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(Figure 6C) and the protein level (Figure 6D) by the
same treatment. These results suggest that L-Glu was re-
sponsible for the decrease in L-Glu uptake during in-
flammation without cell death. When the microglia
cultures were treated with LPS (10 ng/mL, 24 h) in the
absence or presence of the hemichannel inhibitor, CBX
(10 to 100 pM), the L-Glu release from the activated
microglia was suppressed in a concentration-dependent
manner (Figure 7A). CBX (100 pM) almost completely
prevented the LPS-induced (10 ng/mL, 72 h) decrease in
L-Glu uptake in the mixed culture (Figure 7B, left) but
had no effect in the astrocyte culture (Figure 7B, right).
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Furthermore, CBX reversed the LPS-induced down-
regulation of GLAST expression at the mRNA
(Figure 7C) and protein levels (Figure 7D).

We next tried to clarify the mechanisms through
which the sustained elevation of extracellular L-Glu
downregulates GLAST. Recent reports have suggested
that the expression of L-Glu transporters is regulated
by L-Glu through metabotropic glutamate receptors
(mGluRs). We therefore first examined the involvement
of metabotropic glutamate receptors (mGluRs). Neither
the group I mGluR agonist DHPG nor the group II
mGIuR agonist DCG-4 affected either L-Glu uptake
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(Figure 8A and B) or the expression level of GLAST
(not shown). Sustained elevation of extracellular L-Glu
caused by activated microglia is expected to cause the
elevation of intracellular L-Glu in astrocytes. We there-
fore examined whether the elevation of intracellular
L-Glu itself is important for the downregulation of
GLAST. To do this, we first measured the amount of
astrocytic intracellular L-Glu after LPS-treatment in the
absence or presence of TBOA in astrocyte-microglia co-
cultures (Figure 8C). LPS significantly increased the
amount of intracellular L-Glu, and TBOA completely
suppressed this increase. Western blotting showed that
TBOA suppressed the downregulation GLAST caused
by LPS (Figure 8D). TBOA itself did not have effects on
either the amount of intracellular L-Glu or the GLAST
protein level. These results indicate that the elevation of
astrocytic intracellular L-Glu, but not the signaling cas-
cade from the cell surface, is important for the downre-
gulation of GLAST.

Our findings suggest that activated microglia trigger
the elevation of extracellular L-Glu through their own
release of L-Glu, astrocyte L-Glu transporters are down-
regulated by the elevation of astrocytic intracellular
L-Glu, and further elevation of extracellular L-Glu occurs
early in neuroinflammation. A schematic model of this
‘collusion’ hypothesis is shown in Figure 9.

Discussion

To quantify L-Glu transporter function, we measured
the extracellular concentrations of L-Glu 30 min after a
single exogenous application of L-Glu to the medium
(the starting concentration was 100 pM). To limit any
contributions of extra L-Glu from dying cells, and to
verify a substantial contribution of the decrease in L-Glu
transport potency to an elevated concentration of extra-
cellular L-Glu in inflammation, we first determined the
optimal conditions for inflammation without cell death.
We used a lower concentration of LPS (10 ng/mL) than
is generally used [35,36]. LPS application at a concentra-
tion of 10 ng/mL for 72 h activated the microglia but
did not cause either LDH leakage or decreases in MTT
reduction in the mixed culture, astrocyte pure culture,
or microglia pure culture. LPS induces an inflammatory
response in microglia via Toll-like receptor 4 (TLR4)
[37]. TLR4 is also expressed by astrocytes, and astrocytes
themselves have shown inflammatory responses in re-
sponse to LPS in some reports [38]. In the present study,
however, microglia were essential for the decreased
L-Glu by astrocytes, and LPS did not affect L-Glu uptake
in astrocyte cultures. Because the expression of TLR4 by
astrocytes is less than that of microglia [37], the LPS
stimulation in our model of inflammation without cell
death may be insufficient to induce phenotypic changes
in astrocytes. These mild inflammatory conditions may
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Figure 9 Schematic model of the ‘collusion’ hypothesis for the
elevation of extracellular L-Glu in the early stages of
inflammation.1. Activated microglia release L-Glu. 2. The

resultant elevation of extracellular L-Glu causes the elevation of
astrocytic intracellular L-Glu. 3. The elevation of astrocytic
intracellular L-Glu downregulates GLAST expression. 4. The
decrease in GLAST expression further exacerbates the elevation of
extracellular L-Glu.

reflect the early stages of neuroinflammation in vivo, in
which early microglial activation has been observed to
precede the phenotypic changes in astrocytes [39].

In the present study, we pharmacologically con-
firmed that GLAST, and not GLT-1, was the predom-
inant functional L-Glu transporter. We also confirmed
that the expression level of GLT-1 is much lower than
that of GLAST. GLT-1 has been reported to be func-
tional in neuron-astrocyte co-cultures at 32 to 44 DIV
[40]. This discrepancy most likely arises from the
maturation stages of neurons, as the functional devel-
opment of GLT-1 correlates with neuronal maturation
[41]. The expression of GLAST was significantly
decreased in the ‘non-cell death inflammation model;
which indicates that the decrease in L-Glu uptake in
this inflammation model was mainly caused by the
downregulation of GLAST.
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Activated microglia release various soluble factors, in-
cluding inflammatory cytokines [18,19], reactive oxygen
species [20], NO [16], L-Glu {21,22], and ATP [23,24].
We demonstrated that L-Glu is the factor that downre-
gulates GLAST in astrocytes during inflammation with-
out cell death. Although activated microglia are known
to release L-Glu through hemichannels [21,22], the
neurological importance of this phenomenon remains
unclear. We showed that the hemichannel inhibitor
CBX completely suppressed the release of L-Glu from
microglia, the decrease in L-Glu uptake, and the down-
regulation of GLAST expression during inflammation
without cell death. These data provide strong evidence
that L-Glu is the microglial releasing factor that downre-
gulates GLAST. High concentrations of ATP have also
been shown to downregulate GLAST through the P2X7
receptor [28]. However, we believe that ATP did not
contribute to the down-regulation of GLAST in the in-
flammation model without cell death here because
L-Glu uptake did not change when the astrocyte culture
was treated with ATP (Figure 5A) or the P2X7 agonist
BzATP (Figure 5B). We also confirmed that neither the
P2X receptor antagonist TNP-ATP (Figure 5C) nor the
P2X7-specific antagonist BBG (Figure 5D) inhibited the
decrease in L-Glu uptake in this inflammation model.
Other microglial releasing factors, such as TNF-a, IL-1B,
and arachidonic acid, are also known to decrease the
L-Glu transport in astrocyte cultures [25-27]. However,
the conditioned media collected from our model of in-
flammation without cell death had no effect in the astro-
cyte culture. Because the LPS stimulation here was lower
than that of other studies [35,36] (to prevent cell death),
the amount of these factors in the conditioned media
may have been insufficient to affect L-Glu transporters.

Recent reports have suggested that the expression of
L-Glu transporters is regulated by L-Glu through meta-
botropic glutamate receptors (mGluRs), that is, the
group I mGluR agonist downregulates GLAST, whereas
the group II mGluR agonist has the opposite effect
[42,43]. However, neither the group I mGluR agonist nor
the group II mGluR agonist affected the expression of
GLAST in the present study. Instead, we clarified that
the elevation of intracellular L-Glu in astrocytes is im-
portant for the downregulation of GLAST as shown in
Figure 8. It has been clarified that translation initiation
is regulated by intracellular L-Glu transported by
GLAST in Bergmann glial cells [44,45]. They also
showed that mammalian target of rapamycin (mTOR),
increase in intracellular Ca®* levels, and p60(Src)/PI3K/
PKB pathway are involved in this regulation. Further in-
vestigation is necessary to confirm whether the same
pathways are involved in the downregulation of GLAST
observed in our study. Of interest, a sustained elevation
of extracellular L-Glu induced by the same protocol as
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Figure 6 did not cause the downregulation of glutamine
synthetase (GS) in our preliminary experiment (data not
shown), suggesting that this regulation is GLAST or
L-Glu transporter-specific. The comparison of the up-
stream DNA sequences of GLAST and GS might provide
useful information. Besides, in Saccharomyces cerevisiae,
the activator (NIL1p) of the amino acid transporter is
inactivated by increases in intracellular glutamate [46]. It
is possible that a conserved mechanism similar to this
also exist in astrocytes. Our findings strongly suggest
that L-Glu is the microglial releasing factor which results
in downregulation of GLAST in the early stage of inflam-
mation. However, whether or not the quantity of L-Glu
released from microglia is enough to induce a range of
reaction still needs to be elucidated. Based on the discus-
sion above, the co-factors to enhance the signaling path-
way in the astrocytes leading to the downregulation of
GLAST might be also released from microglia.

Conclusions

Our findings suggest that activated microglia trigger the
elevation of extracellular L-Glu through their own re-
lease of L-Glu, astrocyte L-Glu transporters are downre-
gulated by the elevation of astrocytic intracellular L-Glu,
and further elevation of extracellular L-Glu is caused as
an early event of neuroinflammation (Figure 9).
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ABSTRACT: . We recently found that tamoxifen suppresses L-glutamate Astrbcytes

HO
transport activity of cultured astrocytes. Here, in an attempt to separate Mg W,
the L-glutamate transporter-inhibitory activity from the estrogen receptor- vye e
mediated genomic effects, we synthesized several compounds structurally O‘. O Y 1
related to tamoxifen. Among them, we identified two compounds, -1 3 :N~\_°
(YAKO1) and 3 (YAK037), which potently inhibited L-glutamate trans- 9,
porter -activity. The inhibitory: effect of 1 was found to be mediated =
through estrogen receptors and the mitogen-activated protein kinase DR,
(MAPK) /phosphatidylinositol 3-kinase (PI3K) pathway, though 1 showed Tamoxifen

greatly reduced  transactivation activity compared with that of 17p- Inhibition of glial L-glutamate transporter
estradiol. On the other hand, compound 3 exerted its inhibitory effect ‘

through an estrogen receptor-independent and MAPK-independent, but PI3K-dependent pathway, and showed no transactivation
activity. Compound 3 may represent a new platform for developing novel 1- glutamate transporter 1nh1b1tors with higher brain
transfer rates and reduced adverse effects. -

KEYWORDS Tamoxifen, astrocyte, L—glutamate transporter, ERa, tetrasubstituted ethylene, nongenomzc pathway

L-Glutamate (1-Glu) is one of the major excitatory neuro- E2. Because overexpression of astrocyte 1-Glu transporters is
transmitters in the central nervous system (CNS), but high often associated with neuropsychiatric disorders,* inhibitors of
concentrations of extracellular L-Glu cause excessive stimulation L-Glu transporters may be clinically useful to ameliorate these dis-
of 1-Glu receptors in the CNS, leading to neurotoxicity."” orders.® However, Tam also acts on genomic pathways involving
Astrocyte L-Glu transporters are the only machinery available to nuclear estrogen receptors (nERs) o and 3, depending on the cell
remove L-Glu from extracellular fluid and to maintain a low and type and promoter context,” and so may cause adverse effects
nontoxic concentration of 1-Glu.® Consequently, dysfunction of including endometrial changes, depression and weight gain.'%'!
astrocyte L-Glu transporters is considered to be implicated in Therefore, Tam-inspired compounds that retain the inhibitory
the pathology of neurodegenerative conditions.* Therefore, effect on L-Glu transporters, but lack the nER-mediated genomic
exogenous compounds that can regulate the function of L-Glu effects, would be useful tools for biological research, as well as
transporters may provide chemical tools to investigate the candidate therapeutic agents.
regulatory mechanisms of these transporters at the molecular Tam is a tetrasubstituted triphenylethylene derivative, in
level, and would also be candidate therapeutic agents. which the four substituents on the olefinic carbon atoms are
There is groyving evidence that estrogen receptor (ER) a, different. This structural complexity makes the stereospeciﬁc
which is a nuclear ER (nER) that mediates genomic effects, can synthesis of Tam-related derivatives difficult. We thus focused
also be translocated to plasma membranes and mediate acute on Tam-inspired compounds bearing identical substituents on
nongenomic effects in some cases. We have clarified that 174- at least one of the olefinic carbon atoms."? It is well-known that
estradiol (E2) inhibits 1-Glu transporters via a nongenomic the N,N-dimethylaminoethyl substituent on the phenolic
pathway involving membrane-associated ERar (mERa).” Tamox- oxygen atom and the regiochemistry of the tetrasubstituted
ifen (Tam), a synthetic estrogen analogue that is clinically used in
the treatment of breast cancer to block the proliferative action of Received: September 29, 2011
estrogens, also inhibited astrocyte 1-Glu transporters at picomolar Accepted: November 14, 2011
concentration, probably through the same nongenomic pathway as Published: November 14, 2011
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olefin of Tam are crucial for ER binding activity.13 So, we
considered that more symmetrical derivatives of Tam might
show reduced ER-binding ability.

Among our synthesized compounds, we found two,
compounds 1 (YAKO1) and 3 (YAKO037), with potent L-Glu
transporter-inhibitory activity. Studies of their mechanisms of
action indicated that, unlike Tam, compound 3 acts through an
ER-independent and MAPK-independent, but PI3K-dependent
pathway and shows no transactivation activity for nERs. We
believe this compound may represent a new platform for
developing novel L-Glu transporter inhibitors with higher brain
transfer rates and reduced adverse effects.

B RESULTS AND DISCUSSION

We synthesized several Tam-inspired compounds bearing
identical substituents on one carbon atom of the olefin,’* and
found that two of them were potent inhibitors of astrocyte
L-Glu transporters. The diethyl-substituted derivative 1 inhibited
L-Glu transporters in the picomolar range (62.7 + 7.48% of
control at 1 pM; Figure 2A). The dose—response curve for the
inhibitory activity was not linear, but followed an inverted
U-shaped curve; however, such a non-monotonic dose depend-
ence is rather common for hormones and their mimetics. * On
the other hand, when the symmetrical substituent was changed
from ethyl to benzyl (2), the inhibitory effect was lost (Figure 2B).
However, when the phenolic oxygen atom of 1 was substituted
with a N,N-dimethylaminoethyl group (Figure 1C), we found

\
/“-\_0

HCR

O O

Tamoxifen (Tam)

\:-‘./

O O

c  1(YAKON) [y 2(YAKOS0)
A :"_\,0

B

O oo O
o OO
3 (YAKO037) 4 (YAKO08)

Figure 1. Chemical structures of the newly synthesized tamoxifen-
related compounds.

that the resulting compound 3 showed dose-dependent L-Glu
transporter inhibition in the picomolar range (63.8 + 5.49% of
control at 1 pM; Figure 2C). The dose-dependency of the
effect of 3 suggested that the underlying mechanism might be
different from that in the case of 1. Compound 4 was inactive
(Figure 2D).
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We next examined the effects of 1 and 3 on cell viability by
means of MTT reduction assay and LDH leakage assay, using
the same cultured sample. Neither of the compounds was cyto-
toxic at concentrations below 1 4M (Figure 3), though 100 M
1 and 10 M 3 caused severe cell damage. These results exclude
the possibility that the L-Glu clearance-inhibitory effects of
these compounds at concentrations below 1 yM were caused
by cell damage.

In order to confirm the involvement of L-Glu transporters in
the inhibition of L-Glu uptake by our compounds, and to rule
out the possibility that 1 and 3 act by inducing L-Glu release
from astrocytes, we next examined the effect of 1 and 3 on
L-Glu clearance when the L-Glu transporter activity was blocked
with TBOA, a potent nonselective L-Glu transporter inhibitor
(IC,: 48 uM for GLAST/EAAT]1, 7 uM for GLT1/EAAT2).
We confirmed that application of 1 mM TBOA potently
inhibited 1-Glu transporter activity; that is, TBOA caused
reversible chemical knock-down of 1-Glu transporter activity.”
When either 1 or 3 was coapplied with 1 mM TBOA, these
compounds no longer influenced L-Glu clearance (Figure 4),
indicating that the actions of these compounds are indeed
mediated by L-Glu transporters, and do not involve L-Glu
release from astrocytes.

Our cultured astrocytes predominantly expressed ERa, and
little or no expression of ERS was detected.” Tam is known to
be a partial agonist of ERs,” raising the possibility that the
compounds exerted their inhibitory effects via interaction with
ERa. Therefore, we examined the involvement of ERa by
coapplication of ICI182,780, a high-affinity antagonist of ERs.
ICI182,780 dose-dependently blocked the inhibition of L-Glu
uptake caused by 1 (Figure SA) at 0.01, 0.1, and 1 uM, at which
the effects of Tam were reported to be completely suppressed.”
In contrast, ICI182,780 had no effect on the inhibition by 3
(Figure SB), suggesting that the mechanism of the inhibition by
3 is independent of ERs. We further examined the signal
transduction pathways mediating the effects of 1 and 3. When
coapplied with U0126, which inhibits mitogen-activated protein
kinase/extracellular signal-regulated kinase 1 (MEK1, IC50: 70 nM)
and MEK2 (IC50: 60 nM), the inhibitory effect by 1 was
blocked, whereas that of 3 was not (Figure 6A). On the other
hand, when coapplied with LY294002, a specific phosphoinosi-
tide 3-kinase (PI3K) inhibitor (IC50: 70 nM), the inhibitory
effects of both compounds were completely blocked (Figure 6B).
These results suggest that PI3K is a common mediator of the
effects of both compounds, whereas mitogen-activated protein
kinase (MAPK) is involved only in the mechanism of inhibition
by 1.

Finally we examined the ER-agonist potency of 1 and 3, ie,
the transcriptional effects of these compounds via human ERo
and ERp, using HEK293/hERa and HEK293/hERf reporter
cells (Figure 7). Compound 1 showed agonist activity in both
of 293/hERa and 293/hERp reporter cells, though the binding
affinities were much weaker than that of E2. The ECS50 values
of 1 for ERax and ERf are 30.8 nM and 10.4 nM, respectively
(1.25 nM and 0.864 nM, respectively, for E2). The relative
agonist activity of 1 was 66.8% of that of E2 in HEK293/hERa
and 122.0% of that of E2 in HEK293/hERp. Strikingly, 3
showed no agonist potency for ERx or ERS. These findings
strongly suggest that 3 can inhibit -Glu transporters without
interaction with ERs.

In this study, we examined the potential of Tam-related
compounds to inhibit GLAST/EAAT1 and GLT1/EAAT2,
which are major astrocytic L-Glu transporters in the rat
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forebrain. Although GLT-1 is the main regulator of synaptically
released 1L-Glu in vivo, the predominant subtype changes to
GLAST in cultured astrocytes, possibly owing to the lack of
interaction of astrocytes with neurons.'> We confirmed that
GLAST is the main functional L-Glu transporter in our primary-
cultured astrocytes by Western blotting and pharmacological
experiments (data not shown), in accordance with a previous
report.'® Therefore, the effects of the compounds observed
here can be interpreted as being due to modulation of GLAST
functional activity.

107

There is growing evidence that ERa, which is a nER that
mediates genomic effects, can also be translocated to plasma
membranes and mediate acute nongenomic effects in some
cases. Transfection of CHO cells with nERs was reported to
result in ER expression in both nuclei and membranes.'” ERs
on the plasma membranes of tumor cells were demonstrated to
be structurally similar to nERs.'® Further, mERa activated
metabotropic glutamate receptor S (mGluRS) in striatal neurons
in the CNS.”” In our previous study, we clarified that the
predominant ER subtype in cultured astrocytes was ERe, and
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estrogens (such as E2 and Tam) inhibited L-Glu transporter
activity via the activation of mERa.® We found that the effects
of 1 were blocked by ICI182,780, suggesting an interaction of
1 with ERa. In addition, our pharmacological experiments
showed that activation of both of MAPK and PI3K is necessary
for the 1-Glu transporter-inhibitory activity of 1. There are
many reports indicating that nongenomic effects involving
mERa are mediated via MAPK'™*! and PI3K**** Taken
together, the effects of 1 may be mediated by mER« in a similar
manner to E2 and Tam. E2 was reported to activate MAPK via
both PI3K-dependent and independent pathways in a single
neuron.’® Whether or not the same signaling pathways also
exist in astrocytes is not yet known. It is of interest that other
studies have found that estrogens also inhibit dopamine
transporter (DAT) through the activation of mERa.”>**

On the other hand, the effect of 3 was ER-independent and
MAPK-independent, but PI3K-dependent. Our binding assay
revealed that 1 binds with ERs, but 3 does not. Based on these
results, we propose that the mechanisms of the 1-Glu
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transporter-inhibitory effects of 1 and 3 are different, as
illustrated in Figure 8. The effect of 3 was possibly mediated by
GPR30, a newly found ER, which is suggested to mediate the
rapid nongenomic effects of estrogens.”>*® In the case of
GPR30, ICI182,780 acts as agonist, leading to activation of
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signal transduction pathways in a similar manner to estro-
gens.7'7’28 However, we could not detect any effects of
ICI182,780 alone on L-Glu transporter in our experiments
(data not shown). In addition, Kuo et al. reported that GPR30
in astrocytes is detected not in the cell membranes but in the
smooth endoplasmic reticu]um,29 while the cellular localization
of GPR30 has been still controversially argued. In these
contexts, GPR30 is an unlikely mediator to block the 1-Glu
transporters by the action of 3.

According to Kisanga et al, the concentration of Tam in
serum during conventional treatment for breast cancer (1-20
mg daily) is in the range from 20 to 225 nM.** Because 3 is
more hydrophobic than Tam (the values of clogP for Tam and
3 are 7.56 and 9.70, respectively), it should exhibit greater
permeability into the brain. Although other 1L-Glu transporter
inhibitors, mainly L-Glu/aspartate analogues, are known, few of
them have high brain transfer rates. Therefore, 3 is expected to
be useful for biological research, and is also considered to be a
promising candidate or lead compound for pharmacological
application.

In conclusion, examination of several Tam-inspired com-
pounds led to the discovery of two compounds that inhibited
astrocytic L-Glu transporters at picomolar concentration. The
inhibitory activity of compound 1 was mediated through the
ER-MAPK/PI3K pathway, like that of Tam, though its
transactivation activity was drastically reduced as compared
with E2. In contrast, the inhibitory effect of 3 was manifested
through an ER-independent and MAPK-independent, but
PI3K-dependent pathway, and 3 showed no transactivation
activity. These results suggest that 3 may represent a new
platform for the development of novel L-Glu transporter
inhibitors with higher brain transfer rates and reduced adverse
effects.

B METHODS

Chemistry. General Procedures. All reagents were commercial
products and were used without further purification, unless otherwise
noted. NMR data were recorded on a JEOL-400 or a Bruker Avance
400 NMR spectrometer (400 MHz for "H NMR and 100 MHz for *C
NMR). d-CDCl; was used as a solvent, unless otherwise noted.
Chemical shifts (§) are reported in ppm with respect to internal
tetramethylsilane (§ = 0 ppm) or undeuterated residual solvent (i.e,,
CHCl, (6 = 7.265 ppm)). Coupling constants are given in hertz.
Coupling patterns are indicated as follows: m = multiplet, d = doublet,
s = singlet, br = broad. High-resolution mass spectrometry (HRMS)
was conducted in the electron spray ionization (ESI)-time-of-flight
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Figure 8. Schematic illustration of the proposed mechanisms of the
effects of tamoxifen (a) and compounds 1 (b) and 3 (c).

(TOF) detection mode on a Bruker micrOTOF-05. FAB-MS and
high-resolution FAB-MS were obtained on a JMS700-MSTATION
(JEOL, Japan). Column chromatography was carried out on silica gel
(silica gel 60N (100—210 pm), Kanto Chemicals, Japan). Flash column
chromatography was performed on silica gel H (Merck, Germany).
Analytical thin-layer chromatography (TLC) was performed on
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precoated plates of silica gel HF,s54 (Merck, Germany). All the melting
points were measured with a Yanaco Micro Melting Point apparatus
and are uncorrected. Combustion analyses were carried out in the
microanalysis laboratory of this faculty.

Synthesis of Compounds. Compounds 1 and 2 were synthesized
from 4-hydroxybenzophenone and butyl-3-one or dibenzylacetone by
using TiCl, in the presence of Zn. Introduction of the N,N-
dimethylaminoethyl moiety at the phenolic hydroxyl group of 1 and
2 was carried out by base treatment, followed by addition of 2-
dimethylaminoethyl chloride hydrochloride.

HO,

! TiCly/ Zn
2 (YAKO050)

HO,

& ®

Synthesis of Tamoxifen-Related Compounds. Compound 2
(YAK050). To a suspension of Zn powder (916.6 mg; 6.9 equiv with
respect to 4-hydroxybenzophenone) in dry THF (30 mL) in a 200 mL
three-necked flask, TiCl, (0.61 mL, 2.8 equiv) was added dropwise
under an argon atmosphere at —20 °C (in an ice-salt bath) over 2 min.
The resulting light green-yellow mixture was stirred at —20 °C for
20 min and then the cooling bath was removed. After 20 min, the flask
was immersed in a preheated oil bath at 100 °C and refluxed at 100 °C
with stirring for 2.5 h. To the resulting deep blue mixture was added in
one portion a solution of 4-hydroxybenzophenone (401.3 mg, 2.02
mmol) and dibenzyl ketone (1.273S g, 3 equiv) in 50 mL of dry THF.
The resultant mixture was heated at reflux at 100 °C with stirring for
2 b, then allowed to cool to rt, and poured into 400 mL of 0.5 N
aqueous NaOH solution. The whole was extracted with ethyl acetate
(500 mL). The organic layer was washed with water, dried over
MgSO, and evaporated to give a pale yellow oil (1.5172 g), which was
column-chromatographed (silica gel, acetone/n-hexane (1:7)) to give
365.0 mg (48% yield) of the olefin 2 as a white amorphous solid. Mp:
57—-60 °C. 'H NMR (CDCl,): 6: 7.287~7.079 (m, 17H), 6.760 (d,
2H, J = 8.8 Hz), 4.792 (s, 1H), 3.413 (s, 2H), 3.377 (s, 2H). ®C NMR
(CDCLy): &: 154.1, 143.0, 140.7, 1404, 135.8, 135.4, 130.7, 129.4,
128.8, 128.3, 128.3, 1282, 126.5, 125.9, 115.1, 374, 37.2. HRMS
(ESI™): Caled. for CygHyO ([M — H]™), 375.1754. Found: 375.1744.
Anal. Caled for CygH,,0-02H,0: C, 88.48; H, 6.47; N, 0.00. Found:
C, 88.36; H, 6.63; N, 0.00.

1) NaH

2) Nal,
~ /\/
21y

HO,

SO OT
2 (YAKO050)

|

/N\/\O

HCI

HCI

_—

3 (YAK037)

Compound 3 (YAK037). To a suspension of NaH (60%, 42 mg,
1.05 mmol) in DMF (3 mL) at 0 °C was added a solution of the
phenol 2 (158.2 mg, 0420 mmol) in DMF (3 mL). The reaction
mixture was stirred for 30 min at 0 °C, and then a solution of
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2-dimethylaminoethyl chloride hydrochloride (181.0 mg, 1.256 mmol,
3.0 equiv) and Nal (94.0 mg, 0.627 mmol, 1.5 equiv) in DMF (3 mL)
was added. The reaction mixture was stirred at 50 °C for 30 min, and
then saturated aqueous NH,Cl was added to quench the reaction. The
mixture was extracted with Et,O. The organic layer was washed with
brine, dried over Na,SO, and evaporated to afford a residue, which
was column-chromatographed (ethyl acetate/Et;N = 100/1) to give
the intermediate amine (83.0 mg, 44% yield). The HCI salt of the
resultant amine was prepared by repeated addition of a solution of 2
N HCl in Et,0 to a solution of the amine in ethyl acetate, followed by
evaporation of the organic solvent to give 3.

3: White solid. Mp. 169—170 °C. 'H NMR (CDCL): &: 13.073
(brs, 1H), 7.306—7.195 (m, 13H), 7.102—7.074 (m, 4H), 6.832 (d,
2H, ] = 8.8 Hz), 4481—4.459 (m, 2H), 3.425—3.390 (m, 6H), 2.893
(s, 6H). *C NMR (CDCl,) &: 155.7, 142.8, 140.4, 140.3, 140.2, 136.8,
136.2, 130.9, 129.4, 128.8, 128.7, 128.4, 128.3, 128.3, 126.6, 126.0,
125.9, 114.3, 62.8, 56.5, 43.6, 37.4, 37.2. HRMS (ESI*, [M + H]*):
Caled. for C;,H3,NO, 448.26349. Found: 448.26092. Anal. Calcd for
CyH,,CINO-1/4H,0: C, 78.67; H, 7.12; N, 2.87. Found: C, 78.64; H,
7.30; N, 2.87.

Compound 1 (YAKOT).

HQ,

W

1 (YAKO1)

HO,
: { TiCly/ Zn
O + O —_—
W,

To a suspension of Zn (0.86 g, 13.2 mmol) in 30 mL of dry THF at
—5 °C was added dropwise TiCl, (0.72 mL, 6.6 mmol) under an argon
atmosphere. The mixture was heated at reflux for 2 h. A solution of
4-hydroxybenzophenone (341.1 mg, 1.7 mmol) and 3-pentanone
(0.50 mL, 5.0 mmol) in 50 mL of dry THF was added in one portion,
and heating was continued at reflux for 6 h. Then the reaction mixture
was cooled to rt, quenched with 10% aqueous K,CO; (100 mL) and
extracted with ethyl acetate (3 X 80 mL). The combined organic phase
was washed with brine (50 mL), dried over Na,SO,, and evaporated to
give a residue, which was flash column-chromatographed (3:1 hexane/
ethyl acetate) to afford 1 (383.4 mg, 88.3%) as a white solid.

1: Mp. 76.0-76.5 °C (colorless needles, recrystallized from
n-hexane). 'H NMR (CDCL,) &: 7.261 (2H, t, ] = 8.0 Hz), 7.173
(1H, d, ] = 7.2 Hz), 7.128 (2H, d, ] = 7.6 Hz), 7.009 (2H, d, ] = 8.8
Hz), 6.726 (2H, d, ] = 8.8 Hz), 4763 (1H, s), 2.152 (2H, quartet, ] =
7.6 Hz), 2.115 (2H, quartet, ] = 6.0 Hz), 1.007 (3H, t, ] = 7.6 Hz),
0.994 (3H, t, ] = 7.6 Hz). 3C NMR (CDCl;) &: 153.7, 143.7, 142.0,
136.5, 136.2, 130.5, 129.2, 127.9, 125.9, 114.8, 24.4, 24.3, 13.3. HRMS
(ESI, [M — HJ"): Caled. for CigH,007, 251.14414. Found:
251.14730. HRMS (FAB-MS, [M]*) Calcd. for C,5H,00, 252.1514.
Found: 252.1528. Anal. Calcd. for CygHy0: C, 85.67; H, 7.99; N,
0.00. Found: C, 85.38; H, 8.13; N, 0.00.

Compound 4 (YAKO06).

2-Dimethylaminoethyl chloride hydrochloride (282.4 mg, 2.0 mmol)
and K,CO; (1.5734 g, 11.4 mmol) were stirred in acetone/H,0
(18 mL/2 mL) at 0 °C for 30 min, then compound 1 (139.1 mg,
0.55 mmol) and K,CO, (421.1 mg, 3.1 mmol) were added, and the whole
was heated at reflux for 24 h, then cooled to rt. Inorganic materials
were removed by filtration, and the filtrate was evaporated. The
residue was flash column-chromatographed (100:1 ethyl acetate/
Et;N) to afford the amine as a white solid (88.0 mg). To a solution of
the amine in ethyl acetate, a solution of HCl in ether was added to give
a precipitate, which was collected and recrystallized from ethanol/ethyl
acetate to give 4 (95.0 mg, 48%) as a white powder. 4: Mp. 129.5—
1302 °C. "H NMR (CDCl,) 6 726—6.90 (9H, m), 4.07 (2H, t, ] = 6.0
Hz), 2.75 (2H, t, ] = 6.0 Hz), 2.40 (61, s), 2.15 (4H, d, J = 7.2 Hz),
100 (6H, t, J = 7.2 Hz). HRMS (FAB-MS, [M-CI]*): Calcd. for
CpH;NO*: 324.2322. Found: 324.2321.
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Biology. All procedures using live animals in this study were
conducted in accordance with the guidelines of the National Institute
of Health Sciences, Japan.

Materials. Dulbecco’s modified Eagle’s medium (DMEM) and
fetal bovine serum (FBS) were purchased from GIBCO (CA, USA).
Glutamate dehydrogenase (GLD) was purchased from Roche
(Mannheim, Germany). f-Nicotinamide adenine dinucleotide
(ANAD), 3-(4,5-dimethyl-2-thiazolyl)-2,S-diphenyl-2H-tetrazolium
bromide (MTT), Il-methoxy-S-methylphenazinium methyl sulfate
(MPMS), lactate lithium salt and LY294002 were purchased from
Sigma (MO, USA). pL-threo-f-benzyloxyaspartic acid (TBOA) and
ICI182,780 were purchased from Tocris (MO, USA). U0126 was
purchased from Promega (WI, USA). Assay kits for hormonal effects
on HEK293/hERa and HEK293/hERJ reporter cells were purchased
from Clontech (CA, USA).

Cell Culture. Primary cultures of astrocytes were prepared from the
cerebral cortices of 3-day-old neonates of Wistar rats, as described
previously.® Briefly, dissociated cortical cells were suspended in
modified DMEM containing 30 mM glucose, 2 mM glutamine, 1 mM
pyruvate and 10% FBS, and plated on uncoated 75 cm? flasks at the
density of 600000 cells/cm® A monolayer of type I astrocytes was
obtained 12—14 days after plating. Nonastrocytes such as microglia
were detached from the flasks by shaking and removed by changing
the medium. Astrocytes in the flasks were dissociated by trypsinization,
reseeded on uncoated 96-well microtiter plates at 20 000 cells/ cm?,
and incubated until the cells became confluent (approximately 9—10
days after reseeding). In this culture, >98% of the cells were identified
as type I astrocytes on the basis of positivity for GFAP and flattened,
polygonal appearance.

Measurement of Extracellular 1-Glu Concentration. Extracellular
1-Glu concentration was measured by means of a colorimetric method
according to Abe et al.*> Briefly, S0 yL of culture supernatant was
transferred to each well of a 96-well microtiter plate and mixed with
50 uL of substrate mixture consisting of 20 U/mL GLD, 2.5 mg/mL
B-NAD, 0.25 mg/mL MTT, 100 uM MPMS and 0.1% (v/v) Triton
X-100 in 0.2 M Tris-HCI buffer (pH 8.2). After 10 min incubation at
37 °C, the reaction was stopped by adding 100 uL of solution
containing 50% (v/v) dimethylformamide and 20% (wt/vol) SDS (pH
4.7). In this reaction, MTT (yellow) is converted into MTT formazan
(purple) in proportion to the 1-Glu concentration. The amount of
MTT formazan was determined by measuring the absorbance at 570 nm
(test wavelength) and 655 nm (reference wavelength) with a
microplate reader. The concentration of L-Glu was estimated from a
standard curve, which was constructed in each assay using cell-free
medium containing known concentrations of L-Glu. L-Glu clearance
was shown as the amount of 1-Glu taken up by astrocytes, which was
calculated from the concentration difference in the medium.

Treatment with Test Compounds. 1-Glu was dissolved at 1 mM in
phosphate-buffered saline and diluted to 100 M with the culture
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medium. Compounds 1, 2, 3, and 4 were dissolved at 100, 100, 100,
and 10 mM, respectively, in dimethyl sulfoxide (DMSO) and diluted
to the required final concentrations with the culture medium. The
concentration of DMSO in the medium was controlled to be below
0.1%, because we had already confirmed that 0.19% DMSO has no
effect on L-Glu transport activity or cell viability (data not shown).
Cells were incubated with test compounds for 24 h. TBOA (ICS0 =
48 uM for GLAST, 7 uM for GLT1) was freshly dissolved at 1 mM in
culture medium for each experiment. ICI182,780 (IC50 = 0.29 nM for
ERs), U0126 (ICS0 = 72 nM for MEKI, 58 nM for MEK2), and
LY294002 (IC50 = 1 M for class 1 PI3K, 19 uM for class 2 PI3K)
were dissolved at 1, 5, and 5 mM, respectively, in DMSO, and the
solutions were diluted with culture medium to yield the required final
concentrations. These inhibitors were coapplied with 1 nM test com-
pounds (1—4) for 24 h.

Assay Procedure for Hormonal Effects on HEK293/hERa and
HEK293/hERP Reporter Cells. Human embryo kidney 293 cells
(HEK293) were grown in FBS (+) DMEM in 100 mm dishes. Cells
were subcultured once or twice a week at about 80% confluence. A
solution of 12.4 uL of 2 M calcium ion, 100 ng/well reporter or
negative control vector (pERE-TA-SEAP or pTA-SEAP, Clontech),
50 ng/well expression vector (pcDNA3 ERa or pcDNA3 ERS,
generous gift from Dr. Shige-aki Kato, University of Tokyo, Japan),
and 100 ng/well positive control vector (pSV-f-galactosidase,
Promega) was diluted to a final volume of 10 uL/well. This mixture
was carefully added dropwise to the same volume of HEPES solution
with slow vortexing, and the mixture was incubated at rt for 20 min to
obtain a precipitate. Cells from the exponential growth phase were
seeded (3.0 X 10* cells/ml) into 96-well plates the day before
transfection. The cells were incubated with fresh medium for 1 h, then
1/10 volume of precipitate was added to each well and incubation was
continued for 24 h at 37 °C in an atmosphere of 5% CO, in air. The
medium was replaced with fresh FBS (-) medium and incubation was
continued for a further 24 h. Then the cells were incubated with test
compounds for 24 h at 37 °C in an atmosphere of 5% CO, in air.
SEAP activity (Great EscapeTM SEAP chemiluminescence kit 2.0,
Clontech) and f-galactosidase activity (f-Galactosidase Enzyme Assay
System with Reporter Lysis Buffer, Promega) were measured with a
Spectramax MS microplate reader (Molecular Devices Japan, Tokyo,
Japan). All transfections were performed in triplicate.

Statistical Analysis. Data were obtained from four independent
experiments (averaged values of six wells for each) unless otherwise
noted. Data are expressed as means + SEM of these data. Tests of
homogeneity of variance, normality, and distribution were performed
to ensure that the assumptions required for standard parametric
ANOVA were satisfied. Statistical analysis was performed by one-way
repeated-measures ANOVA with post hoc Tukey’s test for multiple
pairwise comparisons.
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| Efflclent Hepatlc Dlﬁerentlatlon from Human
iPS Gells by Gene Transfer |

 ~ernd Kawabata Mltsuru lnamura, and Hsroyukl Mlzuguch'l |

~ Abstract

Estabhshmcnt of pr otoco!s for thc dlfﬁ,rmnanon of hcpmc cells from human cmbryomc stem (ES) ;md :
induced pluripotent stem (iPS) cells could contribute to regenerative cell therapies-or drug discovery and
development. However, the differentiation cfficiency of endoderm-derived cells, such as hepatic cells, from .
* human ES and iPS cells is“poor becaiise hepatic cells are differentiated via multipl'e'lin'cages including
~ endodermal cells, hepatic progenitor cells, and mature hepatocytes. We show here the protocols for efficient

" “Hepatic differentiation from human ES and iPS cells by adenovirus vector-mediated gene transfcr

- development

1. Introduction

In vertebrate development; the liver is derived from' the primitive
gut tube, which is formed by a flat sheet of cells called the definitive
~ endoderm (1, 2). Afterward, the definitive endoderm is sepalated o
©into the liver-buds and differ ennatcd into hepatoblasts. The hepato- -
- blasts can differentiate into both mature hepatocytes and cholan- . - .
 giocytes. Each step of cell growth and differentiation is tightly =

blast growth factors (FGFs), bone morphogenic ‘protein (BMP),
... -~ hepatocyte growth factor (HGF), and oncostatin M (OSM) arethe
. ‘most essential éxtracellular signaling molecules. At the intracellular -
- level, the liver-enriched transcription factors, i.e., hepatocyte:
" nuclear factors (HNFs), CCAAT enhancer binding protein (C/
- EBP) cvand B, and hematopoietically expressed honieobox (HEX),
‘are required for the hepatic differentiation (4, 5). Among these

' Takahifo Ochiya (éd ) leer Stem Cel/s Methods and Protocols, Methods in Molecular Blology, vol 826 ;
DOI 10, 1007/978 1-61779-468-1_10, © Sprmger Scxence+Busmess Mecha, LLC 2012
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regulated by intra- and extracellular signaling (3). Activin A, fibro- e



16

K. Kawabata et al.

i Stage Il

e ‘ 'Stagel Stagell S
- HimaniPSCs . : Defmmve endoderm S Hepatoblasts N ‘Hepatocytes -
. Sdays - [ ~ 1day N 3-6days - Qdays‘
o i I — -
passage - A .‘passage .- -

» ‘ Transducﬂon wrth Ad- HEX

Activin A Actlva BMP4

bFGF , bFGF FGF4 = . .

differentiation " - . ‘dxfferenhaﬂon 1 differentiation

medium A medium B redium’ B

; F|g 1A strategy for the dm‘erentlatxon of human IPS cells into hepatoblasts and hepatocytes. A schematic representanon :
illustrating the procedure for dszerenttahon of human iPS cells into hepatocytes is shown. : .

- transcription factors, Hex is known to function at the earliest stage
* in hepatic differentiation (6). Targeted deletion of the HEX gene -

" in the mouse results in embryonic lethality and a loss of the fetal -

liver parenchyma (7, 8). The hepatic genes, such as albumin,

-~ HNF4a, and prospero-related homeobox 1 (PROX1), are tran

.~ siently expressed in the definitive endoderm of HEX-null embryos,
‘arid further morphogenesis of the hepatoblasts does not occur (9)
Together, these findings underscore that HEX is essential for the
“definitive endoderm to adopt a hepatic cell fate.

- Here, we show the protocol for the efficient differentiation of
" hepatoblasts from human ES and iPS cells. Our strategy is based on
‘' an imitation of in vivo liver development (Fig. 1). We have found

- that differentiation of hepatoblasts from the human ES and iPS cell- -

* derived definitive endoderms, but not from undifferentiated human

ES and iPS cells,; could be facilitated by adenovirus (Ad) vector:

- mediated transient transduction of a HEX géne (10). Hepatoblasts:
derived from human iPS cells by HEX transduction were able to

' differentiate into functional hepatocytes in vitro. Furthermore, all -

the procedures for culture and differentiation were performed
~“under serum//feeder cell-free’ chemically defined conditions:-Our

protocol based on Ad vector-mediated transmnt transduction under-

- chemically defined conditions would provide a platform for chug
- screening as well as safe regenerative cell therapies..

o 2.‘~Mat‘e‘ria|s S

21 A’Héﬁéﬁrus l ‘The human HEX CDNA (GenBank Accessmn No. BC014336) :
Vectors (Invitrogen, Carlsbad, CA). -

B ,2. Shuttle plasmid pHMEF5 ,(11), V
- 3. Vector plasmid pAdHM41-K7 (12).
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- 22.0ells

23 Medium

and Growth Factors

~ 2. Mitomycin C- inactivated mouse cmbryomc ﬁbroblasts (MEF)' o
- (Hygro-Resistant Strain C57/BL6) (Mllhpoxc ‘Bedford, MA) coo

.-‘ “ .

Human iPS cells (see Note 1)

| “(see Note'1).

“HepG2cells.

1. Defined serum-free medium (hESF9): hESF-GRO medium ~
“(Cell Science & Technology Institute, Sendai, Japan) supple-
~ mented with 10 pg/ml human recombinant insulin, 5 pg/ml

human apotransferrin, 10 pM 2- -mercaptoethanol, 10 uM

~ethanolamine, 10 pM- sodium selenite, oleic acid conjugated
with fatty acid-free bovine albumin, 10 ng/ml bFGF, and
100 ng/ml heparin (all from Sigma, St. Louis, MO).

~Laiinin from the Engelbreth- -Holm-Swarm murine sarcoma

basement membrane (Sigma).

. Twelve-well culture plate (Sumxtom’O’Bakelite, Tokyb) Japan). )

. Laminin-coated tissue culture 12-well plate: Dilute laminin in ~

< PBS for a final dilution of 1:50. Add 1 ml of laminin solution

- “to coat each well of a 12-well plate. Incubate the plates for

324 h at 37°C. Remove laminin solution and wash the well
“with PBS immediately before use.

.Accutase (Invitrogen).

“6. Differéntiation medium A: hESE- C RO mcdlum (Cell Sc1encc | v
- & Technology Institute) supplemented with 10 ug/ml human -

-recombinant insulin, 5 pg/ml human apotransferrin, 10 uM

100

- 11

1s.

- 2-mercaptoethanol, 10 uM ethanolamine, 10 pM sodium selenite,
“ and 0.5 mg/ml fatty acid- frcc bovine albumin (BSA) (Sigma). -

. bEGF (Sigma).
. Activin A (R&D Systems, ancapohs MN) R
- Trypsin-EDTA: 0. 0125% tlypsm 0.01325 mM EDTA

(Invitrogen).

Trypsin‘inhibitor A: lefelennatxon medium A supplemented I
- with 0.1% soybean trypsin inhibitor (Sigma). :
Differentiation medium B: hESF-DIF (Cell Science & -
- Technology Institute) medium supplemented with 10 pg/ml -
-~ human recombinant insulin, 5 pg/ml human apotransferrin,
7710 UM 2-mercaptoethanol, 10 pM ethanolamine, 10 pM
o - sodium selenite, and 0.5 mg/ml fatty acid-free BSA. '
Lo 12 ' ’
13
- 14

FGF4 (R&D Systems). . -

BMP4 (R&D Systems).

Trypsin inhibitor B: Differ entiation medmm B supplementcd
‘with 0.1% soybean trypsin inhibitor (Sigma).

Hepatocyte - cultire: medium (HCM) suPpleméntcd thh‘lf“ "
- SingleQuots (Lonza; Walkersville, MD). :

1

HGF (R&D Systems).
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17.
18,
19.
20.

24, Analysis 1.

S

O "\i}“c\'

©Table1 S
~List of Taqman gene expressmn assaysi ‘

 Gerie Assay ID

Oncostatin M (OSM) (R&D Systems).
Dexamethasone (Sigma).
Type I collagen (Nitta Gelatin, Osaka, ]apan)

Type I collagen-coated 12-well plate (15 ],Lg/cmz) Ddutc typc s
I collagen in PBS for a final dilution of 1:50. Add 1 ml of type

"I collagen solution to coat each well of a 12-well plate. Incubate
‘the plates for 3-24 h at 37°C. Remove type I collagen soludon

1mmcd1atcly before use.

Human fetal (22—’40 weeks old) liver total RNA (Clontech™
Laboratories, Mountain View, CA).

. Human adult (51 years old) liver total RNA (Clontech -

Laboratories).
. RNeasy Plus Mini: klt (Qiagen, Hilden, Germany)

. Superscript VILO ¢cDNA synthesxs kit (Invm ogen)

. Tagman gene expression assays (Applied B1osystems Post‘.cl C
- City, CA): The primer sequences are described in Table 1.

. ABI PRISM 7700 Sequence Detector (Applied Biosystems).
. P450-GloTM CYP3A4 Assay Kit (Promcga Madison, WI).
. Rifampicin (Sigma). .

9. Dimethyl sulfoxide (Sigma)

‘10.

Luminometer (Berthold, Tokyo ]apan)

. 3.Methods

‘ 3.1, Adenoviras Vector -~ 1
. Constriction E

4 "ﬁ " human HEX ¢cDNA was inserted into pHMEF5, which contains
-+ the human-elongation factor-la. (EF- 1oc) plomotcx resulting
o in pHMEF HEX. . v

."Ad vectors were constructed by an improved in vitro ligation

according to the method of Mizuguchi and Kay. (13,:14). The -
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2

The pHMEF-HEX ‘was digested with I-Ceul /PI-Scel and
ligatcd into I-Ceul /PI-Scel-digested pAdHM41-K7, resulting

in pAd-HEX.

. Ad-HEX, which contains the EF- 10!. promoter and a stretch of
 lysine resxdues (K7) peptides in the C-terminal region of the
fiber knob, was generated and purlﬁed

. The vector ‘particle (VP) titer was detcxmmed by usmg a -

o spectrophotomctuc method (15)

3.2.In Vitro Definitive 1.

Prepare human iPS cells, which were mmdtiihéd onMEFona
gelatin-coated 25 cm? flask in human iP$ cell culture medxum e
(see Note 1). '

. Before the initiation of céllul:u differentiation, change the . = .

: medium of humar iPS cells for the deﬁned serum- frec medium
~hESF9.

. Incubate the cells ina humidified atmospherc of 10% CO, and

90% air at 37°C overnight (see Note 2).

. For induction of definitive endoderm, remove the hESF9
medium, add 1.0 ml Accutase per 25-cm? flask, incubate for
'3 min at 37°C, and remove the Accutase (see Note 3).

. Add 10 ml of cold hESF9 medium, resuspend the human iPS

cells into a single cell suspension by pipetting, and centrifuge

at 267 xg for 3 min at 4°C (see Note 4).
. Aspirate the supernatant and resuspend the cells with 10 ml of

cold differentiation medium A and centrifuge them at 267 xg

R for 3 min at 4°C.

. Repeat step 6.

. Aspirate the supcmatant ‘and replace thc mcdmm with warm
freshdifferentiation medium A supplemented with-10 ng/ ml

- bFGF and 50 ng/ml Activin A.

. Transfer to a laminin-coated 12-well plate in a humxdlﬁcd
- atmosphere of 10% CO, and 90% air at 37°C (2.5x10° cells/

* well). The final volume of medium should be 1.0 ml per well
(see Note 5).

Endoderm -
Differentiation -
2
P
4
-5
8
- 10.
33.InVitro R
Hepatoblast S
- Differentiation

Change the differentiation medium ‘A supplemcnted with

10 ng/ml bEGF and 50 ng/ml Activin A every day.

After 5 days of culture, remove the medium, add 200 @l .

. trypsin-EDTA per-well, incubate the cells for 3 min at 37°C,
and remove the trypsin~-EDTA (see Note 6). ‘

. Resuspend the cell populations in 10 ml of cold ‘try'pléin‘ '

- inhibitor A and centrifuge them at 267 x g for 3 min at 4°C.

- 3. Aspi;the the s'upe'rhatant-, resuspend the cells in 10 ml of cold
. differentiation medium B, and centrifuge at 267 xg for 3 min
~at 4°C.
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Fig. 2. Efﬂment hepatoblast differentiation from the human iPS cell- denved defmmve endoderms by transduchon of the'
- HEX gene. Real-time RT-PCR analysis of the level of AFP (a) and ALB (b) expression in nontransduced cells and Ad-HEX- -
transduced cells, both of which were induced from the human iPS cell-derived definitive endoderms (day 0, 5, 6,9, and -
- 12). The cells were transduced with Ad-HEX at day 6 as described in Fig. 1. The data at day 6 were obtained before the -
. transduction with Ad-HEX. The graphs represent the relative gene expression levels when the level in the fetal liver was
- taken as 100.

4. Aspirate the supcmétant and replacé with warm fresh differentiation ,
- medium B supplemented with 10 ng/ml bFGF and 50 ng/ml
Activin A,

5. Transfer the cells to a laminin-coated tissue culture 12-well’
plate (5.0x 105 cells/well) and culture them in a humidified
_atmosphere of 10% CO, and 90% air at 37°C. The final volume
of medium should be 1 0 ml per well (see Note 5).

6. After 24 h of culture, remove the medium, and add warm fresh
- differentiation medium B supplemented with Ad-HEX
(3,000 VP/cell), 10 ng/ml FGF4, and 10 ng/ml BMP4
. (R&D Systems) (see Note 7). The final volume of medium

- should be 500 pl per well.

7. Incubate the cells in a humidified atmosphere of 10% CO, and -
© 90% air at 37°C for 1.5 h.

8. Remove the medium and replace with warm fresh differentia-
‘tion medium B supplemented with 10 ng/ml FGF4 and
10 ng/ml BMP4, and incubate the cells in a humidified
atmosphere of 10% CO, and 90% air at 37°C.

-9. Change the medium every day (see Note 8).

10. After 3 and 6 days of culture in differentiation mediﬁn{ B
~ analyze the cells'by RT-PCR (see Note 9) (Fig. 2).

‘ 3.4, In Vitro Vl-siebéktic: © 1. After 3 days of culture in differentiation medium B, add 200 pl :
" - Maturation ~ +uypsin=EDTA in each well, incubate the cells for 3 min at”
i - 37°C, and remove the trypsin-EDTA.

V ’2.“Resuspend the cell populations in 10 ml of cold trypsin-
inhibitor B and centrifuge them at 267 x g for 3 min at 4°C.
- . (see Note 10). :



