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The initiation of drug therapy results in a reduction in the human immunodeficiency virus type 1
(HIV-1) population, which represents a potential genetic bottleneck. The effect of this drug-
induced genetic bottleneck on the population dynamics of the envelope (Env) regions has been
addressed in several /n vivo studies. However, it is difficult to investigate the effect on the env
gene of the genetic bottleneck induced not only by entry inhibitors but also by non-entry inhibitors,
particularly in vivo. Therefore, this study used an /n vitro selection system using unique bulk
primary isolates established in the laboratory to observe the effects of the antiretroviral drug-
induced bottleneck on the integrase and env genes. Env diversity was decreased significantly in
one primary isolate [KP-1, harbouring both CXCR4 (X4)- and CCR5 (R5)-tropic variants] when
passaged in the presence or absence of raltegravir (RAL) during in vitro selection. Furthermore,
the RAL-selected KP-1 variant had a completely different Env sequence from that in the passage
control (particularly evident in the gp120, V1/V2 and V4-loop regions), and a different number of
potential N-glycosylation sites. A similar pattern was also observed in other primary isolates
when using different classes of drugs. This is the first study to explore the influence of anti-HIV
drugs on bottlenecks in bulk primary HIV isolates with highly diverse Env sequences using in vitro
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INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) shows a
high degree of genetic diversity owing to its high rates of
replication and recombination and the high mutation rate
of the HIV-1 reverse transcriptase (Néajera et al, 2002).
Even in a single infected individual, the virus can best be
described as a population of distinct, but closely related,
genetic variants or ‘quasi-species’ (Eigen, 1993; Nijhuis
et al, 1998). The quasi-species behaviour of viruses is
recognized as a key element in our understanding and
modelling of viral evolution and disease control (Vignuzzi
et al., 2006).

The GenBank/EMBL/DDBJ accession numbers for the env sequences
of HIV-1 KP-1, KP-2 and KP-4, are AB640872-AB640881,
AB641341-AB641351 and AB641335-AB641340, respectively.

Two supplementary figures are available with the online version of this
paper.

Combination antiretroviral (ARV) therapy results in a
contraction of the viral population, which represents a
potential genetic bottleneck (Charpentier et al, 2006;
Delwart et al., 1998; Ibafiez et al., 2000; Kitrinos et al., 2005;
Nijhuis et al., 1998; Nora et al., 2007; Sheehy et al., 1996;
Zhang et al, 1994). Whilst this bottleneck has a direct
effect on the region that is being targeted by the drugs (e.g.
protease or reverse transcriptase), it also affects other
regions of the viral genome. Indeed, the effect of the drug-
induced genetic bottleneck on the population dynamics of
the envelope (Env) regions has been addressed in several in
vivo studies (Charpentier et al., 2006; Delwart et al., 1998;
Ibafiez et al., 2000; Kitrinos et al., 2005; Nijhuis et al., 1998;
Nora et al., 2007; Sheehy et al., 1996; Zhang et al, 1994).

Virus bottleneck evolution of the HIV-1 env gene might be
important when choosing the optimal drugs to treat a
particular patient. Indeed, a CCR5 antagonist (maraviroc,
MVC) and a fusion inhibitor (enfuvirtide, T-20) have now
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been approved for use as HIV-1 entry inhibitors. Analysing
the dynamics of drug-induced genetic bottlenecks and
studying drug-resistant mutation profiles in response to
HIV-1-specific ARV drugs are both important if we are to
understand fully HIV-1 drug resistance and pathogenesis.

The aim of the present study was to understand better the
effect of in vivo drug-induced genetic bottlenecks. In vitro
selection of different primary HIV-1 isolates was per-
formed using the recently approved HIV integrase
inhibitor raltegravir (RAL) (Steigbigel et al, 2008). Two
R5-, one X4-, one dual- and one mixed R5/X4-tropic
isolates were passaged through a RAL-induced genetic
bottleneck. We also performed in vitro selection of the R5/
X4 isolate using lamivudine (3TC), saquinavir (SQV) and
MVC, and compared the results with those from the RAL-
selected isolate.

RESULTS

Genotypic profiles of the HIV-1 primary isolates

Four genetically heterogeneous HIV-1 primary isolates (KP-
1—4) from Japanese drug-naive patients were used to assess
the extent to which RAL affected the selection of bulk
primary viruses in vitro. A laboratory isolate, strain 89.6, was
also used in the study (rather than a molecular clone) to
allow escape mutants to be selected from each quasi-species
pool and to be generated de novo. First, the sequences of the
integrase (IN) regions of the four primary isolates were
determined. Table 1 shows the detailed evaluation of the R5/
X4 mixture subtype B (KP-1), R5-CRF08_BC (KP-2), R5
subtype B (KP-3) and X4-CRFO1_AE (KP-4) primary
isolates, and the dual-tropic subtype B laboratory virus
(89.6). Although some naturally occurring polymorphisms
were observed within the IN regions of these isolates
compared with the subtype B consensus sequence available
from the Los Alamos National Laboratory HIV sequence
database, we did not identify any primary resistant
mutations to RAL. Three baseline viruses (KP-1, KP-4 and
89.6) were sensitive to RAL, with ICsy values ranging from
1.2 to 4 nM, which are comparable with those reported
previously (Kobayashi et al., 2008). However, KP-2 and KP-
3 showed minor resistance to RAL, with ICs, values of 16
and 32 nM, respectively. These two isolates contained
amino acid mutations at positions 72, 125 and 201 within
the IN region [previously reported as L-870,810 and S-1360
resistance mutations (Hombrouck et al., 2008; Rhee et al,
2008), but not as RAL-resistance mutations]. KP-2 also
contained a unique insertion at position 288 (NQDME) at
the C-terminal end of the IN region.

In vitro selection of variants of the primary
isolates and 89.6 using RAL

To induce RAL-selected HIV-1 variants in vitro, PM1/
CCRS cells, a T-cell line expressing high levels of CCR5,
were exposed to the four primary isolates and strain 89.6.

The viruses were then serially passaged in the presence of
RAL. As a control, each isolate was passaged under the
same conditions, but without RAL, to allow monitoring of
spontaneous changes occurring in the viruses during
prolonged PM1/CCR5 cell passage (the passage control).
The selected viruses were initially propagated at a RAL
concentration equal to each ICsy value. The RAL
concentrations were then increased from 20 to 85 nM
during the course of the selection procedure (Table 1).

Only small shifts in the ICsq to RAL were observed in four
of the five isolates (KP-1, KP-2, KP-4 and 89.6), with fold
changes in ICsq values of 3.4, 6.5, 16 and 9.2, respectively.
KP-3 did not show resistance to RAL. ICs, values in all the
passage controls were comparable with those of the
baseline viruses (Table 1).

IN region sequences in RAL-selected variants

The full-length IN genes were amplified and cloned to
determine the genetic basis of selection in the presence or
absence of RAL. Ten to 12 clones from each sample were
sequenced.

Substitutions within IN were observed at passages 30
(G189R) and 29 (T210I) in two RAL-selected isolates (KP-
2 and KP-4, respectively). Neither of these has been reported
as IN inhibitor-resistant mutations. No substitutions in the
IN regions of KP-3 and 89.6 were found. However, A125T
and V1801 substitutions were observed in the KP-3 and 89.6
control variants at the last passage. No previously reported
mutations were identified in the IN region of KP-1 (an R5/
X4 mixture isolate) after 17 passages. However, four amino
acids (K7/K111/H216/D278) were selected by RAL from the
baseline quasi-species, whereas different amino acids (R7/
R111/Q216/N278) were selected in the control-passage
variants (Table 1).

Taken together, these findings showed that RAL-induced
selection pressure causes adaptation within the IN regions
of bulk primary viruses during in vitro passage in the target
cells, and confirmed that this system can be used to analyse
drug-selected variants in vitro.

Comparison of env gene sequences in RAL-
selected and passage-control isolates

A highly diverse gp120 region was observed in the baseline
R5/X4 mixture isolate, KP-1; however, the viral diversity of
variants passaged in the presence or absence of RAL
decreased significantly during in vitro selection (overall
mean distance after RAL selection of 0.056 at baseline to
0.007 after passage 17; mean overall distance in the passage
control of 0.01 after 20 passages, Table 2). Moreover, the
RAL-selected and control variants utilized CCR5 to enter
the target cell; neither variant used CXCR4 (Table 3).

Interestingly, the low-diversity RAL-selected variant con-
tained a completely different Env sequence from that of the
passage-control variant (Fig. 1a). Different regions spanning
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Table 1. Susceptibility of HIV-1 isolates to RAL and distinct differences in IN region sequences between RAL-selected and control-passaged viruses

Isolate Subtype  Tropism Passage no. Concn (nM) RAL-selected variant® Passage control
IN sequence RAL ICsq (nM) IN sequence RAL IC5¢ (nM)
KP-1 B Mix 0 0 K/R7, K/R111, Q/H216, D/N278 4 K/R7, K/R111, Q/H216, D/N278 4
8 20 K111, H216, D278 31 (7.8) R7, R111, Q216, N278 4.5 (1.2)
17t 20 K7, K111, H216, D278 26 (6.5) R7, R111, Q216, N278 0.4 (0.1)
KP-2 CRF08_BC R5 0 0 1201, ins289NQDME 16 1201, ins289NQDME 16
18 40 G189G/R, 1201, ins289NQDME 32 (2) 1201, ins289NQDME 16 (1)
30 85 G189R, 1201, ins289NQDME 55 (3.4) 1201, ins28ONQDME 25 (1.6)
KPp-3 B R5 0 0 V72, A125 32 V72, A125 32
11 25 V72, AI25 25 (0.78) V72, A125 33 (1)
22 27.5 V72, A125 37 (1.2) V72, A125T 13 (0.41)
KP-4 CRFO1_AE X4 0 0 - 2.1 - 2.1
8 40 - 33 (16) R166R/K, D279N 4.4 (2.1)
29 40 T2101 22 (10) G163E, R166R/K, D279N/S 4.1 (2)
89.6 B R5X4 0 0 - 1.2 - 1.2
8 15 - 34 (28) - 4.4 (3.7)
34 20 - 11 (9.2) V1801 1.2 (1)

*Amino acid changes in each passage variant are shown. Italicized letters represent mutations relative to the consensus subtype BC or B present in the baseline isolates. Bold letters represent amino
acids selected out of the quasi-species cloud. The fold increase in RAL ICs, values is shown in parentheses for in vitro-selected variants compared with those in the baseline isolates.
1The RAL variant selected after 17 passages was compared with the control selected after 20 passages.
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Table 2. Comparison of amino acid length and number of PNGs between RAL-selected and control-passage KP-1 variants

Mean V4 length  Mean PNGs (range)

Mean ENV ;474 length  Mean V1/V2 length (range) Mean V3 length (range)

Genetic diversity*

Passage no.

(range)

(range)t

24 (22-28)
27 (25-28) &

30 (29-31)

34 (33-34)
34 (33-34)%

69 (60-74)

74 (71-74)%

472 (461-480)

0.056

Baseline

31 (29-31)%

479 (472-480)%

0.038

RAL-selected virus

28 (26-29)
27 (26-27)$

31

34
34
34 (33-34)f

74
74
64 (60-74)%

480

480
464 (461-466)%
463 (462-463)
462 (459-463)

0.0070
0.0070
0.045

31
29 (29-31)%

17

24 (22-27)%

Passage control

23 (22-23)
23 (22-23)
23 (22-23)$

29

29

29
0.0048%

34

34

34
0.91%

0.0070 62

0.0080
0.010

62

10
20

62
<0.0001%

463
<0.0001%

0.0019%

P value

<0.0001$§

*Qverall mean distance.

tSequence from gp120 SP to the V5 region (aa 1-474).

t, § P values were calculated using the homoscedastic t-test between the RAL-selected and the passage-control variants indicated by the same symbols above.

the whole envelope sequence [from the signal peptide (SP) to
V5] were compared in the RAL-selected and passage-control
viruses. The results showed that, after only two passages, the
gpl120, V1/V2 and V4-loop regions within RAL-selected
variants were longer than those in the control variants, and
the number of putative N-linked glycosylation sites (PNGs)
was significantly higher than that in the control-passage
viruses (Table 2). This phenomenon was seen consistently in
two independent experiments.

We also analysed the gp120 sequences in the other four
isolates. Although the number of positional differences
between the RAL-selected and passage-control variants for
these four isolates was lower than that in KP-1 (between
three and nine, compared with >40), there was a similar
pattern of separation between the Env sequences (Fig. 1). In
three of the four isolates (KP-2, KP-3 and KP-4), positional
differences were observed in SP, Cl and all the variable
regions of gp120 (Fig. 1b—d). In strain 89.6, differences were
observed in the C2, C3 and V4 regions (Fig. 1e).

These results suggested that RAL treatment of target cells
causes a decrease in viral diversification within quasi-
species Env regions via a route different from that in
untreated target cells.

In vitro induction of RAL-selected V3-loop library
virus variants

To investigate further the effects of RAL on viral Env
sequences, we used the V3-loop library virus (JR-FL-
V3Lib) developed by Yusa et al. (2005), which carries a set
of random combinations from zero to ten substitutions
(27 648 possibilities) in the V3 loop (residues 305, 306, 307,
308, 309, 317, 319, 322, 323 and 326; V3 loop from Cys**
to Cys>!). The variants contained in the library were
polymorphic mutations derived from 31 R5 clinical isolates
(Yusa et al., 2005). PM1/CCR5 cells were exposed to the
JR-FL-V3Lib and serially passaged in the presence of RAL.
After two passages, the V3 sequence within the RAL-
selected variant was completely different from that in the
passage control (Fig. 1f). This suggested that, under
pressure from RAL, the infectious clone harbouring
different V3 region sequence from the passage control
had adapted to the target cells, despite containing the same
IN sequences.

Phylogenetic analysis of the Env regions after
passage with or without RAL

To confirm the temporal and spatial differences observed
in each of the RAL-selected and passage-control viruses,
phylogenetic analyses were conducted using complete SP—
V5 sequences. The neighbour-joining phylogenetic tree
showed a clear and distinct branching between RAL-
selected and passage-control KP-1 viruses (Fig. 2a). We
also identified a similar pattern in all the other isolates
tested (Fig. 2b—e).
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Table 3. Comparison of amino acid length, number of potential N-linked glycosylation sites, V3 sequences and co-receptor usage between anti-retroviral drug-selected and
control-passaged KP-1 variants

Passage  Genetic Mean ENV;_4;;, Mean V1/V2 Mean V3 Mean V4 Mean V3 region Geno2
no. diversity* length (range) length (range) length (range) length (range) PNGs pheno
(range) (%)$
Prevalence Sequenced
(%)
Baseline 0 0.056 472 (461-480) 69 (60-74) 34 (33-34) 30 (29-31) 24 (22-28) 41.9 CTRPNNNTRKGIHIGPGKFYATGAIIGDIRQAHC 41.2
2 Veerveoaan 41.2
16.1 R T A T.R..T.RD...N..K... 1.7
13.0 P N T.R..T.KT...N.KK... 2.9
3.2 B 7.4
257 2 Devevinnnnn 55.3
Passage 8 0.0070 463 (462-463) 62 34 29 23 (22-23) 100,00 .. i e e Veeowonan. 41.2
control
RAL- 8 0.0070 480 74 34 31 28 (26-29) 1000 Lo e e et e 41.2
selected
virus
3TC- 6 0.020 478 (475-480) 74 34 31 (29-31) 27 (25-28) 833 e e e e, 41.2
selected
virus
SQV- 11 0.0040 474 71 34 31 26 100.0 o e e 41.2
selected
virus
MVC- 7 0.0080 469 (468-469) 69 33 29 24 (23-24) 100.0 veve=.. I, . R,.T.R..T.KT...N.KK. .. 1.7
selected
virus

*Overall mean distance.

tSequence from gp120 SP to the V5 region (aa 1-474).

$V3 sequences of each variant are shown. Dots denote sequence identity and dashes indicate a deletion mutation.
§Prediction of viral co-receptor tropism using Geno2pheno based on a selectable ‘false positive rate’.
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Fig. 1. Comparison of the gp120 sequences between RAL-selected and control-passaged viruses. The gp120 sequences of
baseline, RAL-selected and the passage-control viruses were aligned for KP-1 (a), KP-2 (b), KP-3 (c), KP-4 (d) and strain 89.6
(e). Each amino acid in (a)—-(e) is numbered relative to the HIV-1 HXB, reference sequence. The V3 sequences from the JR-FL-
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whilst '~ indicates a deletion mutation. The number of passages is indicated, e.g. 17p for passage 17.
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In vitro selection of KP-1 variants by 3TC, SQV
and MVC

To determine whether other HIV drugs also changed the
route of adaptation to the target cells, we attempted to
select KP-1 variants using a reverse transcriptase inhibitor
(3TC), a protease inhibitor (SQV) and a CCR5 inhibitor
(MVC). As shown in Fig. 2(f), the pattern of clustering at
distinct positions between the selected isolates and the
passage-control variants was similar to that observed for
the RAL-selected variants. The selected variants showed
decreased diversity in the gpl20 sequences; however, the
length of the gpl120, V1/V2 and V4 sequences increased
(apart from in the MV C-selected variants). In addition, the
number of PNGs within gp120 was higher than that in the
control (Table 3). We also compared the V3 sequences
between the passage-control and each of the drug-selected
variants. The V3 sequences in all the SQV-selected variants
and 83.3% of those in the 3TC-selected variants, were
comparable with those in the RAL-selected variants. This
was not the case for the passage controls. Comparison of
variants passaged with RAL and 3TC showed that the
length of the V1/V2 and V4 regions and the number of
PNGs was similar; however, these parameters were
different in the SQV-selected variants (Table 3). This
indicated that the time at which a drug acts (e.g. during the
early or late phase of the HIV life cycle) influences the
selection of Env sequences. During selection with MVC,
CXCR4-tropic variants were selected from the baseline
mixture after seven passages.

Taken together, these results suggested that, in treated cells,
different classes of anti-HIV drugs may suppress the
variability of quasi-species during in vitro selection via a
route different from that in untreated cells.

DISCUSSION

This study evaluated the impact of anti-HIV drugs on the
Env bottleneck in bulk HIV-1 primary isolates during
selection in vitro. RAL-, 3TC- and SQV-selected variants of
the unique viral isolate, KP-1, harbouring both X4 and RS
variants and with a very high level of baseline viral diversity,
were used to study the final destination (genetic bottleneck)
of a large variety of Env sequences. Interestingly, the
phylogenetic clustering of RAL-selected KP-1 variants was
completely different from that of non-drug-treated controls
(Fig. 2). Our results also confirmed differences in the length
of the gp120, V1/V2 and V4-loop regions and in the number
of PNGs (Tables 2 and 3).

1t is not clear why viruses cultured under pressure from the
non-Env-directed drug RAL result in different env genotypes
compared with those without the drug. Thus, we cloned the
IN-env region of the proviral genome from passaged viruses
and sequenced the env and IN regions on the same cloned
plasmid, and compared them among the baseline and
passages 1, 2, 8 and 17 of the KP-1 virus. Under low

concentrations of the IN inhibitor RAL, K7 was selected for
at a late passage after accumulation of the other three amino
acids, K111, D278 and H216, in IN. During the sequential
accumulation of these four amino acids (K111, D278, H216
and K7), the RAL-selected Env sequences at passage 17 (the
Env sequences shown as filled boxes in Fig. 1) sequentially
accumulated mutations in the same proviral genome (Fig.
S1, available in JGV Online). However, we did not find a
clone including both the RAL-selected Env at passage 17 and
RAL-selected IN at passage 17 in the baseline or each
passaged virus, except for in the last passage. We also
examined the gpl20 and IN sequences of the 3TC- and
SQV-selected KP-1 variants. Compared with the RAL-
selected region, the variable regions of gpl20 in these
selected variants were very similar to each other, except for
the V1/V2 region (Fig. S2). However, the passage-control
variant was very different from the drug-selected variants
(Fig. 1a). Furthermore, the IN sequences were different in
each passaged virus: K111/D278/H216/K7 in RAL-selected,
R111/D278/Q216/R7 in 3TC-selected, K111/D278/H216/R7
in SQV-selected and R111/N278/Q216/R7 in virus without
drug treatment (underlined residues indicate amino acids
different from those in viruses without drug treatment). To
explain these results, we believe that, under pressure from
anti-HIV drugs (non-entry ARVs), the virus might show a
primitive reaction to select for the Env sequence and
recombine from quasi-species to gain advantage for entry
and/or enhance replication in target cells. Meanwhile, IN
was selected from quasi-species by a direct and/or indirect
effect of RAL-induced pressure. The combination of both
selective pressures may affect the selection for Env and IN
during adaptation in drug-treated conditions (Figs la and
S2). These results suggest that non-entry inhibitors, such as
RAL, 3TC and SQV, might also affect cell adaptation to
PM1/CCRS5 cells.

Many in vivo studies have reported the effects of the anti-
HIV drug-induced bottleneck on the env gene (Charpentier
et al., 2006; Delwart et al., 1998; Ibéafiez et al., 2000; Kitrinos
et al., 2005; Nijhuis et al., 1998; Nora et al., 2007; Sheehy et al.,
1996; Zhang et al., 1994). However, these studies had several
limitations. Because viruses were placed under in vivo
selective pressure using at least two anti-HIV drugs and by
the host immune response, it is difficult to separate the
different effects and to draw clear conclusions, particularly in
vivo. Delwart et al. (1998) and Kitrinos et al. (2005) avoided
some of these limitations by employing a heteroduplex
tracking assay, although in vivo peculiarities still remained.
Therefore, we used an in vitro selection system using unique
bulk primary isolates established in our laboratory (Hatada
et al, 2010; Shibata et al, 2007; Yoshimura et al, 2006,
2010b) to observe the effects of the anti-retroviral drug-
induced bottleneck on the IN and env genes.

This selection provides a sensitive approach for analysing
virus population dynamics. The effectiveness of ARV drugs
can be examined during the in vitro passage of a single
variant or mixture of variants without being affected by
many of the factors encountered in vivo. In addition,
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Fig. 2. Phylogenetic analyses of the Env regions from in vitro-passaged viruses selected with or without ARV drugs. (a-e)
Phylogenetic trees were constructed using gp120 SP-V5 sequences from RAL-selected and passage-control variants of KP-1
(a), KP-2 (b), KP-3 (c), KP-4 (d) and strain 89.6 (e). An ‘X’ represents baseline (BL) variants, and closed and open symbols
represent RAL-selected (RAL) and passage-control (PC) variants, respectively. In (a), the results of the second experiment are
indicated as RAL2 and PC2, respectively. (f) A phylogenetic tree was constructed using gp120 SP-V5 sequences from RAL-,
3TC-, SQV-, MVC-selected and control-passaged variants of KP-1. O, Control variants after eight passages; @, RAL-selected
variants after eight passages; A, 3TC-selected variants after six passages; 4, SQV-selected variants after 11 passages; M,
MVC-selected variants after seven passages. The trees were constructed using the neighbour-joining algorithm embedded

within the MEGA software.

differences in the Env sequences between the baseline and
selected variants can be compared after any number of
passages. The results of the present study provide important
information that will enhance our understanding of the
drug-induced genetic bottleneck. This phenomenon can be

examined in vitro using bulk primary isolates treated with or
without drugs.

Recently, several new ARV drugs have been licensed for use
in HIV-1-infected patients. MVC, approved in 2006, is the
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first CCR5 inhibitor (Gulick et al, 2008). One important
advantage associated with this drug is the absence of
cross-resistance with previously available ARV com-
pounds (Gulick et al, 2008; Steigbigel et al, 2008).
However, as is usual with anti-HIV drugs, resistant
variants with mutations in the Env, gpl20 and gp4l
sequences are induced both in wvive and in wvitro
(Anastassopoulou et al.,, 2009; Berro et al., 2009; Tilton
et al, 2010; Yoshimura et al., 2009, 2010a). As shown in
the present study, distinct Env sequences from each quasi-
species might be selected by the different anti-HIV drugs
(e.g. length of the V1/2 and/or V4 regions, V3 region
depletion and the number of PNGs). Moreover, many of
the novel anti-retroviral drugs in pre-clinical trials are
viral entry inhibitors (e.g. PRO140, ibalizumab, BMS-
663068 and PF-232798; Jacobson et al., 2010; McNicholas
et al., 2010; Nettles et al., 2011; Stupple et al.,, 2011; Toma
et al., 2011). Therefore, it is necessary to examine whether
such entry inhibitors are effective when used alongside
conventional drugs.

In conclusion, we studied the genetic bottleneck in bulk
primary HIV-1 isolates from untreated patients and drugs
targeting the Env (and other) regions. The results showed,
for the first time, the presence of drug-selected Env
sequences in these isolates. Although our observations were
based on a limited number of HIV-1 isolates and need to
be confirmed by independent studies, we believe that they

provide a new paradigm for HIV-1 evolution in the new
combination ARV therapy era.

METHODS

Patients and isolates. Primary HIV-1 isolates were isolated from
four drug-naive patients in our laboratory (KP-1-4) and passaged in
phytohaemagglutinin-activated PBMCs. Infected PBMCs were then
co-cultured for 5 days with PM1/CCR5 cells (a kind gift from Dr Y.
Maeda; Maeda et al, 2008; Yusa et al, 2005) and the culture
supernatants were stored at —150 °C (Hatada et al., 2010; Shibata
et al., 2007; Yoshimura et al., 2006, 2010b).

After isolation of the primary viruses, we checked the sensitivity of
each primary isolate to MVC. The KP-1 isolate was relatively MVC-
resistant compared with KP-2 and KP-3 (54 vs 5.9 and 8.7 nM,
respectively). KP-1 became MVC sensitive after eight passages in
PM1/CCR5 cells [ICsp, 3.4 nM; Geno2pheno value (see below),
41.2 %], whilst under the pressure of MVC, KP-1 became highly
resistant to MVC after eight passages (ICso, >1000 nM; Geno2pheno
value, 1.7 %). These results indicated that the bulk KP-1 isolate used
in this study harboured primarily R5 viruses with X4- or dual-tropic
viruses as a minor population.

Cells, culture conditions and reagents. PM1/CCR5 cells were
maintained in RPMI 1640 (Sigma) supplemented with 10% heat-
inactivated FCS (HyClone Laboratories), 50 U penicillin ml™}, 50 ug
streptomycin ml™! and 0.1 mg G418 (Nacalai Tesque) ml™L MVC,
RAL and SQV were kindly provided by Pfizer, Merck & Co. and
Roche Products, respectively. 3TC was purchased from Wako Pure
Chemical Industries.
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The laboratory-adapted HIV-1 strain 89.6, which was obtained
through the NIH AIDS Research and Reference Reagent Program, was
propagated in phytohaemagglutinin-activated PBMCs. The viral-
competent library pJR-FL-V3Lib, which contains 176 bp V3-loop
DNA fragments with 0-10 random combinations of amino acid
substitutions, was introduced into pJR-FL, as described previously
(Yusa et al., 2005).

In vitro selection of HIV-1 variants using anti-HIV drugs. The
four primary HIV isolates (KP-1-4), strain 89.6 and JR-FL-V3Lib
were treated with various concentrations of RAL and used to infect
PM1/CCRS5 cells to induce the production of RAL-selected HIV-1
variants, as described previously, with minor modifications (Hatada
et al, 2010; Shibata et al, 2007; Yoshimura et al, 2006, 2010b).
Briefly, PM1/CCRS5 cells (4 x 10* cells) were exposed to 500 TCIDs,
HIV-1 isolates and cultured in the presence of RAL. Virus replication
in PM1/CCRS5 cells was monitored by observing the cytopathic effects.
The culture supernatant was harvested on day 7 and used to infect
fresh PM1/CCRS5 cells for the next round of culture in the presence of
increasing concentrations of RAL. When the virus began to propagate
in the presence of the drug, the compound concentration was
increased further. Proviral DNA was extracted from lysates of infected
cells at different passages using a QIAamp DNA Blood Mini kit
(Qiagen). The proviral DNAs obtained were then subjected to
nucleotide sequencing. In vitro selection of the KP-1 isolate using
SQV, 3TC and MVC was also performed using the procedure
described above.

Amplification of proviral DNA and nucleotide sequencing.
Proviral DNA was subjected to PCR amplification using
PrimeSTAR GXL DNA polymerase and Ex-Tag polymerase
(Takara), as described previously (Hatada et al., 2010; Shibata et al.,
2007; Yoshimura et al, 2006, 2010b). The primers used were 1B and
H for the gpl20 region (Hatada et al, 2010; Shibata et al., 2007;
Yoshimura et al., 2006, 2010b), IN 1F (5'-CAGACTCACAATAT-
GCATTAGG-3') and IN IR (5'-CCTGTATGCAGACCCCAATATG-
3') for the IN region, and IN 1F and H for the IN-gp120 region. The
first-round PCR products were used directly in a second round of
PCR using primers 2B and F (Hatada et al., 2010; Shibata et al., 2007;
Yoshimura et al., 2006, 2010b) for gp120, IN 2F (5'-CTGGCATGG-
GTACCAGCACACAA-3') and IN 2R (3’-CCTAGTGGGATGTGT-
ACTTCTGAACTTA-3') for IN, and IN 2F and F for IN-gp120. The
PCR conditions used were as described above. The second-round
PCR products were purified and cloned into a pGEM-T Easy
Vector (Promega) or pCR-XL-TOPO Vector (Invitrogen), and the
env and IN regions in both the passaged and selected viruses were
sequenced using an Applied Biosystems 3500xL Genetic Analyzer
and a BigDye Terminator v3.1 Cycle Sequencing kit (Applied
Biosystems). Phylogenetic reconstructions were generated using
the neighbour-joining method embedded in the MEGA software
(http://www.megasoftware.net) (Tamura et al, 2007). Overall,
mean distances for viral diversity were also calculated using MEGA
software. The number and location of putative PNGs were
estimated using N-GlycoSite (http://www.hiv.lanl.gov/content/
sequence/GLYCOSITE/glycosite.html) from the Los Alamos
National Laboratory database.

Susceptibility assay. The sensitivity of the passaged viruses to
various drugs was determined as described previously with minor
modifications (Hatada et al, 2010; Shibata et al., 2007; Yoshimura
et al., 2006, 2010b). Briefly, PM1/CCRS5 cells (2 x 10° cells per well) in
96-well round-bottomed plates were exposed to 100 TCIDs, of the
viruses in the presence of various concentrations of drugs and
incubated at 37 °C for 7 days. The ICsq values were then determined
using a Cell Counting Kit-8 assay (Dojindo Laboratories). All assays
were performed in duplicate or triplicate.

Predicting co-receptor usage by the V3 sequence. HIV-1
tropism was inferred using Geno2pheno [coreceptor] program, with
a false rate positive (FPR) value of 5.0 %, which is freely available
(http://coreceptor.bioinf.mpi-inf.mpg.de/index.php). This genotyp-
ing tool more accurately predicts virological responses to the CCR5
antagonist MVC in ARV-naive patients than a reference phenotypic
tropism test (Sing et al., 2007).

Statistical analyses. Pairwise comparisons of the different param-
eters between variants in the two groups was calculated using the
homoscedastic t-test. A P value of <0.05 was considered statistically
significant.
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Abstract

Objective To compare the efficacy and safety of fixed-dose abacavir/lamivudine (ABC/3TC) and tenofovir/
emtricitabine (TDF/FTC) with ritonavir-boosted atazanavir (ATV/r) in treatment-naive Japanese patients with
HIV-1 infection.

Methods A 96-week multicenter, randomized, open-label, parallel group pilot study was conducted. The
endpoints were times to virologic failure, safety event and regimen modification.

Results 109 patients were enrolled and randomly allocated (54 patients received ABC/3TC and 55 patients
received TDF/FTC). All randomized subjects were analyzed. The time to virologic failure was not signifi-
cantly different between the two arms by 96 weeks (HR, 2.09; 95% CI, 0.72-6.13; p=0.178). Both regimens
showed favorable viral efficacy, as in the intention-to-treat population, 72.2% (ABC/3TC) and 78.2% (TDF/
FTC) of the patients had an HIV-1 viral load <50 copies/mL at 96 weeks. The time to the first grade 3 or 4
adverse event and the time to the first regimen modification were not significantly different between the two
arms (adverse event: HR 0.66; 95% CI, 0.25-1.75, p=0.407) (regimen modification: HR 1.03; 95% CI, 0.33-
3.19, p=0.964). Both regimens were also well-tolerated, as only 11.1% (ABC/3TC) and 10.9% (TDF/FIC) of
the patients discontinued the allocated regimen by 96 weeks. Clinically suspected abacavir-associated hyper-
sensitivity reactions occurred in only one (1.9%) patient in the ABC/3TC arm.

Conclusion Although insufficiently powered to show non-inferiority of viral efficacy of ABC/3TC relative
to TDF/FTC, this pilot trial suggested that ABC/3TC with ATV/r is a safe and efficacious initial regimen for
HLA-B*5701-negative patients, such as the Japanese population.
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Introduction

The fixed-dose combinations of tenofovir disoproxil fu-
marate 300 mg/emtricitabine 200 mg and abacavir sulfate
600 mg/lamivudine 300 mg are components of antiretroviral
therapy for treatment-naive patients with HIV-1 infection in
developed countries (1, 2). The efficacy and safety of teno-
fovir/emtricitabine (TDF/FTC) and abacavir/lamivudine
(ABC/3TC) remain the focus of ongoing debate. The ACTG
5202 trial demonstrated that the viral efficacy of ABC/3TC
is inferior to that of TDF/FTC among treatment-naive pa-
tients with a baseline HIV viral load of >100,000 copies/mL
receiving efavirenz or ritonavir-boosted atazanavir as a key
drug (3). On the other hand, the HEAT study showed that
the viral efficacy of ABC/3TC is not inferior to that of TDF/
FTC, regardless of the baseline viral load when used in
combination with lopinavir/ritonavir (4).

With regard to safety, the occurrence of ABC-associated
serious hypersensitivity reactions, the most important ad-
verse effect of ABC affecting 5-8% of patients, has limited
its use (5). However, screening for HLA-B*5701 or pre-
scribing ABC in HLA-B*5701-negative populations, such as
the Japanese, can reduce the incidence of immunologically-
confirmed hypersensitivity to 0% (6, 7). Another negative
aspect of ABC use is its association with myocardial infarc-
tion, as reported by the D:A:D study (8). However, the pos-
sible association of myocardial infarction with ABC was not
confirmed by a recent meta-analysis report of the US Food
and Drug Administration (9). On the other hand, renal
proximal tubular damage leading to renal dysfunction and a
loss of phosphate, which can result in decreased bone min-
eral density, is a well-known adverse effect of TDF (10-14).

Taking this background into account, the American De-
partment of Health and Human Services (DHHS) Guidelines
place TDF/FTC as the preferred drug and ABC/3TC as an
alternative choice, whereas other international guidelines, in-
cluding the European AIDS Clinical Society (EACS) Guide-
lines and the Japanese Guidelines, recommend both TDF/
FTC and ABC/3TC as preferred choices (1, 2, 15).

Randomized control trials comparing TDF/FTC and ABC/
3TC have been conducted in the US and Europe, but not in
other parts of the world (4, 16, 17). The efficacy and safety
of these two fixed-dose regimens in patients with different
genetic backgrounds and body statures might not be similar
to the results of previous trials, especially considering that
the prevalence of HLA-B*5701 is zero in the Japanese
population (7). Moreover, the degree of decrement in the re-

nal function with TDF is larger in patients with a low body
weight, such as the Japanese, which might limit the use of
TDF in patients with a high risk for renal dysfunc-
tion (18-20).

Based on the above described background, the present
randomized trial was originally designed in 2007 to eluci-
date whether the viral efficacy of ABC/3TC is not inferior
to that of TDF/FTC with ritonavir-(100 mg) boosted
atazanavir (300 mg) in treatment-naive Japanese patients,
whose body weight is much lower than Whites or
Blacks (21). However, the independent data and safety
monitoring board (DSMB) recommended that the protocol
be modified to examine the efficacy, safety and tolerability
among Japanese patients with HIV-1 infection for 96 weeks
as a pilot trial because only 109 patients were enrolled and
randomized at the end of the enrollment period despite a
planned sample size of 240 patients, primarily due to the
above mentioned negative reports of ABC use in the D:A:D
study and ACTG 5202 (3, 8).

Materials and Methods

This clinical trial was designed and reported according to
the recommendations of the Consolidated Standard of Re-
porting Trials (CONSORT) statement (22). The protocol and
supporting CONSORT checklist are available as supplemen-
tary files (see Supplementary files 1 and 2).

Ethics statement

The Research Ethics Committee of each participating cen-
ter approved the study protocol. All patients enrolled in this
study provided a written informed consent. This study was
conducted according to the principles expressed in the Dec-
laration of Helsinki.

Study design

The Epzicom-Truvada study is a phase 4, multicenter,
randomized, open-label, parallel group pilot study conducted
in Japan that compared the efficacy and safety of a fixed
dose of ABC/3TC and TDF/FTC, both combined with
ritonavir-boosted atazanavir (ATV/r) for the initial treatment
of HIV-1 infection for 96 weeks. Enrollment of patients be-
gan in November 2007 and ended in March 2010, and the
follow-up period ended in February 2012. With a one to one
ratio, the patients were randomly assigned to receive either a
fixed dose of ABC/3TC or TDF/FTC, both administered
with ATV/r. The randomization was stratified according to
each participating site and conducted at the data center with
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independent clinical research coordinators using a computer-
generated randomization list prepared by a statistician with
no clinical involvement in the trial.

Study patients

This study population included treatment-naive Japanese
patients aged 20 or over with HIV-1 infection who met the
eligibility criteria for the commencement of antiretroviral
therapy according to the DHHS Guidelines in place in the
U.S. at the time of the writing of the study protocol (a CD4
count <350/uLlL or a history of AIDS-defining illness regard-
less of the CD4 count) (23). Patients were screened and ex-
cluded if they had previously taken lamivudine, tested posi-
tive for hepatitis B surface antigens, had comorbidities such
as hemophilia or diabetes mellitus that required medical
treatment, congestive heart failure or cardiac myopathy or if
they were considered not suitable for enrollment by the at-
tending physicians. Candidates were also excluded if their
alanine aminotransferase level was 2.5 times greater than the
upper limit of normal, they had an estimated glomerular fil-
tration rate (eGFR) calculated using the Cockcroft-Gault
equation of <60 mL/min, {creatinine clearance = [(140- age)
x weight (kg)]/(serum creatinine x72)(x0.85 for females)}
or a serum phosphate level <2 mg/dL or had active oppor-
tunistic diseases that required treatment (24). Each patient’s
actual body weight was used for the calculation of eGFR.
At screening, a genotypic drug resistant test and screening
for the HLA-B*5701 allele were permitted but not required
because the prevalence of both the drug resistant virus and
the HLA-B*5701 allele are low in Japanese patients (7, 25).
Medical history, including a history of AIDS-defining ill-
nesses and other comorbidities, was also collected. Enroll-
ment stopped on March 3, 2008 due to the recommendation
from the DSMB of the trial based on the interim analysis of
the ACTG5202 that ABC/3TC is less effective than TDF/
FTC in patients with a baseline viral load >100,000 copies/
mL (3). Accordingly, the DSMB recommended that the trial
should be restarted with modified inclusion criteria: to enroll
patients with an HIV-1 viral load of <100,000 copies/mL at
screening, and the enrollment restarted from April 1, 2008.

Study procedures

Required visits for participants for clinical and laboratory
assessments were at screening, enrollment and every 4
weeks until the viral load diminished to <50 copies/mL. For
patients with a viral load <50 copies/mL, the required visit
interval was every 12 weeks for the duration of the study.
The evaluation performed at each visit included a physical
examination, CD4 cell count, HIV-1 RNA viral load, a com-
plete blood cell count and blood chemistries (total bilirubin,
alanine aminotransferase, lactate dehydrogenase, serum cre-
atinine, potassium, phosphate, triglycerides and low-density
lipoprotein (LDL) cholesterol) and a urine examination of
the levels of phosphate, creatinine and (2 microglobulin.
The values of urinary B2 microglobulin were expressed rela-
tive to a urinary creatinine level of 1 g/L. (/g Cr). The per-

cent tubular resorption of phosphate was calculated using
the following formula: {1-[(urine phosphate x serum cre-
atinine)/(urine creatinine x serum phosphate)]} x100 (26).
All data, including the HIV-1 RNA viral load, were col-
lected at each participating site and sent to the data center.
Grade 3 or 4 serious adverse events were reported to the
DSMB, which made a judgment whether they were caused
by the study drugs. Independent research coordinators at the
data center visited at least 10 facilities every year to monitor
the accuracy of the submitted data and compliance to the
study protocol. All authors vouch for the completeness and
accuracy of the reported data.

Statistical analysis

The sample size calculation was originally conducted as
follows: Assuming a 90% success rate in the TDF/FTC arm
at week 48, a sample size of 224 patients (112 patients per
arm) provided 80% power (one sided, 0=0.05) to establish
non-inferiority of ABC/3TC to TDF/FTC each in combina-
tion with ATV/r. Non-inferiority was defined as the lower
bound of the two-sided 95% confidence interval (CI) with
the treatment difference being above -10%. Based on this
assumption, the targeted sample size was set to 240 patients
(120 in each arm). However, as previously described, due to
the shortage of accrued subjects, this study was underpow-
ered and conducted as a pilot trial.

The primary efficacy endpoint was the time from ran-
domization to virologic failure (defined as a confirmed HIV-
1 RNA >1,000 copies/mL at or after 16 weeks and before
24 weeks or >200 copies/mL at or after 24 weeks) (3). The
secondary efficacy endpoints included the time from ran-
domization to either virologic failure or ART modification
and a comparison of the proportions of patients with HIV-1
RNA <50 copies/mL at weeks 48 and 96 regardless of pre-
vious virologic failure. The intent-to-treat (ITT) population
comprising all randomized subjects was used to assess the
efficacy data; however, a comparison of the proportion of
virologically-suppressed patients was conducted with both
the ITT and a per protocol population while on the initial
randomized regimen.

The safety endpoint was the time from randomization to
the first occurrence of grade 3 or 4 laboratory data or abnor-
mal symptoms that were at least one grade higher than the
baseline. Isolated hyperbilirubinemia was excluded from the
safety endpoints. The grade of adverse events was classified
according to the Division of AIDS Table for grading the se-
verity of adult and pediatric events, version 2004 (27). The
tolerability endpoint was the time from randomization to
any regimen modification. The safety and tolerability end-
points were calculated in the ITT population. Changes per
protocol in the CD4 cell count, lipid markers and renal tu-
bular markers at weeks 48 and 96 were compared using the
Mann-Whitney test. A repeated measures mixed model was
used to estimate and compare changes in the renal function
between the two arms (17). The renal function was calcu-
lated using the Modification of Diet in Renal Disease study
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Figure 1.

Table 1.

Demographic and Baseline Characteristics

Enrollment, randomization and disposition of patients.

ABC/3TC (1=54)

TDE/FTC (1=55)

Total (n=109)

Sex (male), n (%)

Age (years)

CD4 count (/uL)'

HIV RNA viral load (lc.vgm/mL)T

HIV RNA viral load >100,000 log;o/mL, n (%)

Route of transmission (homosexual contact), n (%)

History of AIDS n (%)

Body weight (kg)"

Body mass index (kg/m?)

eGFR (mL/min/1.73 m?)'

Creatinine clearance (mL/min)
Serum creatinine (mg/dL)T

Urinary B2 microglobulin (ug/g Cre)Jr
Tubular resorption of phosphate (%)T
LDL-cholesterol (mg/dL)T

53 (98.1)
39 (28.8-44)

236.5 (194-301.3)
4.29 (3.92-4.67)
1(1.9)

47 87)

1(1.9)

64 (59-72.1)

22.6 (20.4-24.2)
96.9 (82.7-107.3)
119.3 (105.4-136.6)
0.76 (0.67-0.83)
195.8 (98.3-505.3)
92.9 (90-95.1)
91.5 (75-125.5)

54 (98.2)
35 (29-42)

269 (177-306)
4.28 (3.86-4.60)
0(0)

49 (89.1)

509.1)

63.1 (58-69)

21.9 (20.3-23.6)
94.4 (83.6-105.7)
124.6 (103-139.3)
0.75 (0.68-0.84)
138.4 (86.8-426.4)
92.3 (87.7-95.2)
94 (72.5-111.5)

107 (98.2)
36 (29-42.5)

257 (194-305)

4.28 (3.89-4.67)

1 (0.9%)

96 (88.1)

6(5.5)

64 (58.3-70.7)
22.4(20.3-23.7)
96.7 (83.0-106.7)
120.3 (104.7-138.3)
0.76 (0.68-0.83)
172.9 (88.3-458.7)
92.7 (89.3-95.1)

94 (74.5-114)

Triglycerides (mg/clL)Jr 132 (98-170.5) 114 (73-184) 127 (85.5-175)
Hypertension, n (%) 3(5.6) 1(1.8) 43.7)
Diabetes mellitus, n (%) 0 (0) 0(0) 0(0)
Concurrent use of nephrotoxic drugs, n (%) 10 (18.5) 10(18.2) 20 (18.3)
Hepatitis C, n (%) 0(0) 00 0(0)

"median (interquartile range)

IQR: interquartile range, AIDS: acquired immunodeficiency syndrome, eGFR: estimated glomerular filtration rate, LDL:

low-density lipoprotein

equation adjusted for the Japanese population (28), and a
sensitivity analysis was conducted using the above men-
tioned Cockcroft-Gault equation.

Time-to-event distributions were estimated using the
Kaplan-Meier method and compared using the two-sided
log-rank test. Hazard ratios (HRs) and 95% confidence in-
tervals (95% Cls) were estimated using the Cox proportional
hazards model. For grade 3 or 4 serious adverse events
caused by the study drugs, the description and severities
were recorded. Statistical significance was defined at two-
sided p values <0.05. All statistical analyses were performed
with The Statistical Package for Social Sciences ver. 17.0
(SPSS, Chicago, IL).

Results

Patient disposition and baseline characteristics

109 patients from 18 centers were enrolled and random-
ized between November 2007 and March 2010. Of these pa-
tients, 54 and 55 were allocated to the ABC/3TC and TDF/
FTC arms, respectively (Fig. 1). The baseline demographics
and characteristics are shown in Table 1. Most patients were
men, with a median body weight of 64 kg. The median CD4
cell count was 257/l (IQR: 194-305). One patient in the
ABC/3TC arm had a baseline HIV-1 RNA level of >100,000
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men. ATV/r: ritonavir-boosted atazanavir, ABC/3TC: abacavir/lamivudine, TDF/FTC: tenofovir/

emtricitabine
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Figure 3. Efficacy results at 48 and 96 weeks. Proportion of patients with an HIV RNA level <50
copies/mL regardless of previous virelogic failure with 95% binomial confidence intervals at 48 and
96 weeks. (A) Intention-to-treat analysis. (B) Per protocol analysis. ATV/r: ritonavir-boosted ata-
zanavir, ABC/3TC: abacavir/lamivudine, TDF/FTC: tenofovir/emtricitabine

copies/mL. This patient was enrolled before the announce-
ment of the interim analysis of ACTG5202 in March 2008
and achieved an HIV-1 RNA level of <50 copies/mL by the
end of that month. One patient in the TDF/FTC arm had a
history of lamivudine use. That patient was included in the
analysis because this aspect of the medical history was iden-
tified after randomization and initiation of the allocated
treatment.

Efficacy results

In the primary efficacy analysis, the time to virologic fail-
ure was not significantly different in the ABC/3TC arm
from that observed in the TDF/FTC arm by 96 weeks (HR,
2.09; 95% CI, 0.72-6.13; p=0.178). Virologic failure oc-
curred in 5 and 10 patients in the ABC/3TC and TDEF/FTC
arms, respectively (Fig. 2A). In the secondary -efficacy

analysis, the times to the first occurrence of confirmed vi-
rologic failure or discontinuation of the initially allocated
regimen were not different between the two arms (HR, 1.30;
95% CI, 0.61-2.77; p=0.502) (Fig. 2B). Among the ITT
population, the proportion of patients with an HIV RNA
level <50 copies/mL at week 48 regardless of previous vi-
rologic failure was 81.5% in the ABC/3TC group and 80%
in the TDF/FTC group, for a difference of -1.5% (95% CI,
-16% to 13%), and at week 96, 72.2% and 78.2% for the
ABC/3TC and TDF/FTC groups, respectively, for a differ-
ence of 6% (95% CI, -10% to 22%) (Fig. 3A). The per pro-
tocol analysis showed that the proportions at week 48 were
91.7% and 86.3% for the ABC/3TC and TDF/FTC groups,
respectively, for a difference of -5.4% (95% CI, -18% to
7%). At week 96, the proportions were 88.6% and 95.6%
for the ABC/3TC and TDF/FTC groups, respectively, for a
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grade higher than baseline. (B) Time to tolerability endpoint, defined as the first change in regimen.
ATV/r: ritonavir-boosted atazanavir, ABC/3TC: abacavir/lamivudine, TDF/FTC: tenofovir/emtric-

itabine

Table 2. Selected Grade 3 or 4 Events While Receiving Randomized

Antiretroviral Drugs

ABC/3TC (n=54) TDF/FTC (n=55) Total (n=109)

Overall, n (%)
Laboratory, n (%)
Alanine aminotransferase, n
LDL-cholesterol, n
Triglycerides, n
Uric acid, n

Serum phosphate, n
Serum calcium, n
Serum creatinine, n
Platelets count, n
Symptoms, n (%)
Depression, n
Fever,n

13 (24)
12 (22)
0

[ S N
—~
N
-

[

10 (18) 23 21)
7(13) 19 (17)
1 1

2 8

3 3

0 1

0 2

0 1

0 1

1 2
3(5) 4(4)
2 2

1 2

More than one event occurred in 2 patients.
LDL: low-density lipoprotein

difference of 6.9% (95% CI, -4.2% to 18%) (Fig. 3B). The
primary and secondary efficacy analyses did not show a sig-
nificant difference in viral efficacy between the two arms.

Safely and tolerability results

10 (18.5%) and 7 (12.7%) patients in the ABC/3TC and
TDF/FTC groups, respectively, experienced 23 grade 3 or 4
adverse events related to the study drugs while on the initial
regimen. The time to the first adverse event was not signifi-
cantly different between the two arms (HR 0.66; 95% CI,
0.25-1.75, p=0.407) (Fig. 4A). Table 2 shows a list of se-
lected grade 3 or 4 safety events. Among the adverse events,
48% included elevation of lipid markers. The tolerability
endpoint, the time to first ART modification, was not sig-
nificantly different between the two arms (HR 1.03; 95%
CL, 0.33-3.19, p=0.964), and only 6 (11.1%) and 6 (10.9%)
patients in the ABC/3TC and TDF/FTC arms, respectively,

discontinued the initially allocated regimen by 96 weeks
(Fig. 4B). The most common reason for regimen modifica-
tion was drug toxicity (n=10; 4 in ABC/3TC and 6 in TDF/
FTC arm; suspected ABC hypersensitivity reactions based
on the appearance of rash and fever in HLA-B*5701-
negative patient; n=1, depression; n=3, jaundice; n=3, nau-
sea; n=2, and lipodystrophy; n=1). One patient in the ABC/3
TC group developed a cerebral infarction during week 39
but was able to continue the study drugs. No deaths were
registered during the study period.

Changes in the CD4 cell count and other parame-
ters of interest

The increase in the median CD4 count from baseline to
48 weeks was marginally larger in the ABC/3TC arm than
in the TDF/FTC arm (median: ABC/3TC: 216, TDE/FTC:
192, p=0.107). This difference was significantly larger at 96
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Table 3. Median Values of Changes in Parameters of Interest from Baseline to 96 Weeks

ABC/3TC (n=54)

TDF/FTC (n=55)

Number tested (b week 96) B Week 96 Median A Number tested (b week 96) B: Week 96 Median A p value
CD4 cell count (/uL) 54,43 236.5 545 328 55,45 269 493 216 0.031
Lipids
LDL-cholesterol (mg/dL) 54,16 91.5 149 315 53,16 94 97 2 0.026
Triglyceride (mg/dL) 54,29 132 257 111 55,26 114 202 40.5 0.037
Renal tubular markers
Urinary B2 microglobulin (pg/g Cre) 49, 32 195.8 99.2 -94.9 52,38 138.4 303.9 86.6 <0.001
Tubular resorption of phosphate (%) 49, 32 93 92 -1.4 50, 36 92 91 -2.6 0.930
LDL: low-density lipoprotein
A B
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Figure 5. Changes in the renal function between baseline and 96 weeks. (A) Changes in the esti-
mated glomerular filtration rate calculated with the Modification of Diet in Renal Disease study
equation adjusted for the Japanese population. (B) Changes in creatinine clearance calculated with
the Cockcroft-Gault equation. The data are presented as the mean+95% confidence interval. ATV/r:
ritonavir-boosted atazanavir, ABC/3TC: abacavir/lamivudine, TDF/FTC: tenofovir/emtricitabine

weeks (ABC/3TC: 328, TDF/FTC: 236, p=0.031, Table 3).
The increases in both LDL-cholesterol and triglycerides
from baseline to 96 weeks were more significant in the
ABC/3TC arm than in the TDF/FTC arm. One patient in the
TDF/FTC arm had been treated with lipid-lowering medica-
tions prior to study enrollment. Furthermore, 7 patients and
1 patient in the ABC/3TC and TDF/FTC arms, respectively,
started lipid-lowering agents during the study period. With
regard to renal tubular markers, the levels of urinary B2 mi-
croglobulin increased in the TDE/FTC arm (median: 86.6
pg/g Cre), whereas it decreased in the ABC/3TC arm (me-
dian: -94.9 pg/g Cre). These changes were significantly dif-
ferent between the two arms (p<0.001). On the other hand,
tubular resorption of phosphate did not show changes from
baseline to 96 weeks in the two groups, and the levels were
not different between the two arms (Table 3).

Changes in the renal function

A data analysis using repeated measures mixed models
showed a significant decrease in the mean eGFR from base-
line to 96 weeks in both groups (ABC/3TC: -8.7 mL/min/
1.73 m®, 95%CI -13.3 to -4.2, p<0.001; TDF/FTC: -9.2 mL/
min/1.73 m’, 95%CI -13.7 to -4.7, p<0.001) (Fig. 5A).
There was no significant interaction between the trend of the
two arms over time (p=0.202), thus indicating that the

change in eGFR from baseline to 96 weeks was not signifi-
cantly different between the two arms. A sensitivity analysis
of creatinine clearance calculated using the Cockcroft-Gault
equation showed that creatinine clearance decreased signifi-
cantly from the baseline in the TDF/FTC arm (-9.6 mL/min,
95%CI -16.6 to -2.5, p<0.001) but not in the ABC/3TC arm
(-4.1 mL/min, 95%CI -11.2 to 3.0, p=0.466)(Fig. 5B). No
significant interaction between the trend of the two arms
was observed with respect to creatinine clearance (p=0.403).
Two patients in the ABC/3TC arm progressed to more ad-
vanced chronic kidney disease (CKD) stage by the last per
protocol visit: one patient progressed to stage 4 CKD (eGFR
<30 mL/min/1.73 m®) and the other to stage 3 CKD (eGFR
<60 mL/min/1.73 m*). However, ABC/3TC did not appear to
be the causative drug for renal dysfunction in these two
cases because the deterioration in the renal function was as-
sociated with the development of malignant lymphoma in
the former patient and with the commencement of fenofi-
brate treatment in the latter; renal function recovered rapidly
in the latter patient after the discontinuation of fenofibrate.

Discussion

Although insufficiently powered to show the non-
inferiority of the viral efficacy of ABC/3TC relative to TDF/
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