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endogenous TRIM5a in HelLa cells but found no significant dif-
ference in the infectivities of the A92E and N121K mutants (data
not shown). This suggests that TRIM5a does not play a role in the
CypA-dependent restriction of A92E and N121K. Still, the possi-
bility that potent, as-yet-unknown HIV-I1-inhibitory factors,
which associate with CypA, may be able to access this region can-
not be ruled out (5).

Although CypA supports HIV-1 infection, some CA mutants
showed CypA-dependent impairment of infection. Our data indi-
cate that CypA impairs N121K infection, even in 293T and Jurkat
cells that do not express CypA at very high levels. One of the
proposed mechanisms for CypA-dependent restriction was that
the high CypA expression level and mutation in CA modulate the
stability of viral core (21). In our data, addition of CsA rescues the
infection of N121K virus in 293T cells, but the infection efficiency
of N121K does not exceed that of the WT virus infection even at
the highest CsA concentration. It could be said that the infection
of N121K might require CypA for its infection, and CypA facili-
tates the HIV-1 infection at different stage of replication. Indeed,
CsA treatment reduced the infectivity of the WT virus in 293T
cells, and restriction was observed at the early RT production step
(data not shown). The stability of viral core alone cannot explain
why both CypA-dependent infection and CypA-mediated inhibi-
tion are observed for the same virus. Therefore, we could assume
that a potent HIV-1-inhibitory factor(s) is also involved in the
CypA-dependent restriction and that each CA mutant has a dif-
ferent sensitivity for it. Thus, the N121K CA mutant could be a
useful tool for analyzing the mechanism(s) underlying CypA-de-
pendent restriction of HIV-1 infection. Understanding this mech-
anism may also help to determine the exact role played by CypA
during HIV-1 replication.
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