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PARTICLE SIZE AND IMMUNE RESPONSES

Particle size is thought to affect particulate-induced immune responses. Sharp et al.
investigated the relationship between particle size and DC activation. They showed
that the polystyrene particles measuring between 430 nm and 1 um activated DCs ef-
ficiently to produce IL-18 [15]. Hornung et al. demonstrated that the optimal size of
silica crystals engulfed by macrophages was approximately 1 ©m [29]. Coban et al. in-
vestigated the adjuvanticity of hemozoin of different sizes. They reported that hemo-
zoin particles measuring between 50 nm and 200 nm exhibited a stronger adjuvant
effect compared with larger (2-20 ©m) and smaller (<50 nm) particles {27, 30]. These
results suggest that particles measuring between 200 nm and 1 um are the optimal size
for phagocytosis and the stimulation of immune responses.

DEPOT EFFECT

Antigen persistence and prolonged release, an effect referred to as the “depot effect”
(first proposed by Glenny et al. in 1926), is believed to be responsible for the adjuvan-
ticity of alum [31]. Harrison verified this hypothesis in 1935 by transferring the alum
nodules from one guinea pig into a second guinea pig [32]. However, the depot ef-
fect has been questioned in several reports. Holt demonstrated that the antibody re-
sponses were normal if alum nodules were excised 2 weeks after immunization [33].In
particular, a recent report by Hutchison et al. demonstrated that the removal of the in-
jection site 2 hours after the administration of antigen/alum had no effect on antigen-
specific antibody and T-cell responses [34]. These studies suggest that the antigen
depot does not play an important part in alum adjuvanticity, and that alum exhibits
additional effects that account for its adjuvant properties.

TH2 CYTOKINES AND IL-4-PRODUCING CELLS

Alum preferentially induces Th2 responses (which are characterized by the production
of IgG1 and IgE) and IL-4 is a crucial factor for the induction of such Th2 responses.
Alum and several other particulates induce the recruitment of IL-4-producing myeloid
cells. Jordan et al. reported that alum induces IL-4-producing Gr-1" cells, and that
these cells and IL-4 are required for the expansion of antigen-specific B cells in vivo
(35]. Furthermore, Wang et al. demonstrated that alum-elicited Gr-1" cells are IL-
4-producing eosinophils [36]. As stated above, chitin-induced IL-4-producing cells
were eosinophils and basophils. Moreover, eosinophil recruitment is dependent on
the leukotriene B, produced by macrophages [28]. However, it has been reported that
the antigen-specific antibody responses are normal in several eosinophil-deficient
mice (IL-5-deficient, GATA1 A, and Phil mice) compared with wild-type (WT) control
mice after immunization with ovalbumin (OVA)-alum [37]. In addition, Ohnmacht el
al. demonstrated that antigen-specific IgG1 and IgE responses were comparable in WT
and basophil-deficient mice immunized with OVA and alum [38]. These studies sug-
gest that IL-4-producing myeloid cells such as eosinophils and basophils do not par-
ticipate in alum adjuvanticity or Th2 responses. Recently, it has been reported that
CD1d-deficient [both type-I and -1l natural killer T (NKT) cell-deficient]-mice, but
not Ja18-deficient (only type-I NKT cell-deficient)-mice exhibited reduced levels of
antigen-specific IgG1 [39]. Type-II NKT cells appear to be required for alum-induced
antigen-specific IgG1 responses in the regulation of IL-4-producing T cells.

There are several reports on IL-4 signaling and alum adjuvanticity [40, 41]. Brewer
etal. reported on the involvement of IL-4 in the immunization of alum using IL-4-, IL-
4Ra-, and STAT6-deficient mice. These strains of mice did not induce the production
of IgE and exhibited reduced levels of IgG1. However, T cells from IL-4Ra- and STAT6-
deficient mice produced normal or higher amounts of IL-4 and IL-5 in response to
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a specific antigen. These results indicate that IL-4- and IL-13-mediated signaling is
required for Th2-associated antibody production but is dispensable for alum-induced
Th2 responses.

Recently, several reports focused on the importance of thymic stromal lymphopoi-
etin (TSLP) on Th2 activation, and Al-Shami et al. demonstrated that TSLP receptor-
deficient mice displayed reduced Th2 responses after immunization with OVA and
alum [42]. However, allergen (without adjuvant)-induced Th2 responses were also re-
duced in TSLP receptor-deficient or anti-TSLP antibody-treated mice [43, 44]. These
results indicate that TSLP receptor-deficient mice are Th1 prone, and thatreduced Th2
responses are not specific to immunization with alum.

PARTICULATES AND MYD88 SIGNALING
All TLR ligands are thought to be potent immune adjuvants through the activation
of the adaptor molecules MyD88 and TRIE Schnare et al. demonstrated that MyD88-
deficient mice produced normal levels of OVA-specific IgG and IgE, but that elevated
levels of total IgE were produced after immunization with OVA in alum [45]. The exces-
sive amounts of total IgE appeared to be caused by the increased production of IL-13
in MyD88-deficient T cells. Gavin et al. also reported alum adjuvanticity in mice defi-
cient in MyD88 and TRIE, which lack TLR signaling. The antibody responses in these
double-knockout (KO) mice were comparable with those in WT mice immunized with
trinitrophenol (TNP)-hemocyanin in alum [46]. These results suggest that TLR signal-
ing does notaccount for the action of alum and indicate that TLRs may acts as negative
regulators of IgE production. However, Da Silva et al. demonstrated that MyD88 path-
way was required for alum-induced Th2 responses in asthma models [47]. The reason
for these discrepant results is unclear. There might be differences in the alum (Imject
alum, aluminum hydroxide, aluminum phosphate, or aluminum potassium sulfate)
and OVA (endotoxin-free or not) used.

Conversely, hemozoin crystals seem to act as MyD88-dependent adjuvants in nat-
ural and synthetic forms [27, 30]. The mechanism(s) underlying this dissimilarity be-
tween alum and hemozoin particulates remains to be investigated.

NLRP3 INFLAMMASOME

In 2008, several reports focused on the discovery that particulate adjuvants activate the
NLRP3 inflammasome [29, 48]. The inflammasome is a PRR, and there are four classes
ofinflammasome: NLRP1, NLRP3, NLRC4, and AIM2 [5]. The NLRP3 inflammasome is
one of the best characterized inflammasomes and is activated by particulates and crys-
tals [15, 29, 48-53]. NLRP3 forms a multiprotein complex with apoptosis-associated
speck-like protein containing a caspase recruitment domain (ASC) and caspase-1. The
NLRP3 inflammasome promotes the secretion of inflammatory cytokines such as IL-
1B and IL-18 as active mature forms cleaved by activated caspase-1. In addition to ac-
tivation by PAMPs, several reports have demonstrated that particulates such as silica
and alum stimulate macrophages and DCs to produce IL-18 and IL-18 through acti-
vation of the inflammasome, and that alum-induced antigen-specific IgG1 responses
are significantly reduced in NLRP3-, ASC-, and caspase-1-deficient mice [48, 54]. Sim-
ilar to alum, most particulate adjuvants are considered to have an adjuvant effect via
inflammasome activation because silica, asbestos, PLGA, and MSU act as activators
of the NLRP3 inflammasome. However, other reports have shown that the NLRP3 in-
flammasome is not required for antibody production in response to vaccination using
a particulate adjuvant, including alum [27, 37, 55, 56]. These contradictory reports on
the role of the NLRP3 inflammasome may be because of different experimental con-
ditions. Several studies used Imject alum [48, 54, 55], whereas other studies used alu-
minum hydroxide [56]. Differences in genetic background of the animal used, such
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FIGURE 1. Proposed mechanisms of particulate adjuvants (alum, MSU, silica) in innate immunity.
Alum induces cell death, and the damaged host cells, such as macrophages and neutrophils, release
genomic DNA and uric acid as DAMPs. The recognition mechanisms of genomic DNA are still un-
clear, but the TBK-1-IRF3 axis plays an important part in IgE production and iMono/iDC migration
via the IL-12p80 production. The released uric acid forms MSU crystals, which are recognized by
lipid sorting on DCs. The engulfed MSU crystals trigger the activation of Syk and PI3K§, and induce
inflammatory cells or a strong interaction between DCs and CD4" T cells. However, the released
uric acid has not been shown to form crystals at the site of alum injection. Alum and silica stim-
ulate macrophages and DCs to produce NLRP3 inflammasome-dependent IL-18 and IL-18. These
cytokines contribute (at least in part) to acute inflammation and Th2 activation. Macrophages and
DCs also induce PGEy in response to alum and silica via Syk activation. PGE is involved in IgE
production. iMonos: inflammatory monocytes; iDCs: inflammatory DCs.

as C57BL/6 [48, 54, 55] and mixed C57BL/6-129 [56], might contribute to the contrast-
ing results. The involvement of inflammasome-dependent cytokines in alum adjuvan-
ticity is an important issue. It has been demonstrated that IL-18 plays an important
part in alum-mediated Th2 responses [57]. However, IL-1 and IL-18 signaling triggers
MyD88-dependent signaling, and MyD88 signaling is dispensable for alum adjuvan-
ticity (as described above). The NLRP3 inflammasome may participate in adjuvant ac-
tivity through IL-18- and IL-18-independent mechanisms, but the role of the NLRP3
inflammasome in the induction of adjuvant activity remains unclear (Figure 1).

MSU AS A DAMP

Uric acid is a purine catabolite that is released from dying or stressed cells. Uric acid
forms MSU crystals if the concentration of uric acid is saturated. Shi et al. demon-
strated that uric acid and MSU crystals act as DAMPs and stimulate DCs to induce
the maturation and activation of cells [58]. Interestingly, similar to alum, MSU crystals
are known to activate Th2 responses preferentially [22-26]. Kool et al. demonstrated
that uric acid is released in the peritoneal cavity after the injection of alum, and that
antigen-specific T-cell responses were prevented after uricase treatment [22]. Alum is
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known to induce cell death, and uric acid and MSU crystals induced by alum cytotoxi-
city appear to contribute to alum adjuvanticity (whether uric acid forms crystal in vivo
in alum-injected sites is of considerable interest). In addition, this study demonstrated
thaturic acid-primed inflammatory monocytes and DCs have an important role in the
activation of antigen-specific T cells [22]. However, this study reported that MyD88 sig-
naling was required for this mechanism, which is a controversial proposal. Similar to
alum and silica, MSU crystals have been reported to activate the NLRP3 inflamma-
some [50], and this finding is suspected to be linked to the adjuvant activity through
the activation of the NLRP3 inflammasome. However, it has been reported that IL-18,
MyD88, and the NLRP3 inflammasome are dispensable for uric acid-dependent adju-
vant activity, and that spleen tyrosine kinase (Syk) and PI3-kinase § in inflammatory
monocytes and DCs are required for Th2 activation by uric acid (Figure 1) [25]. Syk
is a nonreceptor tyrosine kinase and a key mediator of immunoreceptor signaling in
immune cells. It has been demonstrated that Syk is involved in particulate-mediated
innate cell activation [17, 51, 59]. The relationship between uric acid-induced Th2 ac-
tivation and Syk is interesting. Although Syk is known to be activated by immunore-
ceptor tyrosine-based activation motif (ITAM)-bearing receptors [60], the underlying
mechanisms of Syk activation by particulates is unclear.

Recently, several studies demonstrated the unique recognition mechanisms of par-
ticulates. Ng et al. analyzed the recognition of MSU crystals by DCs using atomic force
microscopy. MSU crystals were shown to interact with DCs via receptor-independent
mechanisms by directly engaging cell surface lipids (mainly cholesterol) [61]. The ag-
gregation of lipid rafts triggers the recruitment and activation of Syk, and ultimately,
Syk activates PI3-kinase, phagocytosis, and cytokine secretion (Figure 1) [61]. Flach
et al. reported that alum also binds to the surface of DCs, leading to lipid sorting that
is similar to MSU crystal-mediated activation of Syk and PI3-kinase. However, the up-
take of alum is not required, and activated DCs interact with DC4™" T cells via binding
with intracellur adhesion molecule (ICAM)-1 and leukocyte function-associated anti-
gen (LFA)-1 (Figure 1) [62]. Syk appears to be a key molecule for the activation of DCs
via lipid sorting, but the mechanisms of Syk activation by MSU or alum are unclear. In
general, Syk is known to be activated by Src family kinases such as Hck, Fgr, and Lyn,
and ITAM-containing FcRy and DNAX-activating protein of 12 kDa (DAP12). How-
ever, DCs double-deficient in ITAM-containing FcRy and DAP12 or triple-deficient in
Src family kinases (Hck™/~, Fgr™/~, and Lyn™/") retain their function after activation
by MSU crystals [61].

LIPID MEDIATOR

Recently, we found that Th2-inducing particulate adjuvants have another unique
mechanism for the activation of innate immune cells: alum and silica particulates
stimulate macrophages to produce prostaglandins (PGs) in a similar way to the se-
cretion of IL-18 and IL-18 via NLRP3 activation [17]. In addition to proinflamma-
tory cytokines, lipid mediators such as PGs are involved in the induction of inflam-
matory responses. The well-characterized proinflammatory lipid mediator PGE; is a
metabolite of arachidonic acid that is produced by various types of cells, including
antigen-presenting cells [63]. Studies have shown that PGE, suppresses Th1 responses
by elevating intracellular concentrations of cyclic adenosine monophosphate (cAMP)
in DCs and macrophages, thereby inhibiting the production of IL-12 and interferon
[64-66]. In addition, PGE, enhances IL-23 production by DCs and favors Th17 polar-
ization [67, 68]. More recently, PGE, has been shown to facilitate the differentiation of
Th1 cells in the presence of IL-12 and high doses of the co-stimulatory CD28 antibody
via the activation of the PI3-kinase pathway [68]. Thus, PGE, exhibits various functions
in the regulation of immune responses.
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Silica and alum stimulate macrophages and DCs to produceIL-1p, IL-18, and PGE,.
The PGE; production induced by silica and alum has been shown to be independent
of the NLRP3 inflammasome because inflammasome-deficient (NLRP3~/~, ASC~/~,
caspase-1~/~) macrophages produced normal levels of PGE, in response to silica and
alum compared with WT counterparts. Treatment with a Syk inhibitor or the knock-
down of Syk using small interfering RNA (siRNA) molecules markedly suppressed the
production of PGE, after stimulation with silica and alum, demonstrating that Syk reg-
ulates particulate-induced PGE, production. In this case, the mechanisms of Syk ac-
tivation by alum and silica are unclear. However, several reports (including those in-
volving studies on MSU crystals) have demonstrated that particulates stimulate innate
immune cells via Syk activation. Therefore, Syk may be a key molecule for particulate-
induced immune responses (Figure 1). PGE; synthesis is regulated by cyclooxyge-
nase (COX) and PGE synthase (PTGES), and COX-2 and PTGES (also known as
mPGES-1) in particular have been reported to regulate stimulation-dependent PGE,
production in macrophages [69]. PTGES-deficient macrophages do not produce de-
tectable amounts of PGE, after stimulation with silica or alum. In addition, PTGES-
deficient mice display reduced amounts of antigen-specific IgE after immuniza-
tion with alum and silica. In contrast, the levels of antigen-specific IgG are nor-
mal in PTGES-deficient mice compared with WT mice. These results indicate that
particulate-induced PGE, is involved in IgE production in vivo (Figure 1) [17]. Several
reports have demonstrated that PGE, facilitates IgE production by the accumulation
of increased levels of intracellular cAMP [70, 71]. Interestingly, neuropeptides such
as vasoreactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating
polypeptide (PACAP) preferentially activate Th2 responses and increase intracellular
cAMP levels in a receptor-dependent manner [72, 73]. In addition, the soluble extract
of birch pollen consists of a lipid that is thought to be the causative agent of allergic
asthma and to resemble the structure and function of PGE,. This lipid induces Th2
responses and intracellular cAMP accumulation in DCs [74, 75]. Agents for cAMP ele-
vation may act as Th2 adjuvants.

Many particulates that exhibit adjuvant activity, such as MSU crystals, PLGA,
chitin particles, nickel oxide, amorphous silica, and carbon nanotubes, stimu-
late macrophages to produce inflammasome-dependent IL-18 and inflammasome-
independent PGE,. In addition, we have found that, similar to the release of uric acid,
increased amounts of PGE, arereleased from damaged cells, suggesting that PGE, also
works as a DAMP (Kuroda et al., unpublished data). These findings suggest that PGE,
is a useful marker for the screening of particulate (Th2) adjuvants.

RELEASE OF NUCLEIC ACIDS FROM HOST CELLS

Activation of innate immunity by DAMPs appears to be a critical mechanism for
adjuvant activity. Recently, it was reported that the DNA released from host cells
mediates the adjuvant activity of alum [76]. In this study, alum induced the local accu-
mulation of host DNA at the injection site during alum-induced cell death, and inter-
estingly, treatment with DNase I decreased the antigen-specific antibody responses
in mice immunized with OVA in alum. Purified genomic DNA mixed with OVA in-
duced OVA-specific IgG1 and IgE responses as efficiently as the alum adjuvant. These
results indicate that the alum-induced release of host DNA triggers initial innate im-
mune responses. These responses are not dependent on TLRs, RLRs, or inflamma-
somes, and the mechanisms by which the host DNA triggers the immune response
are unclear. However, interferon regulatory factor 3 (IRF3) and TANK-binding kinase
1 (TBK1) are required for the adjuvant activity of alum (Figure 1). It has been reported
that antigen-specific IgE responses, but not IgG1 responses, are significantly reduced
in IRF3-deficient and TBK1/tumor necrosis factor (TNF)-double-deficient mice.
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TABLE 1. Summary of the effect of particulate (alum) adjuvant on immune system

Proposed mechanisms Adjuvant activity References
Depot effect Antigen persistence and e Depot effect is not 33), 34)
prolonged release required.
IL-4-producing cells Th2 and IgE induction e Eosinophils and 37), 38)
and IL-4 signals basophils are not
required.
e [L-4 is required for IgE 40), 41)
production, but not for
Th2 cell differentiation.
MyD88 pathway and Innate cell activation e MyD88 and TLRs are not 42), 43)
TLRs required.
NLRP3 Activation of NLRP3 e The involvement of 27), 37), 44)
Inflammasome inflammasome and I1.-18, inflammasome in 50)~52)
IL-18 release adjuvant activity remain
unclear.
Uric acid Released from damaged cells e Th2 induction by 25), 57)
(MSU crystal) by alum inflammatory
Work as DAMPs monocytes and DCs via
Syk and PI3 kinase
activation.
Lipid mediator Induced from macrophage e PGE; is induced by Syk 17)
and DCs by alum or silica activation and promote
IgE production.
Nucleic acid (DNA)  Released from damaged cells e Th2 and IgE induction by 75)
by alum Work as DAMPs inflammatory

monocytes and DCs
through the secretion of
IL-12p80 and activation
of TBK1-IRF3.

Inflammatory DCs (derived from inflammatory monocytes) were identified as the
cells responsible for the induction of Th2 responses. In addition, a reduced number
of inflammatory DCs in the draining lymph nodes were observed in IRF3-deficient
mice immunized with OVA in alum, and the transfer of WT inflammatory monocytes
to IRF3-deficient mice increased Th2 cytokine and IgE production. This study also
demonstrated that IL-12p80 (a p40 homodimer) is required for alum-induced migra-
tion of inflammatory monocytes, and that treatment with anti-IL-12p80 antibody par-
tially attenuated the IgE responses in alum-treated WT mice (Figure 1). IL-12p80 is
known to induce DC migration and to activate nuclear factor kappa-B (NF-«B) and
p38 MAP kinase but not signal transducers and activator of transcription (STAT) pro-
teins (77, 78]. Identifying the [L-12p80-producing cells involved in responses to alum
or host DNA would be interesting.

IgG1 and IgE responses are uncoupled, i.e. the TBK1-IRF3 axis is required only for
the IgE responses. It is believed that the Th2-related antibodies IgE and IgG1 are regu-
lated by identical mechanisms. As described above, PGE, is only involved in IgE pro-
duction, not IgG1 production. Although the mechanisms of the regulation of IgE and
IgG1 production and the relationship between IRF3 and PGE, remain unclear, the in-
vestigation of these mechanisms may help to improve the adjuvants currently in use.

FUTURE PROSPECTS AND CONCLUSION

A summary of the effects of particulate adjuvants is shown in Table 1. Particulate adju-
vants (including alum) induce adaptive immunity. The development and modulation
of adaptive immunity is regulated by innate immunity. However, the basis for the
adjuvanticity of particulates and the mechanisms by which particulates activate
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innate immunity are not fully understood. Alum has been used as a safe vaccine
adjuvant in humans, but the limitations of alum include local reactions and the
augmentation of IgE antibody responses [11, 79]. These limitations reflect the need
for continuing research, and these limitations may be overcome by elucidation of the
mechanisms of the effect of particulate adjuvants on immune responses.

Alum in combination with another adjuvant, an AS04, a combination of alum with
monophosphoryl lipid A (MPL), has been licensed. In addition, a combination with
potent Th1 stimulator such as IL-12 and CpG oligodeoxynucleotides shows a great
promise, with improvement in alum-induced Th2 responses [11, 12, 80]. Other ad-
juvant combinations might be explored further. Thus, advances in adjuvant research
could open new possibilities for the treatment of not only infectious diseases but also
allergic inflammation and cancer.
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ABBREVIATIONS

DC dendritic cell

PAMP  pathogen-associated molecular pattern
PRR pattern-recognition receptor

TLR Toll-like receptor

NLR Nod-like receptor

RLR RIG-I-like receptor

CLR C-type lectin receptor

DAMP  damage-associated molecular pattern
Th2 type-2 helper

IL interleukin

Ig immunoglobulin

PGLA  poly(lactic-co-glycolic acid)
MSU monosodium urate

LPS lipopolysaccharide

WT wild-type

OVA ovalbumin

NKT natural killer T

TSLP thymic stromal lymphopoietin

KO knockout

TNP trinitrophenol

ASC apoptosis-associated speck-like protein containing a caspase recruitment
domain

Syk spleen tyrosine kinase

ITAM  immunoreceptor tyrosine-based activation motif
ICAM  intracellular adhesion molecule

LFA leukocyte function-associated antigen
DAP DNAX-activating protein of 12 kDa
PG prostaglandin

cAMP  cyclic adenosine monophosphate
siRNA  small interfering RNA
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VIP
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vasoreactive intestinal polypeptide

PACAP  pituitary adenylate cyclase-activating polypeptide
COX cyclooxygenase
PTGES PGE synthase

IRF3 interferon regulatory factor 3
TBK1 TANK-binding kinase 1
TNF tumor necrosis factor

NF-«kB  nuclear factor kappa-B
STAT signal transducers and activator of transcription
MPL monophosphoryl lipid A
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zbsﬂiﬁ X 73/”»\:11.23—25).

A v 792V —LDOEEIC L% caspase-1 &
HH97 IL-18 1 Thl % Th17 I8 #0eEL, IL-
BMLM%WTLM A ET B 2 LG &
TV 3%(R 3), u,n~1/7su—ﬁ4b
HA v THBHIL-33 )fL,L & caspase-1 IZfRFFE L 7
S AR A R B o B S
% Alarmin & U CHERE L, Th2 fllESE gD
Al 5 THRCTL BB DB R b WE I LT W»
2Y9(H3), 2DEIBIL-1 773 ) —DY A b
A4 ik TLR, RLR, CLRICE2Y A b AA v
g LI L THE Th CTLIREZREL Tw 3
LELeND, FEEZO TR RS T S
LAt O & Th MilssELE$ 2 D & kD
R0 A b A4 v R EEAT 2 BARE R

#E& LT, innate lymphoid cell & #%5 S L2 g
HEDSAE S 4, Th Ml ic B 2R 2 5y
LTwa 2 EDRES T30,

%7, EFEiD ASC %4 L 72 NLR & 7" F L%
EAFMSZIZ, alum, silica, monosodium urate
(MSU) 72 & DRCFREY E, HARGEZERGZ

NS TR EFAE T % Syk DiGHEAL%

E1, MAPK(p38) & ¢ PGE2 EEA# Z ¢ =
EDYRE &N, Z DD Alum @ Th2 7 2
VRERIC X D BELRE 2R L TWwE I L
WG SN T RBUS)  The & 4 7O I i
[L-4, IL-5, IL-13 4R EDH A rAh4 v 2RI
AT 5 CDA THllE 520, B
B K BESESOG 2R 2 & T, IBEELR
RGN b B LIRS, TgE RE-S iRk
BHZE) 7L —OGICEES L Tw 3,

@ REROTHF

INETATER L) ICHARREICE XSG
INEZFHET 50 ERIEII R, FHE
SN BHERMEIEEOBEIORECHELE X

5, KD T 7 F i i3 FHIT B 7% (predica-
ble) GRS DO 7Y a Ny FRFNT 2 2 L HHE
WCH b, BEDOHRMEMADERICL>TH
LIREDOFHIETRE L B >0 H B0, SRk
RE L X 78 —MER ORISR ZNnE N
RN SRRy — v 2R LT oML, MUEAR
T L 77y — & HIE L ChMEoREIC ko T
BEEINDZYTA b VvIRELZBENRDH D T
E, SRR D DAMPs I & 28,
BORRBEHIMIC X 28> 7PVl 7 v A

— VD EREREZERT AL, a0, il
faL ~ov, ##L LTI 0 X S BB E
Py b= MRS 270D X 608 581
HWeh D,

FLR R 7 PRAR e Do 7 AR 2 kiR 7
IR D S BT L Uik, OBERRICHE - T
BRE OB B b RO L, ONREBRDH
% FH T 28N 2 &, ORIk
NEETHBZ L, BHiFons(®E)., 20k
H BB R T TR Y 7 F v DRSS, W
RED B GHRICEE D W BN T 2 F U HUR O
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23. DIFUHERRRORRH

. s T4
L B Bl
YA hh1r: IFN-a/B,IL-6,IL-18 % & IFN- vy, IL-4, IL-17, IL-10% &

() (emmimom )

h B B A i

B23-1 T9F 2/ BREOERREDE
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PEAEDSIE SN X BT 7 F VPRI R D I F LT, A adaptive immunity &, T #i)i
FEebOD1oE LTHAREBOG T AH AL 2 BAINICE - THbN, Bk 255 R
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RAERO KIS 2 SO HARRE L TS L7 T Mg B fllgoo—#d A2y —fllas L
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HAR) S ERIEE (EHREELISD Hib, FENIRE, B RN, O DAILR, KE Bledhdiht,
AVINVIVY, ENEO-YDA)VZ, A BFFREE) [CAFENTVNG. THEEINBEIITE
ESNERCRITDENTEDD, EBEEDD IF VICDWCIFBERFREEICLDHBIDH HHER
WICIFEEEECEIETHS. FPHOBRDDIFER 2 NABOEON BN ST I F EERAT
DIENEXULWLD, 2LDDVOTFZEEE( BEDD O F ICOVTHHRZES WL TERIEIDEEN
B)IDIC(E, @EBNERHEFNONENG D, ZOBIBEEET 2/-HIC 25EBLU DD O F BRI
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JVTCOERHITONTLDD, ERICHBVTIEEREROZEMHIN T MR PO T,
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