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Current human immunodeficiency virus type 1 pandemic is believed to originate from cross-
species transmission of simian immunodeficiency virus (SIV) into human population. Such
cross-species transmission, however, is not efficient in general, because viral replication is
modulated by host cell factors, with the species-specificity of these factors affecting viral
tropism. An understanding of those host cell factors that affect viral replication contributes
to elucidation of the mechanism for determination of viral tropism. This review will focus an
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INTRODUCTION

There is significant evidence that the ongoing worldwide acquired
immunodeficiency syndrome (AIDS) epidemic was caused by
cross-species transmission of simian immunodeficiency viruses
(SIVs) into the human population. Replication of primate
lentiviruses in their natural hosts is generally non-pathogenic;
however, cross-species transmission of these viruses can result
in highly pathogenic phenotypes. How and when this transmis-
sion occurred is still debated but it is now generally accepted that
HIV-2 originated from a sooty mangabeys strain of SIV (SIVsm;
Hirsch etal.,, 1989; Chen etal., 1996) while HIV-1 appears to
have originated from a chimpanzee strain of SIV (SIVcpz; Gao
etal.,, 1999). Zoonotic transmission of SIVs, however, is not
common and is controlled by host factors that generally pro-
hibit SIV replication in human hosts and many human-derived
cell lines.

Viral replication is modulated by host cell factors, with the
species-specificity of these factors affecting viral tropism. Some of
these host factors can restrict viral replication and the anti-viral
systems mediated by such host restriction factors, termed intrinsic
immunity, play an important role in determining species-specific
barriers against viral infection. For instance, Fv-1 in mice is known
to restrict replication of a murine leukemia virus (Rein et al., 1976;
Gautsch etal., 1978; Towers etal., 2000) and tripartite interaction
motif 5a (TRIM5a) recently has been found to be responsible
for restricting HIV-1 but not SIV infection in Old World monkey
(OWM) cells (Hatziioannou et al., 2004b; Keckesova etal., 2004;
Stremlau et al.,2004; Yap et al., 2004; Songet al., 2005; Ylinen et al,,
2005). Restriction of retroviral replication by these host cell fac-
tors takes place after viral entry, but before the integration step,
and the viral determinants for this type of restriction have been
mapped to the capsid (CA) protein (Gautsch etal., 1978; Kozak
and Chakraborti, 1996; Towers et al., 2000; Goff, 2004; Stremlau
etal., 2006). Two recent studies showed that the cellular protein
SAMHDI is myeloid-lineage cell-specific HIV-1 restriction factor

of the mechanism that may explain zoonotic transmission of retroviruses.

Keywords: HIV-1, SIV, APOBEC3G, TRIM5q, cyclophilin A, cyclophilin B

counteracted by Vpx proteins from HIV-2 and SIVsm (Hrecka
etal., 2011; Laguette etal., 2011). Restriction of lentivirus infec-
tion by SAMHDI1 is likely to take place at the reverse transcription
step. Another anti-retroviral protein, tetherin (also referred to as
BST-2,CD317,or HM1.24) inhibits retrovirus release and is antag-
onized by HIV-1 Vpu protein, Nef protein of many SIVs, or Env
protein of HIV-2 (Neil etal., 2008; Le Tortorec and Neil, 2009;
Zhang etal., 2009). Understanding how host cell factors affect
viral replication, positively or negatively, would contribute to elu-
cidating the molecular mechanism that determines viral tropism.
Here, we discuss an anti-viral effect of ApoB mRNA editing cat-
alytic subunit (APOBEC), TRIM5a, and cyclophilins (Cyps) on
SIV replication.

APOBEC: ENZYMATIC RESTRICTION FACTOR THAT

TARGET RETROVIRUSES

Replication of HIV-1 in primary CD4+ T cells, monocyte, and
some immortalized T cell lines depends on the presence of the
HIV-1 accessory gene product, Vif (standing for virus infectiv-
ity factor; Fisher etal., 1987; Strebel etal., 1987), and it works
in a host cell-specific manner. Vif is required for enhanced HIV-
1 replication in some cell types called non-permissive cells. In
contrast, HIV-1 replication is Vif-independent in permissive cells
(Akari etal., 1992; Fan and Peden, 1992; Gabuzda etal., 1992;
Blanc etal., 1993; Sakai etal., 1993; von Schwedler etal., 1993;
Borman etal.,, 1995). Recently, some cytidine deaminases were
identified as a new class of host restriction factors that target retro-
viruses such as HIV-1 or SIV (Harris and Liddament, 2004; Cullen,
2006). APOBEC3G (Apo3G), a member of the APOBEC family of
cytidine deaminases, is the first identified enzymatic restriction
factor and the determinant that makes cells permissive or non-
permissive. Apo3G is also a host factor that restricts replication
of human and simian lentiviruses in their respective target cells.
Unlike TRIMS5a or Fv-1, Apo3G does not exert its anti-viral activ-
ity by targeting the viral CA protein, but it has to be incorporated
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into a newly synthesized virion during a production step, and then
inhibits virus replication by targeting single-stranded viral cDNA
duringa subsequent infection step. HIV-1 counteracts Apo3G with
Vif expression. During the production of progeny virions, Vif
binds to Apo3G and induces Apo3G’s proteasomal degradation,
resulting in the decreased steady-state levels of human Apo3G
(hApo3G; Yu etal., 2003).

There are several anti-retroviral mechanisms of Apo3G against
HIV-1 infection. First, Apo3G-containing virus can accumulate
in a large number of substitutions that register as cytidine (C) to
deoxyuridine (dU) in a virus minus-strand during reverse tran-
scription, resulting guanine (G) to adenine (A) mutations in a
viral plus-strand, known as “G-to-A hypermutation” (Harris et al.,
2003; Lecossier etal., 2003; Mangeat etal., 2003; Mariani etal.,
2003; Zhang etal., 2003; Yu etal., 2004b). Second, Apo3G can
inhibit tRNA annealing or tRNA processing during reverse tran-
scription (Guo etal., 2006, 2007; Mbisa et al., 2007). Third, Apo3G
inhibits DNA strand transfer or integration (Li etal., 2007; Luo
etal., 2007; Mbisa etal.,, 2007). Although Apo3G has the most
potent anti-HIV-1 activity among the APOBEC family of proteins,
another member of the family, APOBEC3F (Apo3F) was shown to
inhibit HIV-1 infection in the absence of Vif (Bishop et al., 2004a;
Liddament etal., 2004; Wiegand etal., 2004; Zheng etal., 2004),
whereas APOBEC3B (Apo3B) can inhibit HIV-1 infection in both
the presence and absence of Vif (Bishop et al., 2004a; Doehle et al.,
2005; Rose et al., 2005).

Although we can imagine the broad range of anti-retroviral
activity of APOBEC family because APOBEC proteins from
non-human species can also inhibit HIV-1 infection (Mari-
ani etal, 2003; Bishop etal,, 2004a,b; Wiegand etal., 2004;
Cullen, 2006), the Vif-Apo3G interaction is thought to be
species-specific (Simon etal., 1998; Mariani et al., 2003). Accord-
ingly, hApo3G is insensitive to SIVagm Vif while African green
monkey Apo3G (agmApo3G) is insensitive to HIV-1 Vif and
the determinant of this species-specificity depends on amino
acid 128 of hApo3G and agmApo3G (Mariani etal., 2003; Bogerd
etal., 2004; Mangeat etal., 2004; Schrofelbauer etal., 2004; Xu
etal., 2004).

However, such species-specificity is not strictly controlled,
for example, a report from the laboratory of Klaus Strebel
demonstrated that SIVagm Vif supported replication of SIVagm
virus in the hApo3G-positive human A3.01 T cell line (Takeuchi
etal., 2005). Replication of vif-defective SIVagm in A3.01 cells
was severely restricted, resulted in an accumulation of cyti-
dine deaminase-induced G-to-A mutations in SIVagm genome
(Takeuchi et al., 2005).

Moreover, two independent groups showed that the differ-
ent APOBEC3 family members function to neutralize specific
lentiviruses (Yu etal., 2004a; Dang etal., 2006). One report from
the lab of Dr. Nathaniel R. Landau showed that APOBEC3B and
APOBEC3C were potent inhibitors of SIV (Yu etal., 2004a). Both
enzymes were efficiently encapsidated by HIV-1 and SIV. Another
report from the lab of Dr. Yong-Hui Zheng demonstrated that
APOBEC3DE blocked the replication of both HIV-1 and SIV but
not that of MLV (Dang etal.,, 2006) and APOBEC3H inhibited
the replication of HIV-1 by a cytidine deamination-independent
mechanism (Dang et al., 2008). These findings raise the possibility

that the various APOBEC3 family members protect against dif-
ferent lentiviruses and point to a possible role in the zoonotic
transmission of SIV.

TRIMS5c:: FV-1-TYPE HOST FACTOR RESTRICTING

HIV-1 IN PRIMATE CELLS

The host protein which dictates Refl activity was identified as an
a-isoform of rhesus macaque TRIMS5 protein by the laboratory
of Dr. Joseph Sodroski (Stremlau etal., 2004). TRIMS5 is a mem-
ber of the TRIM family of proteins, and has RING, B-box 2, and
coiled-coil as common and conserved domains among the family
and B30.2 (PRYSPRY) domain on its C-terminal region (Nisole
etal.,, 2005). Subsequently, the human and non-human primate
homologs of TRIM5a were shown to restrict retroviruses, such as
N-MLYV, and equine infectious anemia virus (Hatziioannou etal.,
2004b; Keckesova et al., 2004; Perron etal., 2004; Yap etal., 2004;
Song etal., 2005; Ylinen etal., 2005; Si etal., 2006). Rhesus mon-
key TRIMS5a (thTRIM5a) has strong anti-HIV-1 activity but only
modestly restricts SIV isolated from a macaque monkey (SIVmac)
and does not block MLV infection, whereas its human homolog
does not restrict HIV-1 infection.

TRIMS5a recognizes incoming viral cores, but not a monomeric
CA protein, thorough its B30.2 (PRYSPRY) domain. B-box 2 and
coiled-coil domains are required for TRIM5a multimerization,
and both coiled-coil and B30.2 (PRYSPRY) domains are essen-
tial for viral core binding (Reymond etal., 2001; Stremlau etal.,
2006). TRIM5a captures HIV-1 core at a very early step(s) after
infection, immediately after the release of the core into cyto-
plasm. To restrict HIV-1 infection and to recognize viral core,
TRIMS5a must oligomerize through its B-box 2 and coiled-coil
domains (Mische etal., 2005; Li and Sodroski, 2008). Its RING
domain has E3 ubiquitin ligase activity. It self-ubiquitination
occurs TRIM5a is quickly degraded (Diaz-Griffero etal., 2006).
This rapid degradation of TRIM5a is not required for post-
entry restriction since replacement of TRIM5a RING domain
with the corresponding domain of TRIM21, which has lower
self-ubiquitination activity and a longer half-life than TRIMSa
did not alter the anti-viral activity (Kar etal., 2008). Recently,
the laboratory of Dr. Mark Yeager discussed a novel architecture
made with dimers of TRIM5-21R. TRIM5a-21R forms a dimer
through its B-box 2 and coiled-coil domains, and these dimers
form six-sided rings on CA lattices to promote rapid core disas-
sembly (Ganser-Pornillos etal., 2011). Overexpression of TRIM5a
leads to the formation of cytoplasmic bodies and is believed to
be required for its anti-viral activity (Stremlau et al., 2006; Camp-
belletal.,2008). During TRIM5a-mediated post-entry restriction,
disassembly of viral cores is induced too quickly and the accumu-
lation of viral RT-products is reduced (Stremlau etal., 2006). On
the other hand, MG132 treatment inhibited quick-disassembly,
yet HIV-1 infectivity was still restricted. Two reports showed that
TRIM5a could block not only viral cDNA accumulation but also
the nuclear import of viral cDNA (Berthoux et al., 2004; Wu et al.,
2006). Thus, TRIM5a-mediated post-entry restriction is thought
to have at least two phases: (i) TRIM5a induces rapid disassembly
of viral core in a proteasome-dependent manner and (ii) TRIM5a
degrades HIV-1 ¢cDNAs in a proteasome-independent manner.
The determinant of specificity and magnitude of the post-entry
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restriction lies on B30.2 (PRYSPRY) domain. Previous report
showed that TRIM5a alleles did not cluster by species between rhe-
sus macaques and sooty mangabeys and none of the alleles from
either species restricted SIV, suggesting that there is little effect
of rhTRIM5a on transmission of SIVsm within species (New-
man etal., 2006). Recently, Pacheco etal. (2010) reported that
New World monkey (NWM) TRIM5a restricts foamy virus infec-
tion. Another consideration is the clinical significance of TRIM5a
against AIDS in human. Moreover, several reports showed that
the efficacy of TRIM5a-mediated suppression of HIV-1 replica-
tion might interfere with disease progression of AIDS in humans
(van Manen et al., 2008; Cagliani et al., 2010; Takeuchi etal., 2012).
Thus, TRIM5a-mediated restriction may be a multi-step process
in retrovirus replication with the relationship between other host
factor(s).

Recently, the lab of Dr. Yasuhiro Ikeda reported that rhesus
macaque TRIMS5a also inhibits HIV-1 production by inducing
the degradation of a viral precursor Gag protein (Sakuma etal.,
2007). To restrict HIV-1 production, amino acid residues in
B-box 2 and coiled-coil domains dictated the specificity of the
restriction. In the late restriction, the accumulation of HIV-1
RNA was not affected but the accumulation of precursor Gag
was inhibited in an ubiquitin—proteasome-independent man-
ner. This TRIM5a-mediated late-restriction is still controversial
(Zhang etal., 2008), yet it is conceivable that TRIM5a restricts
HIV-1 infection and production in two distinct mechanisms.
Although TRIMS5q restricts HIV-1 infection in a broad range of
cells, its late restriction involved transient overexpression (Sakuma
etal., 2007).

Here is another notable class of the TRIM family called TRIM-
Cyp isolated from NWM. A report from the laboratory of Dr.
Jeremy Luban demonstrated that owl monkey cells express TRIM-
Cyp that restricts HIV-1 infection (Sayah etal., 2004). Although
TRIM-Cyp has a cyclophilin A (CypA) sequence in its C-terminal
region instead of B30.2 (PRYSPRY) domain that dictates the
specificity and the magnitude of post-entry restriction in OWM
TRIMS5a-mediated post-entry restriction, it recognizes incoming
core structure and restricts HIV-1 infection (Stremlau et al., 2006).
Recently, TRIM-Cyp mRNA was also detected in a rhesus macaque
cell,and overexpressed rhesus TRIM-Cyp restricts HIV-1 infection
and production (Newman et al., 2006; Brennan et al., 2008; Wilson
etal., 2008; Dietrich etal., 2010).

Unlike other restriction factors, there is no known accessory
gene product of HIV-1 to antagonize TRIM5a-mediated restric-
tions. Indeed, human TRIM5a has only a modest restriction
activity against HIV-1 infection. TRIMS5 proteins from several
NWM species restrict infection by STVmac and SIVagm (Song
etal.,, 2005). This suggests that TRIM5a could be a key molecule
of the species-species barrier.

CYCLOPHILINS: HOST FACTORS INVOLVED IN

RETROVIRUS REPLICATION

Cyclophilins are ubiquitous proteins and first identified as the
target of cyclosporine A (CsA), an immunosuppressive reagent
(Takahashi etal., 1989). CypA has proline-isomerase activity that
catalyzes the cis—trans isomerization of proline residue (Fischer
etal.,, 1989). The binding of CsA to CypA inhibits this isomerase

activity (Takahashi etal., 1989). In retrovirus replication, CypA
was found to bind HIV-1 CA in the yeast two-hybrid system
(Luban etal., 1993). The sequence Ala88-Gly89-Pro90-Ile91 of
CA protein is the major fragment bound to the active site
of CypA (Franke etal, 1994; Gamble etal., 1996; Zhao etal.,
1997). Interestingly, The peptidyl-prolyl bond between Gly89
and Pro90 of the CA fragment has a trans conformation, in
contrast to the cis conformation observed in other known CypA—
peptide complexes (Zhao etal., 1997; Bosco etal., 2002), and
Gly89 preceding Pro90 has an unfavorable backbone formation
usually only adopted by glycine, suggesting that special Gly89-
Pro90 sequence but not other Gly-Pro motif is required for
the binding of CA protein to CypA. Therefore, CypA might be
likely to act as a molecular chaperone but not a cis—trans iso-
merase (Zhao etal., 1997). However, one report showed that
CypA does not only bind CA protein but also catalyzes effi-
ciently cis—trans isomerization of Gly89-Pro90 peptidyl-prolyl
bond (Bosco etal., 2002). The relationship between the Gly89-
Pro90 bond and catalysis of cis—trans isomerization by CypA
remains unclear.

It has been well established that CypA promotes an early step
of HIV-1 infection in human cells (Franke et al., 1994; Thali etal.,
1994; Braaten etal., 1996a,c; Franke and Luban, 1996; Braaten
and Luban, 2001; Sokolskaja etal., 2004; Hatziioannou etal.,
2005). CypA is efficiently encapsidated into HIV-1 produced
from infected cells through interaction with the CA domains
of the Gag polyprotein and disruption of CypA incorporation
into virions by CsA or HIV-1 Gag mutants caused a decrease
in replication efficiency (Franke etal., 1994; Thali etal., 1994;
Ott etal., 1995; Braaten etal., 1996a; Bukovsky etal., 1997; Ack-
erson etal., 1998; Braaten and Luban, 2001). It is still unclear
how CypA is efficiently packaged into HIV-1 virion, but several
reports showed that both dimerization of CA and multimer-
ization of CypA are required for efficient interaction (Colgan
etal., 1996; Javanbakht etal., 2007). Although CA-CypA inter-
action is required for infectivity, the important point is that
CypA interacts with incoming HIV-1 cores in newly infected
target cells rather than during HIV-1 budding from the virion
producer cells, indicating that target cell CypA promotes HIV-1
infectivity (Kootstra etal., 2003; Towers etal., 2003; Sokolskaja
etal., 2004).

CypA-dependent virus replication is only limited to retro-
viruses which encode CA that binds CypA. In fact, only those
retroviruses are dependent upon CypA for replication (Luban
etal., 1993; Franke etal., 1994; Thali etal., 1994; Braaten etal.,
1996¢; Franke and Luban, 1996). These observations suggested
that CA-CypA interaction might contribute tropism determinants
for retroviruses. HIV-1 infection in non-human primate cells is
blocked prior to reverse transcription after virus entry (Shibata
etal., 1995; Himathongkham and Luciw, 1996; Hofmann etal.,
1999; Besnier etal., 2002; Cowan etal., 2002; Munk etal., 2002;
Hatziioannou etal., 2003; Towers etal., 2003). This restriction
is thought to be the same step in the retrovirus life cycle where
CypA works (Braaten etal., 1996b). Indeed, analysis of CypA-
binding region of CA with chimeric viruses of HIV-1 and SIV
showed the viral determinant for species-specificity (Shibata et al.,
1991, 1995; Dorfman and Gottlinger, 1996; Bukovsky etal., 1997;
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FIGURE 1 | A schema for the effect of CsA on HIV/SIV replication in
human/macaque cells. (A) CsA treatment impairs the replication of HIV-1
(left panel) but enhances SIV replication (right panel) in human cells. (B) CsA
treatment inhibits SIV replication in macaque cells. The solid line indicates
virion accumulation of culture supernatant in the absence of CsA and the
broken line indicates that of culture supernatant in the presence of CsA.

Cowan et al., 2002; Kootstra et al., 2003; Owens et al., 2003, 2004;
Towers etal., 2003; Berthoux etal., 2004; Hatziioannou etal.,
2004a, 2006; Ikeda etal., 2004; Sayah etal., 2004; Stremlau etal.,
2004; Kamada etal., 2006).

Human CypA is required for efficient HIV-1 infection but not
SIV. There is no known role for CypA in SIV infection in human
cells. Recently, the first report from the laboratory of Klaus Strebel
showed that human CypA acts as restriction factor against the
infection of two SIVs (SIVmac and SIVagm) in human cells,
and Vif protein of two SIVs counteracts a CypA-imposed inhi-
bition against the infection of two SIV strains with exclusion of
CypA from SIV virion (Takeuchi etal.,, 2007). This phenomenon
is different from the function of SIVagm Vif against hApo3G
previously reported from the same laboratory (Takeuchi etal.,
2005) because they used human cells lacking detectable deaminase
activity.

Moreover, a recent report showed a species-specific effect of
CsA, a peptidyl-prolyl cis—trans isomerase (PPlase) inhibitor, on
SIV replication, implying a possible contribution of Cyps to the
determination of SIV tropism (Figure 1; Takeuchi etal., 2012).
They demonstrated a host species-specific effect of CypA on SIV
replication: CypA affects the replication of two SIVs (SIVmac
and SIVagm) negatively in human cells but positively in macaque
cells (Figure 1). Further analysis indicated that the infection of
two SIVs was not significantly affected by CypA but inhibited by
cyclophilin B (CypB), another PPIase, in human cells (Figure 2A;
Takeuchi etal., 2012). In contrast, CypA is likely to have positive

FIGURE 2 | A schema for the effect of cyclophilin A and cyclophilin B on
HIV/SIV replication in human/macaque cells. (A) CypA knock-down
(CypA-KD) impairs the replication of HIV-1 (upper left panel). In contrast, SIV
replication is not reduced but rather enhanced by CypA knock-down (upper
right panel). CypB knock-down (CypB-KD) shows no significant effect on HIV-1
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replication (lower left panel) but enhances the replication of SIV (lower right
panel). (B) CypA-KD inhibits SIV infection. The solid line indicates virion
accumulation of culture supernatant produced from normal cells and the
broken line indicates that of culture supernatant produced from CypA or CypB
knock-down cells.
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effects on the infection of two SIVs in macaque cells (Figure 2B;
Takeuchi etal., 2012). These results suggest that Cyps might have
a host species-specific effect of Cyps on SIV replication and pro-
vide insightinto the mechanism of species-specific barriers against

viral infection.

CONCLUDING REMARKS

Viral replication is modulated by host cell factors. Many of these
factors function in a species-specific manner. On the other hand,
there exist host factors that restrict viral replication. The anti-
viral system mediated by some of these restriction factors, termed
intrinsic immunity, which is distinguished from the conventional
innate and adaptive immunity has been indicated to play an
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1. Introduction

The conventional innate and adaptive immune systems are very effective at viral
infections. However, for retroviral infections, there is another immune system that can
recognize at multiple levels e.g. expression of internal host factors with antiviral activity.
This is a component of viral recognition and subsequent restriction that has been called
“intrinsic immunity” (Bieniasz, 2004). Intrinsic immunity can distinguish from innate and
adaptive immunity, and it does not need to be induced by viral infections. Retrovirus
replication has many steps in common with other retroviruses. Upon entry into the
cytoplasm of target cells, some host factors are required for efficient retroviral replication
cycle, and others act as restriction factors that block reverse transcription and ligation of
viral cDNA to chromosomal DNA. Recently, several host factors have been identified
such as the proline isomerase cyclophilin A (CypA), ApoB mRNA editing catalytic
subunit (APOBEC) and tripartite motif protein 5 alpha (TRIMba) against retrovirus
infection. This review will focus on how these host factors modulate retroviral activity. It
will then present our current understanding of the mechanism that may explain zoonotic
transmission of retroviruses.

1.1 Fv1 and Fv4: Restriction factors that block infection by Friend-MLV in murine cells
The most intensively studied anti-cellular gene is Friend virus susceptibility (Fv) gene in
laboratory mice. Fvl and Fv4 were of special interest in Fv alleles because cultured murine
cells containing them were resistant to infection by Friend murine leukemia virus
(MLV)(Gardner et al., 1980; Hartley et al., 1970; Pincus et al., 1971; Rasheed and Gardner,
1983; Suzuki, 1975). Fvl-mediated restriction of MLV, for instance, is a well-studied
representative of a class of restriction factors that act after membrane fusion, are highly
virus-specific (Goff, 2004). Fvl has two alleles, FvIn and Fv1b, targeting B- and N-tropic
MLV, respectively (Rein et al., 1976). Fv4 was shown to encode an ecotropic MLV-like env
gene and recent report showed that Fv4 inhibits infection by exerting dominant negative
effect on MLV Env (Takeda and Matano, 2007). Although the precise mechanism of Fvl
restriction remains unclear, the important point is that the viral determinants for this type of
restriction have been mapped to the capsid protein (MLV amino acid 110) and as a target of
host factors that can modulate retroviral life cycle (Gautsch et al, 1978, Kozak and
Chakraborti, 1996).
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1.2 Ref1 and Lv1: Fvi-type restriction factors in human or primate cells

A host factor that belongs to the same category of Fvl-type restriction factors is Refl
(restriction factor 1). Refl is expressed in human and other non-murine cells and imposes
a similar restriction of Fv1l that is controlled by relationship between the same capsid
residue (MLV CA 110) and Fv1 (Towers et al., 2000). The difference between Refl and Fv1
function is that Refl restricts retroviral replication at a step prior to reverse transcription
while Fvl seems to impose a post-reverse transcription block (Goff, 2004). Another
restriction factor, lentivirus susceptibility factor 1 (Lv1), was found to be responsible for
restricting HIV-1 and N-tropic MLV but not rhesus macaque simian immunodeficiency
virus (SIVmac) replication in Old World monkey cells (Besnier et al., 2002; Cowan et al.,
2002; Munk et al., 2002).

1.3 TRIM5a.: Fv1i-type host factor restricting HIV-1 in primate cells

Recently, the host protein which dictates Refl activity was identified as an o-isoform of
rhesus macaque TRIMSa protein by the laboratory of Dr. Joseph Sodroski (Stremlau et al.,
2004). TRIMS5 is a member of the tripartite motif (TRIM) family of proteins, and has RING,
B-box 2 and coiled-coil as common and conserved domains among the family and
B30.2(PRYSPRY) domain on its c-terminal region (Nisole et al., 2005). Subsequently, the
human and non-human primates homologues of TRIMba. were shown to explain restriction
activity against retroviruses, N-MLV, and equine anemia virus (Hatziioannou et al., 2004b;
Keckesova et al., 2004; Perron et al., 2004; Si et al., 2006; Song et al., 2005; Yap et al., 2004;
Ylinen et al., 2005). Rhesus monkey TRIMba has strong anti-HIV-1 activity, only modest
restriction against SIVmac, and does not block MLV infection, whereas its human
homologue does not active against HIV-1 infection.

TRIMb5a recognizes incoming viral core, but not a monomeric capsid protein, thorough its
B30.2(PRYSPRY) domain. B-box2 and coiled-coil domains are required for TRIMb5a
multimerization, and both coiled-coil and B30.2(PRYSPRY) domains are essential for viral
core binding (Reymond et al., 2001; Stremlau et al., 2006). TRIM5a. captures HIV-1 core at a
very early step(s) after infection, immediately after the release of core into cytoplasm. To
restrict HIV-1 infection and to recognize viral core, TRIM5a. must be oligomerized through
its B-box 2 and coiled-coil domains. Its RING domain has E3 ubiqutin ligase activity, and
self-ubiqutination is occurred, then TRIMba. is quickly degraded. This quick degradation of
TRIMb5a is not necessary for post-entry restriction, since replacement of TRIMb5a. RING
domain with the corresponding domain of TRIM21 which has lower self-ubiqutination
activity and longer half life than TRIM5a didn’t alter the antiviral activity. When TRIMba.
was over expressed, cytoplasmic body is formed, and the cytoplasmic body is supposed to
be required for its antiviral activity. During TRIMbo-mediated post-entry restriction,
disassembly of viral core is induced too quickly and the accumulation of viral RT-products
is reduced. MG132 treatment inhibits to induce quick-disassembly, but still HIV-1 infectivity
was restricted. Two reports showed that TRIMb5a could block not only viral cDNA
accumulation but also the nuclear import of viral cDNA (Berthoux et al., 2004; Wu et al,,
2006). Thus TRIMbSa-mediated post-entry restriction is thought to have at least two phases:
(i) TRIM5a induces quick-disassembly of viral core in a proteasome dependent manner and
(ii) TRIM5a degrades HIV-1 cDNAs in a proteasome independent manner. The determinant
of specificity and magnitude of the post-entry restriction lies on B30.2(PRYSPRY) domain.
Recently, Pacheco et al. reported that new world monkey TRIMba restricts foamy virus
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infection (Pacheco et al., 2010). Another consideration is the clinical significance of TRIM5a.
against acquired immunodeficiency syndrome (AIDS) in human. Moreover several reports
showed that the efficacy of TRIMba-mediated suppression of HIV-1 replication might
interfere with disease progression of AIDS in humans (Cagliani et al., 2010; van Manen et
al., 2008). Thus, TRIMb5a.-mediated restriction may occur multi step in retrovirus replication
with the relationship between other host factor(s).

Recently, the lab of Dr. Yasuhiro Ikeda reported that rhesus macaque TRIMb5a also inhibits
HIV-1 production by inducing the degradation of a viral precursor Gag protein (Sakuma et
al., 2007). To restrict HIV-1 production, amino acid residues in B-box 2 and coiled-coil
domains dictated the specificity of the restriction. In the late restriction, the accumulation of
HIV-1 RNA was not affected but the accumulation of precursor Gag was inhibited in an
ubiqutine-proteasome independent manner. This TRIM5a-mediated late-restriction is still
controversial (Zhang et al., 2008), yet it is presumable that TRIMba. restricts HIV-1 infection
and production in two distinct mechanisms. Although TRIMb5a. restricts HIV-1 infection in
broad range of cells, its late restriction depends on a cell line (Sakuma et al., 2007).

Here is another notable class of the TRIM family called TRIM-Cyp isolated from new wold
monkeys (NWM). A report from the laboratory of Dr. Jeremy Luban demonstrated that owl
monkey has TRIM-Cyp that restricts HIV-1 infection (Sayah et al., 2004). Although TRIM-
Cyp has a cyclophilin A sequence in its C-terminal region instead of B30.2(PRYSPRY)
domain that dictates the specificity and the magnitude of post entry restriction in OWM-
TRIMba-mediated post-entry restriction, it recognizes incoming core structure and restricts
HIV-1 infection (Stremlau et al., 2006). Recently, TRIM-Cyp mRNA was also detected in a
rhesus macaque cell, and over-expressed rhesus TRIM-Cyp restricts HIV-1 infection and
production (Brennan et al., 2008; Dietrich et al., 2010; Sakuma et al., 2010; Wilson et al.,
2008).

Not like other restriction factors, the counter part of TRIMb5a-mediated restrictions is not
accessory gene product of HIV-1, and human TRIMb5a has just a modest restriction activity.
NWM cell doesn’t have TRIMba, yet even without B30.2(PRYSPRY), TRIM5-Cyp can be a
defense against viral infection. These evidences suggest that TRIMb5a could be a key
molecule to explain the species-species barrier. And if so, TRIM5a’s dual antiviral activities
can block the viral transmission even from closer species like to human from monkeys.

1.4 APOBEC: Enzymatic restriction factor that target retroviruses

Replication of HIV-1 in primary CD4+ T cells, monocyte and some immortalized T cell lines
depends on the presence of HIV-1 accessory gene product, Vif (stands for virus infectivity
factor)(Fisher et al., 1987; Strebel et al., 1987), and it works in a host cell-specific manner. Vif
is required for enhanced HIV-1 replication in some cell types called non-permissive cells, in
contrast HIV-1 replication is Vif-independent in permissive cells (Akari et al., 1992; Blanc et
al., 1993; Borman et al., 1995; Fan and Peden, 1992; Gabuzda et al., 1992; Sakai et al., 1993;
von Schwedler et al., 1993). Recently, some cytidine deaminases were identified as a new
class of host restriction factors that target retroviruses such as HIV-1 or SIV (Cullen, 2006;
Harris and Liddament, 2004). APOBEC3G (Apo3G), a member of the APOBEC family of
cytidine deaminases, is the first identified enzymatic restriction factor and the determinant
that makes cells permissive or non-permissive. Unlike TRIM5a nor Fvl, Apo3G does not
exert its antiviral activity by targeting the viral capsid protein, but it has to be incorporated
into a newly synthesized virion during a production step, and then inhibits virus replication
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by targeting single-stranded viral cDNA during an infection step. HIV-1 counteracts Apo3G
with Vif expression. During the production of progeny virions, Vif binds to Apo3G and
induces Apo3G’s proteosomal degradation, resulting in the decreased steady-state levels of
human Apo3G (hApo3G) (Yu et al., 2003).

There are several antiretroviral mechanisms of Apo3G against HIV-1 infection. First,
Apo3G-containing virus can be resulted in a large number substitution that register as
cytidine (C) to thymine (T) in a virus minus-strand during reverse transcription, resulting
guanine (G) to adenine (A) mutations in a viral plus strand, known as ‘G to A
hypermutaion’(Harris et al., 2003; Lecossier et al., 2003; Mangeat et al., 2003; Mariani et al.,
2003; Yu et al., 2004; Zhang et al., 2003). Second, Apo3G can inhibit tRNA annealing or
tRNA processing during reverse transcription (Guo et al., 2006; Guo et al., 2007; Mbisa et al.,
2007). Third, Apo3G inhibits DNA strand transfer or integration (Li et al., 2007; Luo et al,,
2007; Mbisa et al., 2007). Although Apo3G has the most potent anti-HIV-1 activity among
the APOBEC family of proteins, another member of the family, APOBEC3F (Apo3F) was
shown to inhibit HIV-1 infection in the absence of Vif (Bishop et al., 2004a; Liddament et al.,
2004; Wiegand et al., 2004; Zheng et al., 2004), whereas APOBEC3B (Apo3B) can inhibit HIV-
1 infection in both the presence and absence of Vif (Bishop et al., 2004a; Doehle et al., 2005;
Rose et al., 2005).

Although we can imagine the broad range of antiretroviral activity of APOBEC family
because APOBEC proteins from non-human species can also inhibit HIV-1 infection (Bishop
et al., 2004a; Bishop et al., 2004b; Cullen, 2006; Mariani et al., 2003; Wiegand et al., 2004), the
Vif-Apo3G interaction is thought to be species specific (Mariani et al., 2003; Simon et al.,
1998). Accordingly, hApo3G is insensitive to SIVagm Vif while african green monkey
Apo3G (agmApo3G) is insensitive to HIV-1 Vif and the determinant of this species
specificity depends on amino acid 128 of hApo3G and agmApo3G (Bogerd et al.,, 2004;
Mangeat et al., 2004; Mariani et al., 2003; Schrofelbauer et al., 2004; Xu et al., 2004). However,
such species specificity is not strictly controlled, for example a report from the laboratory of
Klaus Strebel demonstrated that SIVagm Vif supported replication of SIVagm virus in the
hApo3G-positive human A3.01 T cell line. Replication of vif-defective SIVagm in A3.01 cells
was severely restricted, resulted in an accumulation of cytidine deaminase-induced G-to-A
mutations in SIVagm genome (Takeuchi et al., 2005). Therefore, it is probable that SIV Vif
has evolved to counteract hApo3G restriction and this might contribute zoonotic
transmission of SIV.

Although the antiviral activity of Apo3G is clearly correlated with its deaminase activity
(Iwatani et al., 2006; Mangeat et al., 2003; Navarro et al., 2005; Opi et al., 2006; Shindo et al.,
2003; Zhang et al., 2003), some members of APOBEC family have additional anti-retrovirus
activities that do not require catalytically activity of itself (Li et al., 2007; Luo et al., 2007). In
fact, several reports showed that deaminase-defective Apo3G and Apo3F have antiviral
activity, and some antiviral-inactive mutants of both Apo3G and Apo3F have cytidine
deaminase activity (Bishop et al., 2006; Holmes et al., 2007, Newman et al., 2005; Shindo et
al., 2003).

However, deaminase-defective Apo3G mutant with C2885/C291A substitutions did not
show any anti-viral actibity and over-expression of the mutant could work as a dominant
negative agent of wild-type Apo3G, suggesting a tightly-relationship between antiviral and
deaminase activities (Miyagi et al., 2007; Opi et al., 2006). Recently, it was demonstrated that
hApo3G has an intrinsic immune effect on viral DNA synthesis, which may account for
cytidine deaminase-independent antiviral activity of Apo3G, and did not abort replication
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steps following reverse transcription (Iwatani et al., 2007). Therefore, precise mechanism of
Apo3G-dependent restriction of retroviral infection still remains unclear.

1.5 Cyclophilin A: positive factor against retrovirus replication (or restriction factor?)
Cyclophilins are ubiquitous proteins and first identified as the target of cyclosporine A
(CsA), an immunosuppressive reagent (Takahashi et al., 1989). CypA has proline-isomerase
activity that catalyzes the cis-trans isomerization of proline residue (Fischer et al., 1989). The
binding of cyclosporine A to cyclophilin A inhibits this isomerase activity (Takahashi et al.,
1989). In retrovirus replication, CypA was found to bind HIV-1 capsid (CA) in the yeast
two-hybrid system (Luban et al., 1993). The sequence Ala88-Gly89-Pro90-11e91 of CA protein
is the major fragment bound to the active site of CypA (Franke et al., 1994; Gamble et al.,
1996; Zhao et al., 1997). Interestingly, The peptidyl-prolyl bond between Gly89 and Pro90 of
the CA fragment has a trans conformation, in contrast to the cis conformation observed in
other known CypA-peptide complexes (Bosco et al.,, 2002; Zhao et al., 1997), and Gly89
preceding Pro90 has an unfavorable backbone formation usually only adopted by glycine,
suggesting that special Gly89-Pro90 sequence but not other Gly-Pro motif is required for the
binding of CA protein to CypA. Therefore, CypA might be likely to act as a molecular
chaperone but not a cis-trans isomerase (Zhao et al., 1997). However, one report showed that
CypA does not only bind CA protein but also catalyzes efficiently cic-trans isomerization of
Gly89-Pro90 peptidyl-prolyl bond (Bosco et al., 2002). The relationship between the Gly89-
Pro90 bond and catalysis of cis-trans isomerization by CypA still remain unclear.

It has been well established that CypA promotes an early step of HIV-1 infection in human
cells (Braaten et al., 1996a; Braaten et al., 1996¢; Braaten and Luban, 2001; Franke and Luban,
1996; Franke et al., 1994; Hatziioannou et al., 2005; Sokolskaja et al., 2004; Thali et al., 1994).
CypA is efficiently encapsidated into HIV-1 produced from infected cells through
interaction with the CA domains of the Gag polyprotein and disruption of CypA
incorporation into virions by CsA or HIV-1 Gag mutants caused a decrease in replication
efficiency (Ackerson et al., 1998; Braaten et al., 1996a; Braaten and Luban, 2001; Bukovsky et
al., 1997; Franke et al., 1994; Ott et al., 1995; Thali et al., 1994). It is still unclear how CypA is
efficiently packaged into HIV-1 virion, but several report showed that both dimerization of
CA and multimerization of CypA is required for efficient binding each other (Colgan et al.,
1996; Javanbakht et al., 2007). Although CA-CypA interaction is required for infectivity, the
important point is that CypA interacts with incoming HIV-1 cores in newly target cells than
occurring as core assemble during HIV-1 budding from the virion producer cells, indicated
that target cell CypA promotes HIV-1 infectivity (Kootstra et al., 2003; Sokolskaja et al., 2004;
Towers et al., 2003).

CypA-dependent virus replication is only limited the retroviruses which encode CA that
binds CypA. In fact, only those retroviruses are dependent upon CypA for replication
(Braaten et al., 1996¢; Franke and Luban, 1996; Franke et al., 1994; Luban et al., 1993; Thali et
al., 1994). These observations suggested that CA-CypA interaction might contribute tropism
determinants for retroviruses. HIV-1 infection in non-human primate cells inhibits prior to
reverse transcription after virus entry (Besnier et al., 2002; Cowan et al., 2002; Hatziioannou
et al., 2003; Himathongkham and Luciw, 1996; Hofmann et al., 1999; Munk et al., 2002;
Shibata et al., 1995; Towers et al., 2003). This restriction is thought to be the same step in the
retrovirus life cycle where CypA works (Braaten et al., 1996b). Indeed, Analysis of CypA-
binding region of CA with chimeric viruses of HIV-1 and SIV showed the viral determinant
for species-specificity (Berthoux et al., 2004; Bukovsky et al., 1997, Cowan et al.,, 2002;
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Dorfman and Gottlinger, 1996; Hatziioannou et al., 2004a; Hatziioannou et al., 2006; Ikeda et
al., 2004; Kamada et al., 2006; Kootstra et al., 2003; Owens et al., 2004; Owens et al., 2003;
Sayah et al., 2004; Shibata et al., 1991; Shibata et al., 1995; Stremlau et al., 2004; Towers et al.,
2003).

Human CypA is required for efficient HIV-1 infection but not SIV. There is no known role
for CypA in SIV infection in human cells. Recently, the first report from the laboratory of
Klaus Strebel showed that human CypA acts as restriction factor against SIV infection in
human cells, and SIV Vif counteracts a CypA-imposed inhibition against SIV infection with
exclusion of CypA from SIV vision (Takeuchi et al., 2007). This phenomenon could
distinguish from the function of SIV Vif against hApo3G previously reported from same
laboratory (Takeuchi et al., 2005) because they used human cells lacking detectable
deaminase activity. This observation raised the possibility that SIV Vif is crucial for zoonotic
transmission of SIV from monkey to human.

2. Conclusion

Viral replication requires a lot of host cell factors, whose species specificity may affect viral
tropism. On the other hand, there exist host factors that restrict viral replication. The anti-
viral system mediated by some of these restriction factors, termed intrinsic immunity, which
is distinguished from the conventional innate and adaptive immunity has been indicated to
play an important role in making species-specific barriers against viral infection. As
discussed in this chapter, we describe the current progress in understanding of such
restriction factors against retroviral replication, especially focusing on TRIMb5o. and
APOBEC whose anti-retroviral effects have recently been recognized. Additionally, we
mentioned CypA that is essential for HIV-1 replication in human cells and may affect viral
tropism. Understanding of these host factors would contribute to identification of the
determinants for viral tropism. Finally, understanding of the factors mediating intrinsic
immunity may lead to the development of antiviral agents that can boost their potency and
thereby lead to treatments for viral disease.
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