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L8, TORIBREIIHS N TN, I UEFILESE, SIV (HIVREARA2TA
WA) BRI TA XETINCBNTE— Z RN O P RISURZ B 55217 K 5 R R0
T MHRLASZ TUE 2t © 7o B 7R Rt LI R 23R L. #7 & L TRERAIR (DC)
ANOD Fe KA PRTUE-D 1 )V AR T E S ERBCA A L2 PRI RITENED U D
DAtk 2 R Uz, AUFFE T, AR B RZE 2omid & Uz, Wik - et sezic
KM IRTA XA IV AR O E /2 BB OMIT 21T > /2. 1 FHIE NAb H1R
fEREEND DC 2%k CD64 DG 2 RN L. NAb 71 T T CD8 Bt T Ml D% 52r)
CCL4 FEAETTHEZR D/, 2 FHITMEEOHRICK S CD8 BB T il iE #2755 ) vl 5g
TH2ENISHRICE DN THROTRIREONE 2R T 2 &2 REERL, I -
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ERUKRTHEREZA T S nNAb Z SIV EREAMIHICRERET 2ERZMBLZ. &
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nNAb ZEHETHBRE L NV THRR T 1 IV AR Z 5T 512057,
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OHFIFAZ B REIC L DR T MO FETiE
DECBE LB RBRAR I HIE RN ESI NS EE
W TEA L= (PLoS ONE 2:e540, 2007; J Virol
83: 5514-5524, 2009) . AWFEIIZ DREREHE A,
FricE O & U CBHRMI R~ O k- 1 )
ZRIFEERBEAS - FURIERTUED & DR ERD
el E U THRBUR O EE L <)OVBE O
ERMAHZTT 2. E4EMEIL A XA
JVAfiAEN U THROFE) NPT I F
22K D HIV Hl# D4 < # U W EEEE & 752 v Ee
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2, MEEZERAD HUA N AREREEZ N L2 T
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E/-MEM T, BRI Z N LT - %E OEER
R DERINNVE UL BICE OFEME) 8 T ook R
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HERE DB 72 RO TRIBE & 725 Z & MNE R
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WD D, BRI O FUFEIRRAIZ O L HH
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ZIC X0 ZERETURIC R RIEEN /2 <, CD8 Bk
T HIREFFEE IR0 S 2 HURIRR T SIV #E®H#H 15
S5NB0ZFHE L7z,

1. SZEREHROH SIV ik : Yz X5 70
W T4 271k (ZeptoMetrix # Anti-SIVmac251 {&
B % W T SEBUTARAE 2 fE AT L 7z,

2. ADCVI (Hui{k IR E D 1 )L 2 B 5 m )
REDREM : HIVRM M BERER (PBMC) #2172
& —Hifa, YL CD4 B T etk 2 Erfia & 4 %
KRR T 1 )V 2B 8ME (ADCVID) 7 v
A1 ETok. BRENIZBNTHZ A HILARE
{t. CD4 BBt T Mg Td % HSC-F #iZ SIVmac239
Z MOI 0.005 T 6 &=, ETH 1:412TY
VARG )V kD PBMC & &FED SIV &Y
PIVENZTNHEMICHR T 241 SIVARY 7 o—F )b
MAOEE FTHEZEZ 7 ATV, EEFY1L
A 8% Gag BE® ELISA &I THlE L ADCVI 15
HOERETO/.

3. mHYAIVAR P T 1)L A RNA Z2[RA
WL7/7~D5B RT-PCR. nested PCR Zf71), Reed-
Muench #EZHWTEH L 2,

4. ifiH CD4 B3tk T Mifah o A €Y — 5 mEb 3R
FAImBEAZER (PBMC) ORmEPEICED CD3 Bt
CD4 4k T MifafL I+ @ CD95. CD28 DFEH /NS
— &M L7z,

5. CD8 BB T Mifg/s% « Byett o PBMC %, SIV
PURARTF RTHIB L 7ZHER B 1J >/ FFEk (B-LCL)
EAMIENER XA EXEFIE F T 6 FifkER L, HilE
Re B0 IFN- v EEA Z 70 L 7=,

6. AV AEERFIFET R O Mg
VA Env G EESIMITEY (LD ho—o T



ZETITW, EBRIEOHFER ZaHE L7z,

(i B TH ~ D Bl )
LHEMEICBIT 2B ETHAMZEMEEZRHNDE
BRICDWTIE, BT U 7z [ L BEAE T 75T O 4
BA&ER P K OOTHER R A R KGR (55 TR A I S5 A
B (L1 ERER I EE KR ZHREATHD, 2TOD
BYERIT. GEEDIOHYEERECE SN S,
E N RRSERF AT, BRI OB ERET B
SOEEEZT. TOERREGRZOL, EELB
RMMEEBEER SN AL ¥ —I2B T, BER
FERVEDIEIN—INBIOHA RIA 22w >T
&7 U7z,

C. WrFeksR
1. ZEFIEHRSROF SIV Fiikil
B HROHT SIV FUAMGIIEEE 0.5 HER (3
# 1.5 H) Tl TR EINZOWIIH L, SR
T3 2RO 20 o 72, de novo DA I B
TR 5 HATR T—RRICHRE 25380, i
& Env, Gag B AR RAPUAMD ELISA % H W=
EAT DFEFR & —F L/~ (Shi et al & Yamamoto,
submitting) . MBI DOEIL, BKEE 12 WRF R TIE
BHENBL IR T,
2. ADCVI (iR PERE R D 1 )L A L)
HE DRV « A= BRI HiIE D YR EE (0.1~ 1mg/ml) @ nNAb
2k 2@\ ADCVI REZ2fEsE L. ZEhE L= bk
DUPIEERYS T ADCVI FEHAEE NS 5 2 &4
IR E N,
3. M7V AR:
TEREEE (BE% 1. 238) - £y bR1 > M
et 1238) , 1B (Rt 2558) &b, i
PURZ B GBI ST R0, ST RSl
TOAINWABDERZERDIEN >z, BFEFRITKD,
BB OFUARZ B 9517 K 5 non-sterile 73 STV
BEGEIEIZIIEROFIRNLETH D T E0H S5
MERD T,
4. i CD4 B3Pk T M DAY —/3HE b=
CD95 Bt CD28 Btk R IV AEU — (CM) 4

., CD95 BHEEAEY —SFEONTIUIBNTDH
M TEREZRDMN D72 (U-test CM: p=0.52, £
AEY— 1 p=0.75),

5. CDS8 Bk T MIREE « BAK 30 B TO
BRI U 7z k5L, SIV HIEE A0 IFN- v A
SIV ZEHOHEE. BIURL NN TNEBEMT
DERZRDIEMN T,

6. TV A EEFIMEAT IR 1 KO Env
PR LB PN RAT 2 0 U 7245 . nNAb ZEh5 it
TIE V1 EEIC BT DR BEREOEPENTL N
EmERLEHDOD, TOERIIMEBHRELNTEHE
BT o7= (U-test p=0.08),

D. B

SIVmac239 #& &1 « FEPFIFifE (nNAb) DRERE
P D Z B EREIT o 245K, nNAb 2K 5%
BERFOMIEEIRD 5NT, HFRIR I, i
RIZ £ % non-sterile 72 STV il BT 2 HFIRE D 44
BV G S Nz, PRIHURZ B 217 o 72 5elT
FRICBNTIIONER R QT 1 )V A HHIEE
HEANOFENW S HZ SNZN. Z0 25D
TOMEEDNARER TR IN/, ZOHHELT
W PURBGARICHRNTHEINLIMER L2055
R 5L CD4 B TR DR S DIREN AT T
HBHAEEMENEZ 5N, 20 2 SRS (data
not shown) KUty hARA > MIDE FFILAE
U —CD4 B T AT BERE & 258 5 /s
D/l EITHEAMRRERMENTNDEEEZS
Nz,

AHFEORE R, EHHOBRN—ERILLZZDOBED
HIV/SIV fl#lZx 3 2517 1 )V AP RIHRDF 5
WRRERTH D Z 0722 &ITMA, nNAD IZ
KBMEAEL NI TORRBEEADTF G ZHRE L7
DO#RE (Hidajat R, J Virol 2008; Florese RH, J
Immunol 2009; Barouch DH, Nature 2012) AR D#5
RITHP 2D DOICEE SN R EINL, Z
NS5TIECD8BIETHRZ ERE LBROT Y =
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Association of Major Histocompatibility Complex Class I Haplotypes
with Disease Progression after Simian Immunodeficiency Virus
Challenge in Burmese Rhesus Macaques

Takushi Nomura,™® Hiroyuki Yamamoto,* Teiichiro Shiino,* Naofumi Takahashi,*® Taku Nakane,*” Nami Iwamoto,™® Hiroshi Ishii,*®
Tetsuo Tsukamoto,® Miki Kawada,® Saori Matsuoka, Akiko Takeda,® Kazutaka Terahara,® Yasuko Tsunetsugu-Yokota,®

Naoko Iwata-Yoshikawa,? Hideki Hasegawa,® Tetsutaro Sata, Taeko K. Naruse,® Akinori Kimura,® and Tetsuro Matano™®

AIDS Research Center, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan®; The Institute of Medical Science, The University of Tokyo,
Shirokanedai, Minato-ku, Tokyo, Japan®; Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan®; Department of
Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan®; and Department of Molecular Pathogenesis, Medical Research Institute, Tokyo
Medical and Dental University, Kandasurugadai, Chiyoda-ku, Tokyo, Japan®

Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Mul-
tiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the associa-
tion of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of

macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic
MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four
groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques be-
longingto A™ (n=6),E" (1 =6),B™ (n =4),andJ™ (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed
AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A* animals, including two controllers, showed
slower disease progression, whereas J* animals exhibited rapid progression. E* and B* animals showed intermediate plasma
viral loads and survival periods. Gag-specific CD8" T-cell responses were efficiently induced in A* animals, while Nef-specific
CD8* T-cell responses were in A*, E*, and B* animals. Multiple comparisons among these groups revealed significant differ-
ences in survival periods, peripheral CD4" T-cell decline, and SIV-specific CD4* T-cell polyfunctionality in the chronic phase.
This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the

analysis of virus-host immune interaction.

Virus-speciﬁc CD8* cytotoxic T lymphocytes (CTLs) are major
effectors against persistent virus infections (13, 44). In virus-in-
fected cells, viral antigen-derived peptides (epitopes) are bound to
major histocompatibility complex class I (MHC-I) molecules and
presented on the cell surface. Viral peptide-specific CTLs recognize
the peptide-MHC-I complexes by their T-cell receptors. CTL effec-
tors deliver cell death via apoptosis as well as lysis (15, 48).

Human immunodeficiency virus type 1 (HIV-1) infection in-
duces persistent viral replication leading to AIDS progression.
CTL responses play a central role in the suppression of HIV-1
replication (6, 18, 25, 32, 43). Multiple studies on HIV-1-infected
individuals have shown an association of HLA genotypes with
rapid or delayed AIDS progression (14, 23, 27, 51, 54). For in-
stance, HIV-1-infected individuals possessing HLA-B*57 tend to
show a better prognosis with lower viral loads, implicating HLA-
B*57-restricted epitope-specific CTL responses in this viral con-
trol (3, 33, 34). In contrast, the association of HLA-B*35 with
rapid disease progression has been indicated (8).

Nonhuman primate AIDS models are important for the anal-
ysis of AIDS pathogenesis and the evaluation of vaccine efficacy (5,
35,47). Models of simian immunodeficiency virus (SIV) infection
in macaques are widely used currently (12, 22). Indian rhesus
macaques possessing certain MHC-I alleles, such as Mamu-A*01,
Mamu-B*08, and Mamu-B*17, tend to show lower set point
plasma viral loads in SIV infection (30, 36, 37, 59). Regarding
MHC-I alleles, humans have a single polymorphic HLA-A,
HLA-B, and HLA-Clocus per chromosome, whereas MHC-I hap-
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lotypes in macaques have variable numbers of expressed polymor-
phic MHC-Iloci (7,9, 26,41). Thus, the accumulation of multiple
macaque groups, each sharing a different MHC-I haplotype,
would contribute to the precise analysis of SIV infection.

We have been working on the establishment of an AIDS model
using Burmese rhesus macaques sharing MHC-I haplotypes (38, 50).
In the present study, we have focused on SIV infection in four groups
of Burmese rhesus macaques, each consisting of four or more ani-
mals. These groups share MHC-I haplotypes 90-120-Ia (referred to as
A), 90-010-Ie (E), 90-120-Ib (B), and 90-088-1I;j (]), respectively. The
analysis of SIVmac239 infection among these groups revealed differ-
ences in plasma viral loads, peripheral CD4" T cell counts, survival
periods, virus-specific CTL responses, and T-cell polyfunctionality.
Our results indicate the association of MHC-I haplotypes with dis-
ease progression in SIV infection and present a sophisticated model
of SIV infection,
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TABLE 1 MHC-I haplotypes
Confirmed MHC-I allele(s)

MHC-I haplotype =~ Mamu-A Mamu-B

A (90-120-Ia) A1%043:01, A1*065:01  B*061:03, B*068:04, B*089:01

E (90-010-Ie) AI7066:01 B*005:02, B*015:04

B (90-120-Ib) A1%018:08, A2*005:31  B*036:03, B*037:01, B*043:01,
B*162:01

] (90-088-1j) A1*008:01 B*007:02, B*039:01

MATERIALS AND METHODS

Animal experiments. We examined SIV infections in four groups of Bur-
mese rhesus macaques having MHC-I haplotypes 90-120-Ia (A) (n = 6),
90-010-Ie (E) (n = 6), 90-120-Ib (B) (n = 4), and 90-088-Ij () (n = 4).
Macaques R02-007, R06-037, R07-001, R07-004, R07-009, R01-011, RO6-
038, R06-001, R02-004, R04-014, and R06-022, which were used as controls
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in previous experiments (49, 53, 58), were included in the present study. The
determination of MHC-I haplotypes was based on the family study in com-
bination with the reference strand-mediated conformation analysis (RSCA)
of Mamu-A and Mamu-B genes as described previously (31). Briefly, locus-
specific reverse transcription-PCR (RT-PCR) products from total cellular
RNAs were prepared and used to form heteroduplex DNAs with a 5" Cy5-
labeled reference strand (50). The heteroduplex DN As were subjected to a 6%
nondenaturing acrylamide gel electrophoresis to identify the patterns of
MHC-I haplotypes. In addition, although recombination events could not be
ruled out, major Mamu-A and Mamu-B alleles were determined by cloning
the RT-PCR products and sequencing at least 48 clones for each locus from
each subject as described previously (38). Because we used locus-specific
primers in the RT-PCR, which were designed on the basis of known alleles
(31,38), MHC class I alleles harboring mismatches with the primer sequences
or alleles of low expression would not be amplified well, hence there was a
limitation that not all of the MHC class I alleles could be detected in our study.
Confirmed Mamu-A and Mamu-B alleles in MHC-I haplotypes A, E, B, and
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FIG 1 Plasma viral loads after SIVmac239 challenge. Plasma viral loads (SIV gag RNA copies/ml plasma) were determined as described previously (31). The
lower limit of detection is approximately 4 X 10% copies/ml. (A) Changes in plasma viral loads after challenge in A™ (upper left), E* (upper right), B* (lower left),
and J* (lower right) macaques. (B) Changes in geometric means of plasma viral loads after challenge in A™ (black), E* (blue), B* (green), and ] * (red) animals.
(C) Comparison of plasma viral loads at 6 months among four groups. Those of A* animals were significantly lower than those of J* animals (P = 0.0444 by

one-way ANOVA and Tukey-Kramer’s multiple-comparison test).
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] are shown in Table 1 (38). All animals were unvaccinated and challenged
intravenously with 1,000 TCID,, (50% tissue culture infective doses) of SIV-
mac239 (22). At 1 week after challenge, macaques R06-019, R06-038, and
R10-008 were intravenously infused with 300 mg of nonspecific immuno-
globulin G purified from uninfected rhesus macaques (57). Fifteen animals
were euthanized when they showed typical signs of AIDS, such as reduction in
peripheral CD4" T-cell counts, loss of body weight, diarrhea, and general
weakness. Autopsy revealed lymphoatrophy or postpersistent generalized
lymphadenopathy conditions consistent with AIDS (20). All animals were
maintained in accordance with the guidelines for animal experiments at the
National Institute of Biomedical Innovation and National Institute of Infec-
tious Diseases.

Analysis of SIV antigen-specific CD8 * T-cell responses. SIV antigen-
specific CD8" T-cell responses were measured by the flow-cytometric
analysis of gamma interferon (IFN-vy) induction as described previously
(17). Peripheral blood mononuclear cells (PBMCs) were cocultured with
autologous herpesvirus papioimmortalized B-lymphoblastoid cell lines
(B-LCLs) pulsed with peptide pools using panels of overlapping peptides
spanning the entire SIVmac239 Gag, Pol, Vif, Vpx, Vpr, Tat, Rev, Env, and
Nef amino acid sequences. Intracellular IFN-vy staining was performed
using a Cytofix Cytoperm kit (BD, Tokyo, Japan). Fluorescein isothiocya-
nate-conjugated anti-human CD4 (BD), peridinin chlorophyll protein
(PerCP)-conjugated anti-human CD8 (BD), allophycocyanin Cy7 (APC-
Cy7)-conjugated anti-human CD3 (BD), and phycoerythrin (PE)-conju-
gated anti-human IFN-vy antibodies (Biolegend, San Diego, CA) were
used. Specific T-cell levels were calculated by subtracting nonspecific
IEN-y™ T-cell frequencies from those after peptide-specific stimulation.
Specific T-cell levels of less than 100 cells per million PBMCs were con-
sidered negative. Using PBMCs obtained from four SIV-infected ma-
caques, we compared antigen-specific CD8* T-cell frequencies measured
by this method (using peptide-pulsed B-LCLs) to those measured by the
flow-cytometric analysis of IFN-y induction after a pulse of PBMCs with
peptides (without using B-LCLs). The levels of the former tended to be
slightly higher than those of the latter. Specific CD8" T-cell responses,
which were shown to be 100 to 200 cells per million PBMCs by the former
method using B-LCLs, were undetectable by the latter method.

Sequencing analysis of plasma viral genomes. Viral RNAs were ex-
tracted using the High Pure Viral RNA kit (Roche Diagnostics, Tokyo,
Japan) from macaque plasma obtained around 1 year after challenge.
Fragments of cDNAs encoding STVmac239 Gag, Pol, Vif, Vpx, Vpr, Tat,
Rev, and Nef were amplified by nested RT-PCR from plasma RNAs and
subjected to direct sequencing by using dye terminator chemistry and an
automated DNA sequencer (Applied Biosystems, Tokyo, Japan) as de-
scribed before (19). Predominant nonsynonymous mutations were deter-
mined. The Env-coding region, which is known to have multiple anti-
body-related mutations, was not included for the analysis.

Analysis of SIV-specific polyfunctional T-cell responses. To analyze
polyfunctionality in SIV-specific T-cell responses, we examined the SIV-
specific induction of IFN-y, tumor necrosis factor alpha (TNF-a), inter-
leukin-2 (IL-2), macrophage inflammatory protein 1B (MIP-1B), and
CDI107a in CD4" and CD8™ T cells as described previously (58), with
some modifications. Around 8 months after challenge, PBMCs were
cocultured with B-LCLs infected with vesicular stomatitis virus G protein-
pseudotyped SIVGPI for the SIV-specific stimulation or mock-infected
B-LCLs for nonspecific stimulation. The pseudotyped virus was obtained
by the cotransfection of 293T cells with a vesicular stomatitis virus G
protein expression plasmid and an env and nef deletion-containing simi-
an-human immunodeficiency virus molecular clone (SIVGP1) DNA that
has the genes encoding SIVmac239 Gag, Pol, Vif, Vpx, and a part of Vpr
(31,46). Immunostaining was performed using a Fix & Perm fixation and
permeabilization kit (Invitrogen, Tokyo, Japan) and the following mono-
clonal antibodies: APC-Cy7-conjugated anti-human CD3 (BD), PE-
Texas red-conjugated anti-human CD4 (Invitrogen), Alexa Fluor 700-
conjugated anti-human CD8 (BD), PE-Cy7-conjugated anti-human
IFN-+ (eBioscience, San Diego, CA), Pacific blue-conjugated anti-human
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TABLE 2 List of macaques in this study

Disease Euthanasia time

MHC-I haplotype Macaque progression point (mo)
A R02-007 AIDS 42
A R06-037 No 49
A R0O7-001 No 49
A RO7-004 AIDS 40
A R0O7-009 AIDS 17
A R06-019 AIDS 43
E RO1-011 AIDS 24
E R0O5-007 AIDS ad
E R08-003 Under observation

(24 months)
E RO8-007 AIDS 20
E R09-011 AIDS 12
E R06-038 AIDS 22
B RO6-001 AIDS 34
B R0O6-039 AIDS 13
B R10-005 Under observation

(12 months)
B R10-008 Under observation

(12 months)
] R02-004 AIDS 37
J R04-014 AIDS 9
] R0O6-022 AIDS 5
] R10-001 AIDS 9

TNF-a (Biolegend), PerCP-Cy5.5-conjugated anti-human IL-2 (Bioleg-
end), PE-conjugated anti-human MIP-1B (BD), and Alexa Fluor 647-
conjugated anti-human CD107a (Biolegend). Dead cells were stained us-
ing Live/Dead Fixable Dead Cell Stain kit (Invitrogen). Analysis was
carried out using PESTLE (version 1.6.1) and SPICE (version 5.2) pro-
grams as described previously (42). The polyfunctionality (polyfunctional
value) was shown as mean numbers of induced factors among the five
(IFN-vy, TNF-a, IL-2, MIP-1, and CD107a) per SIV-specific T cell.

Statistical analysis. Statistical analyses were performed using R soft-
ware (R Development Core Team). Comparisons were performed by one-
way analysis of variance (ANOVA) and Tukey-Kramer's multiple com-
parison test with significance levels set at P < 0.05. Correlation was
analyzed by the Pearson test.

RESULTS

SIV infection in Burmese rhesus macaques. We accumulated
four groups of unvaccinated, SIVmac239-infected Burmese rhe-
sus macaques, groups A" (1 = 6), E* (n=6),B" (n=4),and]"
(n = 4), sharing MHC-I haplotypes A (90-120-Ia), E (90-010-Ie),
B (90-120-1b), and ] (90-088-1j), respectively, to compare SIV in-
fections among these groups (Table 1). Out of these 20 animals, 18
showed persistent viremia (geometric mean plasma viral loads at 6
months of 1.6 X 10° copies/ml), while in the remaining two (A"
macaques R06-037 and R07-001), plasma viral loads became less
than 10° copies/ml or were undetectable at the set point (Fig. 1A).
The former 18 animals are referred to as noncontrollers and the
latter two as controllers in this study. Fifteen noncontrollers were
euthanized with AIDS progression in 4 years (geometric mean
survival period of 24 months), and the remaining three, after 1 or
2 years, are under observation (Table 2).

Group A™ macaques, including two controllers, showed lower
set point viral loads, whereas group ]* macaques had higher viral
loads (Fig. 1B). Viral loads in group E* and B* macaques were at
intermediate levels. Multiple comparisons indicated significant
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FIG 2 Relative CD4™ T-cell counts after STVmac239 challenge. (A) Relative CD4™ T-cell counts after challenge in A* (upperleft), E* (upperright), B* (lower left), and
J* (lower right) macaques. For each animal, the peripheral CD4 counts relative to that at challenge (set at 100) are shown. (B) Changes in means of relative CD4" T-cell
counts after challengein A" (black), E* (blue), B* (green), and J* (red) animals. (C) Comparison of relative CD4 " T-cell counts at 6 months among four groups. Those
in J* animals were significantly lower than those in A™ (P = 0.0090 by one-way ANOVA and Tukey-Kramer’s multiple-comparison test).

differences in set point plasma viral loads between groups A™ and
J* (Fig. 1C).

Most noncontrollers showed a decline in peripheral CD4™ T-
cell counts (Fig. 2A). Relative CD4™ T-cell counts in the chronic
phase were the highest in group A* animals and the lowest in
group J* animals. Multiple-comparison tests revealed significant
differences in relative CD4" T-cell counts at 6 months between
groups A™ and J* (Fig. 2B and C). Furthermore, multiple com-
parisons among groups A*, E*, and ] found significant differ-
ences in survival periods, which were the longest in A and the
shortest in J* animals (Table 2 and Fig. 3). These results indicate
an association of MHC-I haplotypes with AIDS progression after
SIV challenge in Burmese rhesus macaques.

SIV antigen-specific CD8" T-cell responses. We analyzed
SIV-specific CD8* T-cell responses at 3 months and 1 year after
SIV challenge by the detection of antigen-specific IFN-vy induc-
tion to examine which antigen-specific CD8" T-cell responses
were induced predominantly (Table 3). Analysis revealed the pre-

6484 jviasm.org

dominant induction of Gag-specific and Nef-specific CD8* T-cell
responses in group A" animals and Nef-specific CD8" T-cell re-
sponses in groups E* and B*. Vif-specific CD8 " T-cell responses
were detected in three J* animals but not macaque R06-022,
which rapidly developed AIDS in 5 months without detectable
SIV-specific CD8™ T-cell responses.

There was no significant difference in whole SIV antigen-spe-
cific CD8™ T-cell responses among these four groups, although
those responses were marginal or undetectable in two of four J*
animals (Fig. 4A). However, Gag-specific CD8 " T-cell frequencies
at 3 months were significantly higher in A* animals (Fig. 4B). The
analysis of four groups revealed inverse correlations between Gag-
specific CD8" T-cell frequencies and plasma viral loads at 3
months (P = 0.0087; r* = 0.3407; data not shown). Three groups
of A*, E*, and B* animals tended to show higher Nef-specific
CD8" T-cell responses than J© animals (Fig. 4C).

Viral genome mutations. We then analyzed mutations in viral
¢DNAs amplified from plasma RNAs of group A*, E*, and B*
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FIG 3 Kaplan-Meyer survival curves after SIVmac239 challenge in A¥, E¥,
and J* macaques. Macaque R08-003, which is under observation, is not in-
cluded. B* animals were excluded from this analysis because data on only two
animals were available. We determined the Kaplan-Meyer estimate of the sur-
vival function of each group and then compared the three curves using the
log-rank test (Mantel-Cox test). Analysis showed significant differences in
survival curves (chi square, 9.9; P = 0.007 by log-rank test of Kaplan-Meyer
estimates).

TABLE 3 SIV antigen-specific CD8 T-cell responses®

MHC-l Haplotypes and SIV Infection

macaques around 1 year after SIV challenge. Nonsynonymous
mutations detected predominantly were as shown in Fig. 5. Mul-
tiple comparisons among groups A", E*, and B (Fig. 6) showed
no differences in total numbers of nonsynonymous mutations but
revealed significantly higher numbers of gag mutations in A* an-
imals. E™ animals had higher numbers of tat mutations than A™
animals. There was no significant difference in the numbers of
mutations in other regions, including nef, among these groups.
Group J* animals were not included in the multiple comparisons,
because three of them were euthanized by 9 months. These three
had lower numbers of nonsynonymous mutations before their
death, possibly reflecting lower immune pressure.
Polyfunctionality in SIV-specific T-cell responses. Finally, we
investigated T-cell polyfunctionality to compare T-cell functions
(2, 4, 45) in these four groups having different viral loads. We
analyzed the polyfunctionality of SIV-specific CD4" and CD8* T
cells around 8 months after challenge by the detection of SIV-
specific induction of IFN-vy, TNF-a, IL-2, MIP-1B, and CD107a.
SIV-specific CD4™ T-cell polyfunctionality inversely correlated
with plasma viral loads at around 9 months (Fig. 7A). We also
found an inverse correlation between SIV-specific CD8" T-cell
polyfunctionality and viral loads (Fig. 7A). However, there was no

CD8™" T-cell response to:
MHC-I haplotype and time

point after challenge Macaque Gag Pol Vif Vpx Vpr Tat Rev Env Nef

3mo
A R02-007 ND ND ND ND ND ND ND ND ND
A R06-037 657 — 104 — —_ — — — 520
A RO7-001 193 —_ —_ = - — —_ —_ 322
A RO7-004 ile — 137 — — — — — 353
A R0O7-009 440 —_ 124 — —_ — — 100 247
A R06-019 322 — — e — — — — 253
E RO1-011 — — 186 —_ —_ —_ —_ —_ —
E R05-007 — — — — — 203 — — 330
E RO8-003 — — — — — — - — 213
E RO8-007 — — — — — — 335 —
E R09-011 —_ —_ 807 — 307 —_ —_ 1,598 2,327
E RO6-038 199 — 248 — — 249 — 234 634
B R06-001 — 107 253 172 — — — 114 313
B R06-039 — — — —_— — —_ — 110 195
B R10-005 163 172 —_ 1,033 141 — 579 — 1,554
B R10-008 — — — 133 — — 165 — —
] RO2-004 — — 171 —_ —_ 145 _— 382 117
] R04-014 — 534 625 280 440 290 1,060 = 296
] RO6-022 Lo = . - s = — e =
] R10-001 = — 102 — —= = . — =

lyr
A R02-007 —_ —_ 119 — — — — 112 250
A RO6-037 515 — 124 272 178 — — — 906
A R07-001 126 — — — — — — — 180
A RO7-004 — — — — — — — — 150
A RO7-009 254 120 173 —_ 112 — —_ 215 166
A RO6-019 444 155 284 — 188 — — 174 583
E RO1-011 160 — — — - — — — 228
E R05-007 — — — — — — — — —
E R08-003 — — — — — — — — 537
E R08-007 — — — — — — — — 199
E R09-011 — 159 — — — — 150 259 102
E R06-038 298 174 611 — — 406 387 1,052 1,982
B R0O6-001 — — — - — — — 127 140
B RO6-039 —_ —_ —_ —_ —_— 151 — — —
B R10-005 185 = = — — = = — —
B R10-008 109 232 = = 325 = 296
] R02-004 158 B o = e = i = e
] R04-014” 114 141 178 — — 360 288 _ 142
] R10-001" - — - — - - — — —

* Responses were measured by the detection of antigen-specific IFN-y induction. Macaque R06-022, euthanized at 5 months, is not included in the lower portion. Antigen-specific
CD8* T-cell frequencies (per 1 million PBMCs) are shown. ND, not determined; —, undetectable (<100).

? At 9 months (before euthanasia).
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FIG 4 Comparison of SIV antigen-specific CD8™ T-cell responses. Responses were measured by the detection of antigen-specific IFN-vy induction using PBMCs
at 3 months (3 M; left) and at 1 year (1Y; right). (A) Whole SIV antigen-specific CD8™ T-cell frequencies. The sum of Gag-, Pol-, Vif-, Vpx-, Vpr-, Tat-, Rev-,
Env-, and Nef-specific CD8" T-cell frequencies in each animal is shown. (B) Gag-specific CD8"* T-cell frequencies. The frequencies at 3 months in A animals
weressignificantly higher (A" and E¥, P <0.0001; A" and B*, P = 0.0003; A* and ] *, P < 0.0001 by one-way ANOVA and Tukey-Kramer’s multiple-comparison

test). (C) Nef-specific CD8™ T-cell frequencies.

correlation between viral loads and total SIV-specific CD4™ T-cell
or CD8" T-cell frequencies (Fig. 7B). Polyfunctional T-cell re-
sponses tended to be higher in group A™ and lower in group J*.
Multiple comparisons revealed significant differences in SIV-spe-
cific CD4™ T-cell polyfunctionality with the highest in group A*
and the lowest in group J* (Fig. 7C). These results may reflect
difference in disease progression among these animals.

DISCUSSION

This study describes STVmac239 infection in 20 Burmese rhesus
macaques. Geometric means of set point plasma viral loads were
approximately 10° copies/ml. The levels are considered lower than
those usually observed in the widely used SIVmac239 infection
model of Indian rhesus macaques (28, 55) but are higher than
those typically observed in untreated humans infected with
HIV-1. While two A* animals controlled SIV replication, the re-
maining 18 Burmese rhesus macaques failed to control viremia.
Indeed, all of the animals in the three groups E*, B, and J*
showed persistent viremia. Those noncontrollers, including four
A™ animals, developed AIDS in 0.5 to 4 years. These results indi-
cate that the SIVmac239 infection of Burmese rhesus macaques
does serve as an AIDS model.

6486 jviasm.org

In the present study, we compared SIVmac239 infections
among four groups sharing MHC-I haplotypes A, E, B, and J,
respectively. These animals showed differences in plasma viral
loads, peripheral CD4 ™" T-cell counts, survival periods, patterns of
viral antigen-specific CD8 " T-cell responses, polyfunctionality of
SIV-specific T-cell responses, and numbers of viral genome mu-
tations. These results indicate the association of MHC-I haplo-
types with AIDS progression. There has been a number of reports
describing SIV infections in macaques sharing a single or a couple
of MHC-I alleles, but few studies have examined SIV infection in
macaques sharing an MHC-I haplotype (10, 11, 40). SIV infection
induces multiple epitope-specific CD8" T-cell responses, and
CD8* T-cell responses specific for some MHC-I-restricted
epitopes can be affected by those specific for other MHC-I-re-
stricted epitopes due to CTL immunodominance (16, 29, 52).
Thus, the preparation of macaque groups sharing MHC-I geno-
types at the haplotype level, as described in the present study,
would contribute to the precise analysis of SIV infection. The es-
tablishment of groups sharing both MHC-I haplotypes (56) may
be ideal, but the accumulation of macaque groups sharing even
one MHC-I haplotype could lead to the constitution of a more
sophisticated primate AIDS model.
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FIG 5 Predominant nonsynonymous mutations in viral cDNAs around 1 year after SIVmac239 challenge. Amino acid substitutions in SIV Gag, Pol, Vif, Vpx,
Vpr, Tat, Rev, and Nefare shown. In three animals, R04-014, R06-022, and R10-001 in group J *, data on the samples obtained before their death at 5 or 9 months
after challenge are shown. Asterisks indicate the residues where different mutations were detected. It is known that amino acid substitutions at the Pol residues
413 and 821 and the Rev residue 40 are frequently observed in SIVmac239 infection and contribute to higher viral fitness in vivo (1, 39).

Various MHC-I alleles that do not consist of the first MHC-I
haplotypes (Ain A*, Ein E*, Bin B*, and J in J* animals) were
detected as shown in Table 4. Two A" macaques, R02-007 and

B*007:02, of MHC-I haplotype ], although their second MHC-I
haplotype was not determined as J on the basis of information on
the family tree. Even when these two animals were excluded from

R07-004, had two major alleles, Mamu-A1*008:01 and Mamu- the A group, multiple-comparison analyses showed significant
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FIG 6 Comparison of the numbers of predominant nonsynonymous mutations in viral cDNAs around 1 year after SIVmac239 challenge among A*, E¥, and
B™ macaques.J* animals were excluded from this analysis because three of them were euthanized by 1 year. The first graph (total) shows the sum of the numbers
of amino acid substitutions in SIV Gag, Pol, Vif, Vpx, Vpr, Tat, Rev, and Nef. Gag, Tat, and Nef graphs show the numbers of Gag, Tat, and Nef amino acid
substitutions, respectively. The numbers of Gag amino acid substitutions in A* animals were significantly higher than those in E* and B* animals (A* and E¥,
P =0.0037; A" and B, P = 0.0069 by one-way ANOVA and Tukey-Kramer’s multiple-comparison test). The numbers of Tat amino acid substitutions in E~
animals were significantly higher than those in A™ animals (P = 0.0140).

June 2012 Volume 86 MNumber 12 jviasm.org 6487

dny wouy papeojumoq]

17l

‘WUSE’IA

Sv3SId SNOILO34NI 40 LSNITLWYN Aq Z1L0Z ‘.1 48qojoQ uo /610



Nomura et al.

A 4 p=0.0101
g r2 = 0.4105
=
[
>
T
=
i=]
B
=
=
=
g
3
L&}
1
8
Plasma viral loads at 9M (log)
B 20
3
P ;g- 15
2w °
9% 10
i °
o o0
E'-g 0.5 95060
o [=]
7] o o & 10
0'0 Ll I 1 T T 1

3 4 5 6 7 8
Plasma viral loads at 9M (log)

Cc -
4=
v
-]
=
[
°
i
E .
3 M-
g o] o a
g .
[ ]
-
3 ° Lo
L |
| DESECCESC T A [, |
A E B

8
2
g
=
=1
k=]
]
E
=
2
(=]
(=]
(&)
2.04
@ =]
ey 1.5+
Bg..] ° %
g2l o @&
g = =] ° [=]
35 0.59
= ) o
w ]
o o
00 T T T T T 1
3 4 5 6 7 8
Plasma viral loads at 8M (log)
4+
;é’ o
g ool
= 34 .. °
§ ° (Y
.§ _..l. [ ]
24
% e °
a
a
9 3
T T L T
A E B i

FIG 7 Polyfunctionality in SIV-specific CD4" and CD8™ T cells around 8 months after SIVmac239 challenge. Samples of macaques R02-007 (A*), RO1-011
(E*), R10-005 (B*), R10-008 (B*), and R10-001 (J*) were unavailable. (A) Correlation analysis of plasma viral loads at 9 months with polyfunctionality
(polyfunctional values) of SIV-specific CD4™ (left) and CD8™* (right) T cells. Viral loads inversely correlated with SIV-specific CD4* (P =0.0101; #* = 0.4105)
and CD8™ (P =0.0002; * = 0.6731) T-cell polyfunctionality. (B) Correlation analysis of plasma viral loads at 9 months with SIV-specific CD4" (left) and CD8*
(right) T-cell frequencies (frequencies of CD4™ and CD8™ T cells showing the SIV-specific induction of induction of IFN-y, TNF-e, IL-2, MIP-1pB, or CD107a).
(C) SIV-specific CD4™ (left) and CD8™ (right) T-cell polyfunctionality in A* (n =5), E* (n =5), B (n = 2),and J* (n = 3) macaques. Multiple comparisons
among AT, E*, and J* animals (excluding the B* group with available data on only two animals) revealed significant difference in SIV-specific CD4 ¥ T-cell
polyfunctionality (A* and J*, P = 0.0195 by one-way ANOVA and Tukey-Kramer’s multiple-comparison test).

differences in plasma viral loads, peripheral CD4* T-cell counts,
survival periods, Gag-specific CD8 " T-cell responses, and num-
bers of viral gag mutations. These two A" animals were noncon-
trollers, supporting the notion that CTL responses specific for
Mamu-A1*008:01- or Mamu-B*007:02-restricted epitopes are
not efficient or effective. In addition, several MHC-I alleles were
shared in two or three animals, but the influence of these alleles on
disease progression remains unclear.

In the group A* animals that showed lower viral loads and slower
disease progression, Gag-specific CD8™ T-cell responses were effi-
ciently induced, and their frequencies were significantly higher than
those in the other three groups. Furthermore, these A™ animals had
higher numbers of nonsynonymous gag mutations, possibly reflect-
ing strong selective pressure by Gag-specific CD8 " T-cell responses.
Previously, CD8 " T-cell responses specific for the Gag,gq 516 (IINEE-
AADWDL) epitope restricted by MHC-I haplotype A-derived
Mamu-A1*043:01 and the Gag,y, 549 (SSVDEQIQW) epitope re-
stricted by A-derived Mamu-A1*065:01 have been shown to exert
strong suppressive pressure on SIV replication (19, 21). In the present
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study, most A™ animals selected escape mutations from these CD8™
T-cell responses, Gagl.216S (a mutation leading to a leucine [L]-to-
serine [S] substitution at the 216th amino acid in Gag) and
GagD244E (aspartic acid [D]-to-glutamic acid [E] substitution at the
244th amino acid) or 1247L (isoleucine [I]-to-L substitution at the
247th amino acid). These results are consistent with recent findings
suggesting the potential of Gag-specific CD8" T-cell responses to
efficiently suppress HIV-1/SIV replication (24).

In SIV-infected A" animals, predominantly Nef-specific as well as
Gag-specific CD8 " T-cell responses were elicited. At 3 months post-
challenge, all of the A" animals showed relatively similar levels of total
antigen-specific, Gag-specific, and Nef-specific CD8" T-cell re-
sponses, and their deviations appeared to be less than those in the
other three groups. This may reflect the diminished influence of the
second MHC-I haplotypes in these A* animals in the early phase of
SIV infection, i.e., CD8" T-cell responses specific for epitopes re-
stricted by MHC-I molecules derived from the second haplotypes
may be suppressed by dominant CD8" T-cell responses specific for
A-derived MHC-I-restricted epitopes.
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TABLE 4 Alleles in the second MHC-I haplotypes in macaques®

Group Macaque Allele(s)

At R02-007 AI*008:01, B*007:02

A* R06-037 AI%052:01, A2*005:13, B*089:02/03"

AT R07-001 A1*032:02, B*066:01

A* RO7-004 AI*008:01, B*007:02, B*039:01

A* R07-009 ND¢

At R06-019 AI%032:02, A2*005:02, B*106:01, B*124:01

E* RO1-011 AI*004:01, B*004:01, B*060:03, B*102:01

E* R05-007 A1%032:03, B*042:01, B*066:01, B*089:01

E" R08-003 B*074:02, B*101:01

E* RO8-007 A2%005:10, B*054:02, B*061:04, B*063:02,
B*124:01

E* R09-011 A1*041:02, B*061:02, B*068:04/05¢

EF R0O6-038 Al1*004:01, A-new,” B*001:01, B*007:02/
03, B*017:03

B* RO6-001 A1*008:01

B* R06-039 Al*032:02, B*004:01, B*033:01, B*066:01,
B*102:01

B* R10-005 AI*003:01, B*019:01

B* R10-008 B*026:02, B*045:07, B*051:06

| i R02-004 ND/

g R04-014 A4%014:03, B*071:01

o3 R06-022 A5*030:06, B*102:01

7" R10-001 A1%004:01, B*026:02, B*043:01, B*073:01

“ Detected alleles not included in the first MHC-1 haplotypes (A in A*, Ein E*, Bin
B™,orJin]* animals) are shown.

¥ The Mamu-B allele has sequences identical to B*089:02 and B*089:03 in exons 2 and 3.
¢ MHC-1 alleles other than those consisting of the MHC-1 haplotype A were not
detected.

“The Mamu-B allele has sequences identical to B*068:04 and B*068:05 in exons 2 and 3.
“ New Mamu-A allele 96% similar to A1*018:03 by sequence homology in exons 2

and 3.

£ MHC-1 alleles other than those consisting of the MHC-1 haplotype ] were not
detected.

Nef-specific CD8™ T-cell responses were induced efficiently at
3 months or 1 year postchallenge in groups A*, E*, and B* but
notin most]* animals, which showed higher viral loads and rapid
disease progression. The former three groups had relatively higher
numbers of nonsynonymous nef mutations, which correlated
with Nef-specific CD8" T-cell responses at 1 year (P = 0.0063;
* = 0.4765; data not shown). Thus, these Nef-specific CD8" T-
cell responses, whose suppressive pressure might be less than that
of Gag-specific ones, may play roles in the suppression of SIV
replication, while we have not determined Nef epitopes for those
CD8™ T-cell responses exerting strong suppressive pressure. No
nef mutations common to each group were detected, which sug-
gests multiple Nef epitope-specific CD8" T-cell responses. Re-
garding the Nef-specific CD8™ T-cell responses in SIV-infected
E* animals, some Nef epitopes are speculated to be restricted by
E-derived MHC-I molecules. Our results, however, indicate that
primary SIV infection induces no predominant CD8" T-cell re-
sponses specific for Gag epitopes restricted by E-derived MHC-I
molecules in the early phase. In J* animals, we found no predom-
inant CD8* T-cell responses specific for J-derived, MHC-I-re-
stricted epitopes in the early phase of SIV infection.

This study indicates differences in the patterns of CTL immu-
nodominance among these groups. Gag-specific CD8" T-cell re-
sponses were induced in group A", showing slower disease pro-
gression, and Nef-specific CTL responses were induced in those
animals other than group ] animals, which showed rapid disease
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progression. These results can be reasonably explained by the dif-
ferences in MHC-I haplotypes, although it is difficult to com-
pletely rule out the possibility of disease progression associating
with other genes located around the MHC-I locus. In our previous
study (21), the challenge of A* macaques with a mutant SIV-
mac239 carrying GagL216S and GagD244E mutations showed
higher set point viral loads, indicating that these A-derived, MHC-
[-restricted, Gag,g.216 and Gagy,_o40 epitope-specific CD8™ T-
cell responses are responsible for lower viral loads in group A*
animals.

Our analysis revealed differences in the target antigens for pre-
dominant CD8" T-cell responses but not in the magnitudes of
SIV-specific CD8* T-cell responses among four groups. However,
we found differences in polyfunctional SIV-specific CD4™" T-cell
responses in the chronic phase. Remarkably, plasma viral loads
inversely correlated with the polyfunctionality of SIV-specific
CD8™ T cells as well as CD4™ T cells. These results suggest stron-
ger polyfunctional T cell responses in animals with lower viral
loads, which, conversely, could contribute to the sustained sup-
pression of viral replication in the chronic phase.

In summary, we examined SIVmac239 infection in four groups
of Burmese rhesus macaques, with each group sharing different
MHC-I haplotypes. Our results indicate the association of MHC-I
haplotypes with disease progression. This study presents a robust
AIDS model of SIV infection facilitating the analysis of virus-host
immune interaction.
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