexes, the enclosure of US imaging gas into
liposomes and lipoplexes was performed according to our previous report [16].
Briefly, prepared liposomes and lipoplexes were added to 5 mL sterilized vials, filled
with perfluoropropane gas (Takachiho Chemical industries Co., Ltd., Tokyo, Japan),
capped and then pressured with 7.5 mL of perfluoropropane gas. To enclose US
imnaging gas into the liposomes and lipoplexes, the vial was sonicated using a bath-
type sonicator (AS ONE Co., Osaka, Japan) for 5 min. The particle sizes and zeta

" NH,PEG,, DSPE i ~

R~ stearic acid R-GOC{Hzﬁ’
O CHOG-R

I i
NH,CH,CH,CH,{OCH,CH,), CONHCH,CH,-0-P-OCH,

O'Na*

perfluoropropane gas

Man-PEG 449 bubble lipoplex

CH,OH

OHHO
5 HO /

Man-PEG,00-DSPE

NH,-PEG,,-DSPE

Il
R-: stearic acid R-COCH,0

NH,+ O CHOC-R

i
—=0Q \iSCHzCNHCHZCHECHZ(OCHZCHz)nCONHCHZCH Z'O-T-QCHQ

O'Na+

perfluoropropane 'ga

- N
" mannose

PEG 000 DSPE

Fig. 1. Structure of Bare-PEG;09q bubble lipoplex containing NH2-PEG3000-DSPE and Man-PEGq00 bubble lipoplex containing Man-PEG,000-DSPE used in this st;de.'



K. Un et al. / Biomaterials 31 (2010) 7813~7826

potentials of liposomes and lipoplexes were determined by a Zetasizer Nano ZS
instrument (Malvern Instrument, Ltd., Worcestershire, UK).

2.4. Harvesting of mouse peritoneal macrophages

Mouse peritoneal macrophages were harvested and cultured according to our
previous report [16]. Briefly, the macrophages were harvested from mice at 4 days
after intraperitoneal injection of 2.9% thioglycolate medium (1 mL). The collected
macrophages were washed and suspended in RPMI-1640 medium supplemented
with 10% FBS, 100 1U/mL penicillin, 100 pg/mL streptomycin and 2 mwm t-glutamine,
and plated on culture plates. After incubation for 2 h at 37 °C in 5% CO», non-
adherent cells were washed off with culture medium, and the macrophages were
incubated for another 72 h.

2.5. In-vitro gene transfection

After the macrophages were collected and incubated for 72 h, the culture
medium was replaced with Opti-MEM I containing bubble lipoplexes (5 ug pDNA).
The macrophages were exposed to US (frequency, 2.062 MHz; duty, 50%; bufst rate,
10 Hz; intensity 4.0 Wjcm?) for 20 s using a 6 mm diameter probe placed in the
well at 5 min after addition of bubble lipoplexes. In the transfection using naked
pDNA and BLs, at 5 min after addition of naked pDNA (5 pg) and BLs (60 ug total
lipids) were added, and the macrophages were immediately exposed to US. US was
generated using a Sonopore-4000 sonicator (NEPA GENE, Chiba, Japan). Then, 1 h
later, the incubation medium was replaced with RPMI-1640 and incubated for an
additional 23 h. Lipofectamine® 2000 (Invitrogen, Carlsbad, CA. USA) was used
according to the recommmended procedures, and the exposure time of Lip-
ofectamine® 2000 was 1 h, which is the same exposure time in other experiments
using lipoplexes. Following incubation for 24 h, the cells were scraped from the
plates and suspended in lysis buffer (0.05% Triton X-100, 2 mm EDTA, 0.1 m Tris, pH
7.8). Then, the cell suspension was shaken, and centrifuged at 10,000g, 4 °C for
10 min. The supernatant was mixed with luciferase assay buffer (Picagene, Toyo Ink
Co., Ltd., Tokyo, Japan) and the luciferase activity was measured in a luminometer
(Lumat LB 9507, EG&G Berthold, Bad Wildbad, Germany). The luciferase activity
was normalized with respect to the protein content of cells. The protein concen-
tration was determined with a Protein Quantification Kit (Dojindo Molecular
Technologies, Inc., Tokyo, Japan). The level of luciferase mRNA expression was
determined by RT-PCR.

2.6. Inhibitory experiments of endocytosis in vitro

Endocytosis was inhibited by chlorpromazine (50 uM) as clathrin-mediated
endocytosis inhibitor {22}, genistein (200 um) as caveolae-mediated endocytosis
inhibitor [23] and 5-(N-ethyl-N-isopropyl)amiloride (EIPA, 50 umM) as macropino-
cytosis inhibitor [24]. Each endocytosis inhibitor was added to the macrophages at
30 min before the addition of lipoplexes.

2.7. Fluorescence photographs of pDNA in mouse peritoneal macrophages

To visualize the cellular association of pDNA by fluorescence microscopy
(Biozero BZ-8000, KEYENCE, Osaka, Japan), lipoplexes were constructed with
TM-rhodamine-labeled pDNA prepared by a Label IT Nucleic Acid Labeling Kit
(Mirus Co., Madison, WI, USA).

2.8. Evaluation of cytotoxic effects by MITT assay

The cytotoxicity was evaluated by MTT assay. Briefly, 3-(4,5-dimethyl-2-thia-
zol)-2,5-diphenyltetrazolium bromide (MTT, Nacalai Tesque, Inc., Kyoto, Japan)
solution was added to each well and incubated for 4 h. The resultant formazan
crystals were dissolved in 0.04 M HCl-isopropanol and sonicated for 10 min in a bath
sonicator. Absorbance values at 550 nm (test wavelength) and 655 nm (reference
wavelength) were measured and the results were expressed as viability (%).

2.9. In-vivo gene transfection

Four-week-old ICR female mice were intravenously injected with 400 pl bubble
lipoplexes via the tail vein using a 26-gauge syringe needle at a dose of 50 ug pDNA.
At 5 min after the injection of bubble lipoplexes, US (frequency, 1.045 MHz; duty,
50%; burst rate, 10 Hz; intensity 1.0 W/cm?; time, 2 min) was exposed transdermally
to the abdominal area using a Sonopore-4000 sonicator with a probe of diameter
20 mm. In the transfection using naked pDNA and BLs, at 4 min after intravenous
injection of BLs (500 pg total lipid), naked pDNA (50 pg) was intravenously injected
and US was exposed at 1 min after naked pDNA injection. At predetermined times
after injection, mice were sacrificed and their organs collected for each experiment.
The organs were washed twice with cold saline and homogenized with lysis buffer

(0.05% Triton %-100, 2 mm EDTA, 0.1 m Tris, pH 7.8). The lysis buffer was added in’

aweight ratio of 5 mL/g for the liver or 4 mL/g for the other organs. After three cycles
of freezing and thawing, the homogenates were centrifuged at 10,000g, 4 °C for
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10 min. The luciferase activity of resultant supernatant was determined by luciferase
assay and the level of luciferase mRNA expression was determined by RT-PCR.

2.10. In-vivo imaging

At 6 h after transfection, anesthetized mice were administrated p-luciferin
(10 mg/300 ul PBS) (Promega Co., Madison, W1, USA). At 10 min after injection of
p-luciferin, organs were excised and luminescent images were taken by NightOWL
LB 981 NC instrument (Berthold Technologies, GmbH, Bad Wildbad, Germany). The
pseudocolor luminescent images were generated, overlaid with organ images and
the luminescence representation was obtained using WinLight software {Berthold
Technologies GmbH, Bad Wildbad, Germany). .

2.11. Separation of mouse hepatic PCs and NPCs

The separation of mouse hepatic PCs and NPCs was performed according to our
previous reports [19]. Briefly, at 6 h after in-vivo transfection using bubble lipoplexes
and US exposure, each mouse was anesthetized with pentobarbital sodium
(40 ~60 mg/kg) and the liver was perfused with perfusion buffer (Ca®*, Mg?*-free
HEPES solution, pH 7.2) for 10.min. Then, the liver was perfused with collagenase
buffer (HEPES solution, pH 7.5 containing 5 mm CaClz and 0.05% (w/v) collagenase
(type 1)) for 5 min, Immediately after the start of perfusion, the vena cava and aorta
were cut and the perfusion rate was maintained at 5 mL/min. At the end of perfu-
sion, the liver was excised. The cells were dispersed in ice-cold Hank's-HEPES buffer
by gentle stirring and then filtered through cotton mesh sieves, followed by
centrifugation at 50g for 1 min. The pellets containing the hepatic PCs were washed
five times with Hank’s-HEPES buffer by centrifuging at 50g for 1 min. The super-
natant containing the hepatic NPCs was similarly centrifuged 5 times and the
resulting supernatant was centrifuged twice at 300g for 10 min. Then, the PCs and
NPCs were resuspended separately in ice-cold Hank's-HEPES buffer.

2.12. Isolation of mouse splenic CD11c* cells

The isolation of mouse splenic CD11c* cells was performed according to our
previous reports [25]. Briefly, At 6 h after in-vivo transfection using bubble lip-
oplexes and US exposure, the splenic cells were suspended in ice-cold RPMI-1640
medium on ice. Red blood cells were removed by incubation with hemolytic reagent
(015 M NH4CI, 10 mm KHCO3, 0.1 mm EDTA) for 3 min at room temperature. The
CD11c* cells were isolated by magnetic cell sorting with anti-mouse CD11c (N418)
microbeads and auto MACS (Miltenyt Biotec, Inc., Auburn, CA, USA) following the
manufacturer’s instructions.

2.13. Quantitative RT-PCR

Total RNA was isolated from separated cells using a GenElute Mammalian Total
RNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO, USA). Reverse transcription of
mRNA was carried out using a PrimeScript® RT reagent Kit (Takara Bio Inc., Shiga,
Japan). Real-time PCR was performed using SYBR® Premix Ex Taq (Takara Bio Inc.,
Shiga, Japan) and Lightcycler Quick System 350S (Roche Diagnostics, Indianapolis,
IN, USA) with primers. The primers for luciferase and gapdh cDNA were constructed
as follows: primer for luciferase cDNA, 5'-TTCTTCGCCAAAAGCACTC-3' (forward) and
5/-CCCTCGGGTGTAATCAGAAT-3' (reverse); primer for gapdh, 5'-TCTCCTGCGACTT=
CAACA-3' (forward) and 5/-GCTGTAGCCGTATTCATTGT-3' (reverse) (Sigma-Aldrich,
St. Louis, MO, USA). The mRNA copy numbers were calculated for each sample from
the standard curve using the instrument software (‘Arithmetic Fit Point analysis’ for
the Lightcycler). The results were expressed as the ratio of luciferase mRNA copy
numbers to the housekeeping gene (gapdh) mRNA copy numbers.

214, Tissue distribution of radio-labeled pDNA

Lipoplexes constructed with 32P-labeled pDNA ([«-32P]-dCTP, PerkinElmer, Inc.,
MA, USA) [26] were injected intravenously into mice. At predetermined times after
injection, blood.was collected from the vena cava under pentobarbital anesthesia.
Then, mice were sacrificed and the organs were collected, rinsed with saline and
weighed. The tissues were dissolved in Soluene-350 and the resultant lysates were
decolorized with isopropanol and 30% H30,, and then neutralized with 5 N HCL. The
radioactivity of 32P-labeled pDNA was measured in scintillation counter (LSA-500,
Beckman Coulter, Inc., CA, USA) after addition of Clear-Sol I solution.

2.15. Measurement of transaminase activity in the serum

At predetermined times after transfection, the serum was collected from the
anesthetized mice. Alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) activities in the serum were determined using Transaminase Cll-Test Wako kit
(Wako Pure Chemical Industries Ltd., Tokyo, Japan) according to manufacturer’s
instructions. .
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2.16. Antigen presenting assay

The evaluation of antigen presentation on MHC class I molecules in the splenic
dendritic cells was performed by in-vitro antigen presentation assay using CD8-
OVA1.3 cells, which are T cell hybridomas with specificity for OVA. The CD11c* cells
isolated from immunized mice were plated in a 96-well plate at various cells
numbers and co-cultured with CD8-OVA1.3 cells (1 x 10°) for 20 h. The antigen
presentation on MHC class | molecules was evaluated by IL-2 secreted from activated
CD8-0VA1.3 cells measured by a commercial [L-2 ELISA Kit (Bay bioscience Co., Ltd.,
Hyogo, Japan).

2.17. Evaluation of OVA-specific cytokine secretion from the splenic cells

At 2 weeks after the last immunization, the splenic cells collected from immu-
nized mice were plated in 96-well plates and incubated for predetermined times at
37 °C in the presence or absence of OVA (100 pg). [FN-y and IL-4 in the culture
medium were measured by the commercial ELISA Kit, respectively (Bay bioscience
Co., Ltd., Hyogo, Japan). .

2.18. OVA-specific CTL assay

At 2 weeks after the last immunization, the splenic cells harvested from
immunized mice were plated in 6-well plates and co-incubated with mitomycin C-
treated E.G7-OVA cells or EL4 cells for 4 days. After co-incubation, non-adherent
cells were collected, washed and plated in 96-well plates with target cells (E.G7-OVA
cells or EL4 cells) at various effector/target (E/T) ratios. The target cells were labeled
with_5'Cr by incubating with Na3'CrO,4 (PerkinElmer, Inc., MA, USA) in culture
medium for 1 h at 37 °C. At 4 h after incubation, the plates were centrifuged and the
resultant supernatant of each well was collected and the radioactivity of released
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S1Cr was measured in a gamma counter. The percentage of SiCr release was calcu-
lated as follows: specific (lysis (%) = [(experimental >'Cr release — spontaneous !Cr
release)/(maximum >'Cr release — spontaneous °'Cr release)] x 100). The
percentage of OVA-specific 5'Cr release was calculated as (% of 5'Cr release from E.
G7-OVA cells) — (% of *Cr release from EL4 cells).

2.19. Therapeutic effects

C57BL/6 mice were immunized three times biweekly. At 2 weeks after last
immunization, E.G7-OVA cells and EL4 cells were transplanted subcutaneously into

_the back of mice. The tumor growth and survival of mice'were monitored up to 80

days after transplantation of E.G7-OVA cells and EL4 cells.
2.20. Statistics

Results were presented as the mean + SD of more than three experiments,
Analysis of variance (ANOVA) was used to test the statistical significance of differ-
ences among groups. Two-group comparisons were performed by the Student's
t-test. Multiple comparisons between control groups and other groups were
performed by the Dunnett’s test and multiple comparisons between all groups were
performed by the Tukey-Kramer test.

3. Results
3.1. In-vitro gene transfection properties by Man-PEG2ggo lipoplexes

Polyethylene-glycol (PEG) modification of particles is neces-
sary to enclose US imaging gas stably and to prepare the
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small-sized microbubbles for in-vivo administration [12]. Firstly,
we developed mannose-conjugated PEGyggo-modified lipids
(Man-PEGggo-DSPE (Fig. 1)) to prepare the APC-targeted small-
sized microbubbles and determined the in-vitro and in-vivo
transfection characteristics of mannose-conjugated PEGaggg-
modified lipoplexes (Man-PEGygp00 lipoplexes) containing
Man-PEGy00 lipids. The particle sizes and zeta potentials of
Man-PEGygp0 lipoplexes and non-modified PEGagqp-lipoplexes
(Bare-PEGappp lipoplexes) were approximately 150 nm and
+40 mV, respectively (Supplementary Table 1). In mouse
cultured. macrophages expressing mannose receptors abun-
dantly, the level of gene expression obtained by Man-PEGagqg
lipoplexes were significantly higher than those by Bare-PEGzpgg
lipoplexes (Fig. 2A and B). Then, the level of gene expression
obtained by Man-PEGyggo lipoplexes was suppressed to same
extent as that by Bare-PEGyog¢0 lipoplexes in the presence of an
excess of mannan (Fig. 2A). Moreover, this level of gene
expression obtained by Man-PEGagoo lipoplexes was also sup-
pressed to same extent as that by Bare-PEGagop lipoplexes in the
presence of chlorpromazine (Fig. 2B), which is the inhibitor of
clathrin-mediated endocytosis [22]. These results agreed with
the results of cellular association of pDNA (Supplementary
Fig. 1), and suggest that Man-PEGgp0p lipoplexes are taken up
into the cells via clathrin-mediated endocytosis following the
interaction with mannose receptors.

>
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3.2. In-vivo gene transfection properties by Man-PEGygg lipoplexes

Since the degradation of pDNA by nuclease in the blood is one of
the critical factors in the in-vivo gene transfection by intravenously
administration of lipoplexes, we investigated the stability of Bare-
PEGyq00 lipoplexes and Man-PEG,qqp lipoplexes against nucleases.
Following electrophoresis of naked pDNA and lipoplexes after incu-
bation with DNase I, although naked pDNA underwent the degrada-
tion by DNase I, lipoplexes did not undergo the degradation and
retained the complex forms (Supplementary Fig. 2). Then, we inves-
tigated the gene expression characteristics of Man-PEGzg00 lipoplexes
in the liver and spleen, which are the targeted organs of mannose-
modified carriers [27]. In this study, liver was separated in the
parenchymal cells (PCs) and non-parenchymal cells (NPCs), and
spleen was separated in the dendritic cells (CD11c* cells) and other
cells (CD11c™ cells). As shown in Fig. 2C and D, following intravenous
administration of Man-PEGazg00 lipoplexes, selective gene expression
was observed in the hepatic NPCs and the splenic CD11c™ cells, which
are the APCs expressing mannose receptors abundantly [28—30].

3.3. In-vitro gene transfection efficiency by Man-PEGypgp bubble
lipoplexes and US exposure '

Although Man-lipoplexes showed the APC-selective gene
transfection properties in vivo, this level of gene expression was
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(0.1 pg). (E) Comparison of cell viability by transfection using Man-PEG;go bubble lipoplexes (5 ug pDNA) and US exposure with that by Lipofectamine 2000. N.T., non-treatment.
*p < 0.05; *p < 0.01, compared with N.T. Each value represents the mean + SD (n = 4).
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low compared with our previous reports {1,19,25]. To enhance the
level of gene expression by sonoporation method, we developed
Man-PEGaggo bubble lipoplexes (Fig. 1) by enclosing US imaging gas
(perfluoropropane gas) into Man-PEGygoo lipoplexes. The lipid
composition of lipoplexes is important for the stable enclosure of
US imaging gas. Following optimization of lipid composition,
lipoplexes constructed with the saturated lipids only, which have
a high melting temperature (Ty,), were enclosed US imaging gas
stably (Supplementary Table 2). Following enclosure of US imaging
gas in lipoplexes, lipoplexes became cloudy and their particle sizes
were increased (from 150 nm to 550 nm, approximately)
- (Supplementary Fig. 3A and Table 3). Then, since the zeta potentials
of bubble lipoplexes were lower than that of bubble liposomes and
same as that of lipoplexes (Supplementary Tables 1 and 3), it is
considered that pDNA is attached on the surface of bubble lipo-
somes. Moreover, the stability against nucleases observed in Man-
PEGz000 lipoplexes (Supplementary Fig. 2) was maintained after
enclosure of US imaging gas into lipoplexes (Supplementary
" Fig. 3B).

The level of gene expression obtained by Man-PEGygoo bubble
lipoplexes and US exposure was 500-fold higher than that by Man-
PEGagoo lipoplexes in mouse cultured macrophages expressing
mannose receptors abundantly, and also higher than that by non-
modified bubble lipoplexes (Bare-PEG2000 bubble lipoplexes, Fig. 1)
and US exposure or conventional sonoporation method using

. naked pDNA and BLs (Fig. 3A). This enhanced gene expression was '

observed when bubble lipoplexes and US exposure were used for
in-vitro gene transfer (Fig. 3B). The cellular association of pDNA
obtained by transfection using Man-PEG,g00 bubble lipoplexes and
US exposure was also 10-fold higher than that by Man-PEGygqo
‘lipoplexes, and also higher than that by Bare-PEGygpo bubble
lipoplexes and-US exposure or conventional sonoporation method
using naked pDNA and BLs (Fig. 3C and Supplementary Fig. 4A).
Moreover, this level of gene expression obtained by Man-PEGyq00
bubble lipoplexes and US exposure was comparable to that by
Lipofectamine® 2000, which is widely used as a gene transfection
reagent (Fig. 3D). On the other hand, the cytotoxicity by Man-
PEG3000 bubble lipoplexes and US exposure was lower than that by
Lipofectamine® 2000 (Fig. 3E).

3.4. Intracellular uptake properties of pDNA by Man-PEGzg00
bubble lipoplexes and US exposure

The gene expression obtained by Man-PEGypgp bubble lip-
oplexes and US exposure was significantly suppressed in the
presence of an excess of mannan (Fig. 4A). Therefore, the interac-

tion with mannose receptors on the cell membrane is involved in -

the gene transfection by Man-PEGappo bubble lipoplexes and US-

exposure, similar to the gene transfection by Man-PEGyggo lip-
oplexes. On the other hand, unlike Man-PEG200 lipoplexes
(Fig. 2B), the gene expression obtained by Man-PEG,ggo bubble
lipoplexes and US exposure was not suppressed in the presence of
chlorpromazine (Fig. 4B), which is a clathrin-mediated endocytosis
inhibitor [22]. These results agreed with the results of cellular
association of pDNA (Supplementary Fig. 4B), and indicated that
pDNA delivered by Man-PEGypop bubble lipoplexes was directly
introduced into the cytoplasm without mediating endocytosis by

the gene transfection using Man-PEG20g0 bubble lipoplexes and US
exposure,

3.5. In-vivo gene transfection efficiency by Man-PEG2gpgo bubble
lipoplexes and US exposure

A; shown in Fig. 5A and B, the level of gene expression
obtained by Man-PEGjpgg bubble lipoplexes and US exposure was
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Fig. 4. Effects of mannan and chlorpromazine on gene. expression by Man-PEGygg0
bubble lipoplexes and US exposure in vitro. (A) The level of luciferase expression
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presence of 50'uM chlorpromazine at 24 h after transfection, Each value represents the
mean + SD (n =4).

500~ 800-fold higher than that by Man-PEG,go¢ lipoplexes, and
also higher than that by Bare-PEGyggo bubble lipoplexes and US
exposure or the conventional sonoporation method using naked
PDNA and BLs in the liver and spleen, which are the targeted
organs of mannose-modified carriers [27]. This enhanced gene
expression in the liver and spleen  was observed when bubble
lipoplexes and US -exposure were used for in-vivo gene transfer
(Fig. 5C and D). Moreover, this gene expression obtained by Bare-
PEGg0g0 bubble lipoplexes with US exposure or Man-PEGaggg
bubble lipoplexes with US exposure in the liver and spleen

. remained higher than that by Bare-PEGyggp lipoplexes or Man-

PEG2000 lipoplexes for at least 48 h, respectively (Fig. 5E and F). In
addition, the gene expression was also enhanced in the US-
exposed organ specifically following gene transfection by direct US
exposure to the targeted organ after intravenous administration of
Man-PEGzggp bubble lipoplexes (Supplementary Fig. 5). On the
other hand, the increase of gene expression by bubble lipoplexes
and US exposure was not observed in other organ such as lung,
kidney and heart (Fig. 5G and H).
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Fig. 5. Enhancement of mannase receptor-expressing cells-selective gene expression by Man-PEG,gq0 bubble lipoplexes and US exposure in vivo. (A, B) The level of luciferase
expression obtained by naked pDNA, naked pDNA + BLs with US exposure, Bare-PEGagop lipoplexes, Bare-PEG ;g9 bubble lipoplexes with US exposure, Man-PEGxoqo lipoplexes and
Man-PEG 000 bubble lipoplexes with US exposure (50 ug pDNA) in the liver (A) and spleen (B) at 6 h after transfection. Significant difference; **, 'p < 0.01. (C, D) The level of
luciferase expression obtained by Man-PEG2gq0 lipoplexes and Man-PEG,g0p bubble lipoplexes with or without US exposure (50 pg pDNA) in the liver (C) and spleen (D) at 6 h after
transfection, **p < 0.01, compared with Man-PEGaggo lipoplex, '!p < 0.01, compared with Man-PEGagq lipoplex + US, ¥p < 0.01, compared with Man-PEG,gq bubble lipoplex. (E, F)
Time-course of luciferase expression in the liver (E) and spleen (F) after transfection by Bare-PEGqq0 lipoplexes, Man-PEGoq0 lipoplexes, Bare-PEGao0o bubble lipoplexes with US
exposure and Man-PEGzqg bubble lipoplexes with US exposure (50 pg pDNA). Each value represents the mean + SD (n'= 4). **p < 0.01, compared with Bare-PEGaqgo bubble
lipoplex + US, 'p < 0.05; fp < 0.01, compared with Bare-PEGyq0 lipoplex. (G) In-vivo imaging photographs of luciferase expression in the isolated organs at 6 h after transfection by
Man-PEG;q9g lipoplexes and Marni-PEG;qg0 bubble lipoplexes with US exposure (50 pg pDNA). (H) The level of luciferase expression in each organ at 6 h after transfection by Bare-
PEGa000 lipoplexes, Man-PEGzqqo lipoplexes, Bare-PEG;qpp bubble lipoplexes with US exposure and Man-PEGzo00 bubble lipoplexes with US exposure (50 pug pDNA). **p < 0.01,
compared with the corresponding group of Bare-PEGagqo lipoplex, 1'p < 0.01, compared with the corresponding group of Man-PEGaqg lipoplex, #p < 0.01, compared with the
corresponding group of Bare-PEGagqo bubble lipoplex + US. Each value represents the mean + SD (n = 4). '

3.6. Targeted cell-selective gene transfection properties by Man- was similar to that by Man-PEGzgoo lipoplexes, although the level of
PEG>000 bubble lipoplexes and US exposure in vivo gene expression in the NPCs and PCs was markedly higher. On the
; other hand, selective gene expression in the NPCs was not observed

We investigated the mannose receptor-expressing cell selec- by Bare-PEGappp bubble lipoplexes and US exposure.
tivity of gene expression by transfection using Man-PEG;ggp bubble In the spleen, the level of mRNA expression in the CD11c™ cells,
lipoplexes and US exposure. In the liver, the level of gene expres- which are the splenic dendritic cells expressing mannose receptors,

sion in the hepatic NPCs expressing mannose receptors was was significantly higher than that in the CD11c™ cells following
significantly higher than that in the hepatic PCs following gene transfection by Man-PEG3g09 bubble lipoplexes and US exposure
transfection by Man-PEGyo0p bubble lipoplexes and US exposure (Fig. 6B). On the other hand, selective gene expression in the
(Fig. 6A). This difference in gene expression between the NPCs and CD11c* cells was not observed by Bare-PEGyg00 bubble lipoplexes
PCs obtained by Man-PEGyggg bubble lipoplexes and US exposure and US exposure.
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Fig. 6. Hepatic and splenic cellular localization of luciferase expression by Man-
PEG3900 bubble lipoplexes and US exposure. (A) Hepatic cellular localization of lucif-
erase expression at 6 h after transfection by Bare-PEGyg00 lipoplexes, Man-PEGaog0
lipoplexes, Bare-PEG,000 bubble lipoplexes with US exposure and Man-PEGygp0 bubble

_ lipoplexes with US exposure (50 pg pDNA). **p < 0.01, compared with the corre-
sponding group of PCs. (B) Splenic cellular localization of luciferase mRNA expression
at 6 h after transfection by Bare-PEGygo0 lipoplexes, Man-PEGyoo0 lipoplexes, Bare-
PEG;000 bubble lipoplexes with US exposure and Man-PEG;gqo bubble lipoplexes with
US exposure (50 pg pDNA). **p < 0.01, compared with the corresponding group of
CD11c™ cells. Each value represents the mean + SD (n = 4).

3.7. In-vivo distribution properzies of pDNA by Man-PEG2ggo bubble
lipoplexes and US exposure

. Next, to elucidate the mechanism of enhanced in-vivo gene
expression using Man-PEG,ggo bubble lipoplexes and US exposure,
we investigated the effect on the tissue distribution of pDNA followed
by gene transfection. In this study, Bare-PEG;pg¢ bubble lipoplexes

and Man-PEGsggo bubble lipoplexes constructed with radio-labeled
pDNA were intravenously administrated, and then mice were sub-
jected to external US exposure. As shown in Fig: 7, in the case of both
bubble lipoplexes, the retention time of pDNA in- the blood was
slightly reduced and the distribution of pDNA delivered by bubble
lipoplexes was significantly increased by US exposure in the liver and
spleen (Fig. 7). Moreover, the amount of pDNA distributed in the liver
and spleen by Man-PEG,gpo bubble lipoplexes and US exposure
(Fig. 7A) was higher than that by Bare-PEGaopp bubble lipoplexes and
US exposure (Fig. 7B). On the other hand, no increase of pDNA
distribution followed by US exposure was observed in the lung,

3.8. The liver toxicity by Man-PEGzgo bubble lipoplexes and US
exposure R

We examined ALT and AST activities in the serum to investigate
the liver toxicity by gene transfection using Man-PEGagoo: bubble
lipoplexes and US exposure. ALT and AST activities in the serum
were increased by gene transfection using Bare-PEGagoo lipoplexes
and Man-PEGgqo lipoplexes. On the other hands, the increase of
ALT and AST activities was not observed by gene transfection using
Bare-PEGygpp bubble lipoplexes and Man-PEGygge bubble lipo-
plexes with US exposure (Fig. 8).

3.9. Antigen presentation on MHC class 1 molecules in immunized

splenic dendritic cells i

To investigate the DNA vaccine effects by Man-PEGzgop bubble
lipoplexes and US exposure, we prepared Man-PEGappg bubble
lipoplexes constructed with pDNA expressing OVA as a model
antigen. Firstly, to investigate the antigen (OVA) presentation on
MHC class I molecules in the splenic dendritic cells (CD11c* cells)
by Man-PEGyggo bubble lipoplexes constructed with pCMV-OVA
and US exposure, the splenic CD11c¢™ cells isolated from once-
immunized mice were co-incubated with CD8-0VA1.3 cells, which
are T cell hybridomas with specificity for OVA. Following
measurement of 1L-2 to evaluate the activation of T cells, the IL-2
secretion from activated CD8-OVA1.3 cells co-incubated with the
CD11c* cells isolated from mice immunized by Man-PEG2gg0
bubble lipoplexes and US exposure was the highest of all (Fig. 9A).
This result indicates that DNA vaccination by Man-PEG;ggo bubble
lipoplexes constructed with pCMV-OVA and US exposure can
induce significantly high CD8%-T lymphocyte activation.

3.10. Antigen-specific cytokine secretion from immunized splenic
cells :

We evaluated the OVA-specific cytokine secretion from the
splenic cells immunized by Man-PEG;gg¢ bubble lipoplexes con-
structed with pCMV-OVA and US exposure. Following optimiza-
tion of immunization schedule, it was shown that a 2 week
interval was necessary to achieve the same level of gene expres-
sion as former transfection in the spleen (Supplementary Fig. 6)
and at least three times immunization was necessary to effective
anti-tumor effects by DNA vaccination using this method
(Supplementary Fig. 7). Therefore, the immunization to mice was
performed according to the protocol shown in Fig. 9B. As shown in
Fig. 9C, in the presence of OVA, the highest amount of IFN-y (Th1
cytokine) was secreted from splenic cells harvested from mice
immunized with Man-PEGypg¢ bubble lipoplexes and US exposure,
On the other hand, no secretion of IFN-y was observed in any of
the groups in the absence of OVA. Moreover, the secretion of IL-4
(Th2 cytokine) was not increased in any of the groups both in the

 presence or absence of OVA (Fig. 9C). These results suggest that

immunization by Man-PEG;gg0 bubble lipoplexes constructed with
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pCMV-0OVA and US exposure significantly enhances the differen-
tiation of helper T cells to Th1 cells, which are pivotal cells for the
activation of cytotoxic T lymphocytes (CTL) with high anti-tumor
activity, by OVA stimulation.

3.11. Antigen-expressing cell-specific CTL activity in immunized
splenic cells

Next, we assessed the CTL activity in the splenic cells harvested
from mice immunized by Man-PEG3ggg bubble lipoplexes and US
exposure. Following experiments according to.the protocol shown
in Fig. 9B, the splenic cells immunized by Man-PEGaggp bubble
lipoplexes constructed with pCMV-0OVA and US exposure showed
the highest CTL activity in all groups against E.G7-OVA cells which
are the lymphoma cells expressing OVA (Fig. 9D). In contrast, the
CTL activity was not observed in EL4 cells which are the lymphoma
cells rot expressing OVA in all groups (Fig. 9D). These results
indicate that the splenic cells immunized by Man-PEGzggo bubble
lipoplexes constructed with pCMV-0OVA and US exposure induce
the OVA-expressing cell-specific CTL activity.

3.12. Therapeutic effects against antigen-expressing tumor by DNA
vaccination

Finally, we investigated the anti-tumor effects by DNA vacci-
nation using Man-PEGagpo bubble lipoplexes and US exposure,
Following experiments according to the protocol shown in Fig. 10A,
significantly high anti-tumor effects against E.G7-OVA cells were
observed in mice immunized by Man-PEG;ggo bubble lipoplexes
constructed with pCMV-0VA and US exposure (Fig. 10B). However,
in mice transplanted EL4 cells, no anti-tumor effects were observed
in any of the groups (Fig. 10C). Moreover, we investigated the
maintenance of DNA vaccine effects following administration of
Man-PEG3g00 bubble lipoplexes and US exposure. According to the
protocol shown in Fig. 11A, E.G7-OVA cells were re-transplanted

into mice which first-transplanted tumors -were completely rejec-
ted by DNA vaccination using Man-PEG,o00 bubble lipoplexes and
US exposure. As results, high anti-tumor effects were observed in
mice following re-transplantation of E.G7-OVA cells (Fig. 11B);
therefore it was demonstrated that DNA vaccine effects obtained by
Man-PEG,q00 bubble lipoplexes constructed with pCMV-OVA and
US exposure were maintained for at least 80 days.:

4. Discussion

To obtain high therapeutic effects by DNA vaccination using
tumor-specific antigen-coding gene, it is essential to transfer the
gene selectively and efficiently into the APCs, such as macrophages
and dendritic cells [31,32]. However, it is difficult to transfer the
gene into the APCs selectively because of the number of APCs is
limited in the organ [33]. Since the APCs are expressed a large
number of mannose receptors [28,29], we and other groups have
developed mannose-modified non-viral carriers for gene delivery
to the APCs [7,25,34]. On the other hand, our group also reported
that the gene transfection efficiency in the APCs was lower than
that in other cells [35]; therefore it is difficult to achieve high gene
transfection efficiency to induce high therapeutic effects by DNA
vaccination in vivo. In the present study, to establish an APC-
selective and efficient gene delivery system, we developed US-
responsive and mannose-modified carriers, named Man-PEGz000
bubble lipoplexes, which had selectivity to the APCs and responded
to US exposure. The gene delivery system using Man-PEG2o00
bubble lipoplexes and US exposure enabled to achieve markedly
high gene expression in macrophages and dendritic cells selectively
in vivo, in spite of the handy system used intravenous adminis-
tration and external US exposure. Moreover, we succeeded in
obtaining high anti-tumor effects by applying this method to DNA
vaccine therapy using OVA-expressing pDNA.

Firstly, since PEGyggo-modification is necessary to enclose US
imaging gas stably [12], we prepared Man-PEG,g00 lipoplexes
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containing Man-PEGypoo lipids. This Man-PEGagoo lipoplexes
exhibited mannose receptor-expressing cell-selective gene
expression both in'vitro and vivo (Fig. 2). On the other hand, the
level of gene expression by Man-PEG;ppg lipoplexes was lower than
that by mannosylated lipoplexes without PEG-modification, as
reported previously by our group [1,25]. However, this result was
considered to be contributed by the reduced interaction with the
cell membrane and the reduction of endosomal escape efficiency by
PEG3;g00-modification [36,37]. In the sonoporation method, Tachi-
bana et al. demonstrated that a transient pore is created on the cell
membrane followed by the degradation of microbubbles [38]. Then,
nucleic acids, such as pDNA, siRNA and oligonucleotides, are
introduced into the cell through the generated pore [13,15,16].
Consequently, since the nucleic acids are directly introduced into
cytoplasm in the sonoporation method [13,14], it is considered that
the low level of transfection efficiency obtained by Man-PEG3g90
lipoplexes can be overcome.by applying sonoporation method.
As shown in Figs. 3 and 4, a large amount of pDNA is directly
introduced into the cytoplasm and high level of gene expression is
observed by gene. transfection using Man-PEGygq bubble

lipoplexes and US exposure. Therefore, by delivering pDNA to the
APCs using Man-PEGaygoo bubble lipoplexes, it is suggested that high
level of gene expression in the APCs can easily achieve by following
US exposure in this gene transfection method.

Inthis study, the level of gene expression obtained by trans-
fection using Man-PEGygg0 bubble lipoplexes and US exposure was
higher than that obtained by Man-PEGappo lipoplexes or Bare-
PEGa000 bubble lipoplexes with US exposure in the liver and spleen
(Fig. 5). Moreover, gene expression by Man-PEGaooo bubble lip-
oplexes and US exposure was observed selectively in the hepatic
NPCs and the splenic dendritic cells (Fig. 6), known as mannose
receptor-expressing cells [28—30]. Although this selectivity of gene
expression was the same as that obtained by mannasylated lip-
oplexes reported previously by our group [1,25], this level of gene
expression was markedly higher. It is considered that this enhanced
and cell-selective gene expression is contributed by the increase of
interaction with mannose receptor-expressing cells by mannose
modification (Supplementary Fig. 1), by the improvement of
delivering efficiency of nucleic acids to the targeted organs (Fig. 7)
and by the direct introduction of nucleic acids into the cytoplasm of
targeted cells followed by US exposure to Man-PEGzpe0 bubble
lipoplexes (Figs. 3C and 4B and Supplementary Fig. 4). Moreover,
the enhanced gene expression was not observed in the lung, kidney
and spleen (Fig. 5G and H). It is guessed that the reason why the
enhanced gene expression was not observed in the lung is because
US is not spread to the thoracic cavity by the diaphragm, and the
reason why the enhanced gene expression was not abserved in the
kidney and heart was because the distributed amounts of bubble
lipoplexes were markedly small. In addition, since the particle size
of bubble lipoplexes (approximately 500 nm) is suitable for delivery
to the liver and spleen, compared with stabilized liposomes
(approximately 100 nm) [39], the gene transfection system using
Man-PEGygpp bubble lipoplexes and US exposure is a suitable
method for the selective delivery of nucleic acids into the mannose
receptor-expressing cells in the liver and spleen.

On the other hand, the liver toxicity followed by gene trans-
fection using Man-PEGzggo bubble lipoplexes and US exposure was
lower than that by Man-PEGyqqp lipoplexes (Fig. 8). It was reported
that the CpG motifs in the pDNA sequence are recognized to Toll-
like receptor 9 (TLR9) in the endosomes [40,41]; therefore it has
been considered that the production of proinflammatory cytokines,
such as TNF-g, IFN-y and 1L-12, could be induced in the lipofection
method using liposomes and emulsions, and these cytokines
cause liver injury [42]. However, in the gene transfection using
Man-PEG;q0p bubble lipoplexes and US exposure, a large amount of
PDNA was directly introduced into the cytoplasm not-mediated
endocytosis (Figs. 3C and 4B and Supplementary Fig. 4). Therefore,
it is considered that pDNA is not recognized to TLR9 in the endo-
somes, and consequently liver toxicity followed by transfection
using Man-PEGygg0 bubble lipoplexes and US exposure is low.

In the previous study [16], we developed combination-use
method using mannosylated lipoplexes [1] and BLs [12] with US
exposure to achieve targeted cell-selective gene transfer. However,
this, combination-use method is complicated because of the
necessity of twice injection of mannosylated lipoplexes and BLs,
therefore it is difficult to apply for medical treatments using
multiple injection. Moreaover, it is considered that the difference of
in-vivo distribution characteristics between mannosylated lip-
oplexes and BLs might be decreased its transfection efficacy. On the
other hand, this transfection method using Man-PEG;gg bubble
lipoplexes and US exposure is handy because of using only once
injection .of Man-PEGyggo bubble lipoplexes and external US
exposure. In addition, this method using Man-PEGzggo bubble lip-
oplexes and US exposure overcame the difference of in-vivo
distribution of formulations, which might lead to the decrease of
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represents the mean = SD (n = 4). *p < 0.05; **p < 0.01, compared with the corresponding group of N.T. N.T., non-treatment. :

transfection efficiency. In fact, the level of gene expression by this
method was higher than that by combination-use method reported
previously in the targeted organs (liver and spleen) (Fig. 5) and
targeted cells (hepatic NPC and splenic dendritic cells) (Fig. 6);
therefore this gene transfection method using Man-PEG2qqp bubble
lipoplexes and US exposure is more suitable for APC-selective gene
transfer in vivo.

Since APC-selective and efficient gene expression was observed
by transfection using Man-PEGygo9 bubble lipoplexes and US
exposure, effective therapeutic effects are to be expected by
applying this transfection method to DNA vaccine therapy, which
the targeted cells are the APCs, using tumor-specific antigen-coding
pDNA [31,32]. However, since the level of gene expression by
transfection using Man-PEG3gg¢ bubble lipoplexes and US exposure
was reduced sequentially (Supplementary Fig. 6), multiple trans-
fections are essential to obtain more effective vaccine effects
against cancer (Supplementary Fig. 7). On the other hand, a 2 week
interval was needed to achieve the same level of gene expression by

lipoplexes or bubble lipoplexes with US exposure as former trans-
fection in the spleen (Supplementary Fig. 7B and C). Meyer et al.
reported that the optimal transfection interval was necessary to
achieve high gene expression by the second transfection using
lipofection methods because of IFN-y secretion by intravenous
administration of lipoplexes [43]; therefore it is considered that
a similar phenomenon is contributed to the sonoporation methods
using microbubbles constructed with phospholipids. Based on
these findings, we performed the optimization of immunization
times (Supplementary Fig. 7) and determined the.optimal immu-
nization schedule as shown in Figs. 9B, 10A and 11A.

In DNA vaccine therapy, unlike cancer immunotherapy using
tumor-specific antigenic peptides, the peptides expressed as gene
products in the cells act as the internal antigen. Since the internal
antigens are presented on MHC class I molecules, the strong acti-
vation of CTL and high anti-tumor effects are expected in DNA
vaccination therapy [44,45]. In this study, by applying this gene
transfection method to DNA vaccine therapy using OVA-expressing
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(n = 8—11). The tumor volume was evaluated (each value represents the mean + SD) and the survival was monitored up to 80 days after the tumor transplantation. *p < 0.05;

: **p < 0.01, compared with the corresponding group of N.T. N.T., non-treatment.

pDNA, i) the presentation of OVA-peptides on MHC class 1 mole-
cules of splenic dendritic cells, ii) OVA-specifie Th1l cytokine
secretion from splenic cells by OVA stimulation and iii) marked
activation of CTL against OVA-expressing tumor were observed by
gene transfection using Man-PEGypg¢ bubble lipoplexes con-
structed with pCMV-0OVA and US exposure (Fig. 9). Moreover, high
and long-term anti-tumor effects against OVA-expressing tumor
were observed in mice transfected by Man-PEG3g00 ' bubble
lipoplexes constructed with pCMV-OVA and US expostire (Figs. 10
and 11). It is considered that these results are contributed by °
APS-selective and efficient gene transfection efficiency using Man-
PEGjgg90 bubble lipoplexes and US exposure. Although mare
detailed ‘examination by pDNA encoding other tumor-specific
antigens, such as gp100 in melanoma or PSA in prostate cancer [45],

is necessary, this transfection method. by Man-PEGygp0 bubble
lipoplexes and US exposure might be available for DNA vaccine
therapy.

The gene transfection method using Man-PEG,pg¢ bubble
lipoplexes and US exposure was enabled selective and efficient
gene transfer to the mannose receptor-expressing cells in the
liver such as Kupffer cells and hepatic endothelial cells, which are
components of the APCs (Fig. 6A). Therefore, this method is also
suitable for anti-inflammatory therapy targeted to Kupffer. cells
and hepatic endothelial cells, known to play a key role in
inflammation [46,47]. In spite of low liver toxicity, since this gene
transfection system showed NPC-selective and efficient’ gene
expression in the liver (Fig. 8), better therapeutic effects could be
expected by Man-PEGyggp bubble lipoplexes constructed with
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various types of nucleic acids, such as NF-«xB.decoy [48], ICAM-1
antisense oligonucleotides [49], with low doses of nucleic acids.
Moreover, organ-specific gene expression was observed in US-
exposed organ by exposing US to the organ directly after intra-
venous administration of Man-PEGyggo bubble lipoplexes
(Supplementary Fig. 5); therefore the beforehand knockdown of
inflammatory factors such as NF-kB or ICAM-1 by Man-PEGyg00
bubble lipoplexes and US exposure might be available for the
-prevention of ischemia reperfusion injury, a major problem in
living donor liver transplantation.

5. Conclusion

In this study, we developed the gene transfection method
using Man-PEGyggg bubble lipoplexes and US exposure. This
transfection method enabled APC-selective and efficient gene
expression, and moreover, effective anti-tumor effects was
obtained by applying this method to DNA vaccine therapy against
cancer. This method could be widely used in a variety of targeted
cell-selective and efficient gene transfection methods by
substituting mannose with various ligands reported previously
[2—6]. In addition, in this gene transfection method, pDNA can
directly introduce the nucleic acids into the cells through the
transient pores created by US-responsive degradation of bubble
lipoplexes, therefore this method could apply to many ligands
which are not taken up via endocytosis. These findings make
a valuable contribution to overcome the poor introducing effi-
ciency into cytoplasm which is a major obstacle for gene delivery
by non-viral vectors, and show that this method is an effective
method for in-vivae gene delivery.
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ABSTRACT: DNA vaccination has attracted much attention
as a promising therapy for the prevention of metastasis and

relapse of malignant tumors, especially highly metastatic tu- -

mors such as melanoma. However, it is difficult to achieve a
potent cancer vaccine effect by DNA vaccination, since the
number of dendritic cells, which are the major targeted cells of
DNA vaccination, is very few. Here, we developed a DNA
vaccination for metastatic and relapsed melanoma by ultra-
sound (US)-responsive and antigen presenting cell (APC)-

selective gene carriers reported prewously, named Man-PEG,qq
bubble lipoplexes. Following immunization using US exposure
and Man-PEG bubble lipoplexes constructed with pUb-M,
which expresses ubiquitylated melanoma-specific antigens
(gp100 and TRP-2), the secretion of Thl cytokines (IEN-y
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and TNF-at) and the activities of cytotoxic T lymphocytes (CTLs) were specifically enhanced in the presence of BI6BL6 melanoma
antigens. Moreover, we succeeded in obtaining potent and sustained DNA vaccine effects against solid and metastatic tumor derived
from B16BL6 melanoma specifically. The findings obtained from this study suggest that the gene transfection method using Man-
PEGj000 bubble lipoplexes and US exposure could be suitable for DNA vaccination aimed at the prevention of metastatic and

relapsed cancer.

'

KEYWORDS: mannose modification, bubble lipoplex, ultrasound, DNA vaccination, melanoma

B INTRODUCTION

Melanoma is a neoplasm arising within epidermal melanocytes
of the skin, and one of several cancers exhibiting the increasing
incidence in recent years." Early stage melanoma is curable, but
melanoma metastasis and relapse occur frequently in the patients

following treatments such as surgery, and the prognosis for -

patients with metastatic melanoma is poor.>> Although systemic
therapy induces complete therapeutic responses in a minority of
patients, metastatic melanoma is a devastating illness and treat-
ment options are limited; therefore, there is a need for an effec-
tive therapy for metastatic melanoma.

Cancer vaccination has attracted much attention as a promis-
ing therapy for the prevention of tumor growth and metastasis,
because it is based on an immune response provided by the
cancer antigen, and consequently, its therapeutic effects are specific
to the targeted cancer cells and the adverse effects followed by

@ ACS Publications © 2011 American Chemical Society

cancer vaccination are low.” In particular, it has been reported that
DNA vaccination, which uses an exogenous gene encoding cancer
antigen, can induce not only humoral immunity but also cellular
immunity and, moreover, can induce cancer-specific CTLs with
potent antitumor activities. *Ina variety of cancers, since mela-
noma is known to exhibit inherent immunogenicity and the iden-
tification of melanoma-specific antigen is proceeding, such as
' gp100, melanoma-antigen recogmzed by T cells-1 (MART-1)
and tyrosinase-related protein (TRP),'*™*? it is considered that
DNA vaccination against melanoma is suitable for not only the
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