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Figure 4. Detection and measurement of hemozoin crystals. (a) SEM image of hemozoin crystals deposited on a

microtoroid resonator. (b) Amount of mode splitting induced by consecutively deposited hemozoin crystals on a

microtoroid. Experiments were done in air. (c) Typical size distribution obtained from DLS measurements for the

hemozoin crystals. (d) Result of mode splitting experiment performed in an aquatic environment for hemozoin crystals.

Discrete jumps in (b) and (d) signals that a hemozoin is within the mode volume of the resonator. Figure was

reproduced from Kim et al., 2012, ref. #5.
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D. B
After the observation that synthetic
hemozoin could be a cheap, easy and
reliable adjuvant in dog allergy models
(Coban et al., Cell Host Microbe, 2010),
now, we’ve evaluated its effect in higher
animals such as monkeys. We’ve found
that synthetic hemozoin is as effective as
potent CpG ODN adjuvant. We’ve
deepen our investigation to understand its
mechanism of action. Because there
could be a clue that why some
antigens/adjuvants work well in mouse
but not in higher animals or humans.
Our recent progresses in Alum research
have also prompted us to study other
particulate structures such as sHZ to
make it possible to use as successful
adjuvant at least in veterinary vaccines. It
is known that alum exerts its Type 2
adjuvant properties
MyD88-independently, but via TBK1.
We currently investigate whether this is
similar pathway for sHZ adjuvanticity.
We’re now working on the new detection
systems such as WGM resonators or
Raman microscopy to be able sense
receptor-ligand interactions to understand
how adjuvants interact with immune
system.
These studies may lead us to optimize
adjuvants for safer and potent usage in
future.
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Particulates could exert adjuvant
properties, however, by which
mechanism is not known. Therefore,
understanding their mechanism of action
may lead to find new and safer adjuvants.
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The effectiveness of influenza vaccines is still controversial, and the role of adjuvants in such vaccines is
briefly reviewed in this paper. Inactivated whole virus vaccines may include components that function
as adjuvants, meaning that additive adjuvants are often not required. MF59 and ASO3 showed higher
adjuvanticity than aluminum salts in several clinical studies. Receat research has suggested that immune
cell recruitment is the main mechanism underlying adjuvant actions in general, and that aluminum salts
induce this recruitment via inflammation at the injected site. The aspect of how oil-based adjuvants, such
as MF59 and AS03, recruit immune cells remains to be clarified.
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1. Introduction

influenza vaccines have been proven to induce high immunity
in various trials. However, the coverage of seasonal influenza vac-
cine remains around half in Europe, America, and Asia [1], that may
partially because its social usefulness is not yet fully shared in the
population.

Vaccine effectiveness consists of vaccine immunogenicity,
salety, and cost, and these aspects should be reviewed for assess-
mentofinfluenza vaccines. (n particular, vaccine adjuvants, vaccine
administration routes, and/or immunization schedules may be the
keys to improve vaccine efficacy and safety.

An adjuvant is used to enhance vaccine immunogenicity per se.
The adjuvant etfect, or adjuvanticity, would be measured by the
ratio of immunogenicity (increase in geometric mean of antibody
titer, percent responders, or seroconversion rate) of vaccine-with-
adjuvant to vaccine-without-adjuvant in either non-clinical or
clinical conditions. Recent clinical studies have suggested that
AS03 or MF59 shows good adjuvanticity in influenza vaccines, but
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these adjuvants also increase local and systemic adverse reactions,
although they are not severe.

Recently developed alternative vaccination routes such as nasal,
skin patch or oral route vaccines often show better efficiency
than classical administration. Several nasai vaccines (influenza (3],
measles |4]), microneed!le skin patch vaccines {5,6), oral vaccines
(rotavirus vaccine [7]) are well studied.

Boosting immunization is promising for improving protection.
Even when the priming is not sufficiently irmmmunogenic, sequential
immunization has been shown to provide enough protection.

In this review, adjuvants for influenza vaccines are briefly
overviewed and the current knowledge of their functions based
on molecular biology is reviewed.

2. Clinical experiences of influenza vaccines: effects of
adjuvants

The World Health Organization's list of influenza vaccine devel-
opments [8] includes several studies analyzing the immunogenicity
and safety profiles of adjuvanted vaccines versus non-adjuvanted
vaccines (Table 1), Aluminum salts, the most world-wide and his-
torically used adjuvants, were mostly used in the listed studies,
followed by MF59® from Novartis and ASO3 from GlaxoSmithKline,
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Table 1
Profiles of reviewed clinical studies that compared vaccines with and without adjuvants (numbers indicate references).
Vaccine type Adjuvant
Aluminum AS03 MF59 Others?
Pandemic Whaole virion 9,21,22 Nil Nil Nit
Subunit/split 12-15 10,1122 16-19 20.24
Recombinant 23 Nil Nil Nil
Seasonal Subunit Nil Nil 25-27 Nil

a One study used Matrix M™ [20] and the other used Inulin [24].

Immunogenicity was reviewed by the increase in geometric mean
of the antibody titer (GMT), vaccinee ratio of seropositivity, and
ratio of seroconversion. The antibody titer was measured by either
hemagglutinin inhibition assays or microneutralizing assays. The
safety profile was reviewed as the frequency of vaccine-related
adverse reactions, comprising local reactions of pain, induration,
erythema, etc., and systemic reactions of fever, malaise, headache,
etc. Since the trial designs differed, especially in doses, schedules,
subject backgrounds, and details of the definitions of immuno-
genicity, inter-trial comparisons were not reasonable, but the
authors gained the impression that adjuvanted vaccines caused
more frequent adverse reactions, regardless of the adjuvant used.
The severity of the adverse events was slight or moderate, and
no serious adverse events were reported, indicating that these
influenza vaccines adjuvanted with aluminum salts, MF59 or ASO3
are tolerable.

Seven studies on aluminum adjuvanted vaccines included vari-
ous types of whole virion vaccines [9,21,22], subunit/split vaccines
[12-15] and recombinant vaccines [23]. They satisfied the Euro-
pean Medical Agency’s criteria for assessment of influenza vaccine
[28,29], no matter which type of vaccine were used. For example in
the two doses whole-virus H5N1 vaccine study, GMT increase on
21days after the second administration was between 2.7 and 5.2
when Aluminum adjuvant was added, and was between 3.2 and
5.9 without adjuvant [9].

On the other hand, compared with studies on vaccine with
other adjuvants (AS03 [10,11,22], MF59 {16~19,25-27] and others
[20,24]) the trends for the adjuvant effects on the vaccine immuno-
genicity differed among the adjuvants, in that aluminum showed
lower adjuvanticity than MF59, ASO3, or other adjuvants, irrespec-
tive of the dose of aluminum (300-1000 p.g/dose) or the form of
aluminum (hydroxide or phosphate). One study with two doses
split vaccine (7.5 wg HA per dose) adjuvanted with MF59 showed
406.9 of GMT on 21days after the second administration, while
non-adjuvanted vaccine showed 156.6 [19]. Higher adjuvanticity
of MF59 than aluminum salts has also been shown in a trial on
hepatitis B virus vaccines [30], etc.

The protective efficacy of influenza vaccines is mostly assessed
by the clinical occurrence of confirmed influenza or influenza-
like illness. Direct comparisons between MF59 adjuvanted and
non-adjuvanted trivalent subunit influenza vaccines showed that
adjuvanted vaccines exhibited higher effectiveness in both young
children in Canada [27] and elderly people in ltaly [31]. In the
former study where influenza illness was confirmed by means of
real-time polymerase-chain-reaction in nasopharyngeal aspirates
or swabs, the effectiveness of the adjuvanted vaccine was shown by
decreased influenza occurrence by 75%; 13 cases among 1937 adju-
vanted vaccine group presented influenza illness whereas 50 cases
of 1772 non-adjuvanted vaccine group showed influenza illness
[27]. In the latter study in elderly people, the protective efficacy
of the adjuvanted vaccine appeared (o be less, since the odds ratio
for developing influenza-like illness with the non-adjuvanted vac-
cine (versus adjuvanted vaccine) was 1.52, while the odds ratio for
non-vaccinated people (versus vaccinated) was 2.16 [31].

From these experiences, it can be said that adjuvants in subunit
influenza vaccines enhance the immunogenicity except for alu-
minum salts, but their adjuvanticity may need more improvement
to prevent clinical influenza illness sufficiently.

3. Whole virion vaccines: vaccines with “unintended
adjuvant”?

While subunit/split vaccines contain virus surface proteins as
the vaccine antigens, whole virion vaccines are made of whole
influenza virus particles that have been inactivated, typically by
formaldehyde treatment. Therefore, these vaccines are composed
of not only surface proteins, such as neuraminidase and hemagglu-
tinin (for type A and type B, as the most commonly used vaccine
antigens) or hemagglutinin esterase (for type C), but also matrix
proteins and genomiic RNA,

A review of three whole virion vaccines suggested that
they were effective even though they were withour aluminum
adjuvants, and one of them was more effective than the aluminum-
adjuvanted whole virion vaccine [9]. Superior immunogenicity of
a whole virion influenza vaccine has been demonstrated in sev-
eral Toll-like receptor (TLR) 7-knockout mouse experiments, which
suggested it was dependent on TLR7 signaling [32,33]. Sialo-suger
chains of host bind to influenza viruses but TLR7 specifically recog-
nizes RNA of pathogens. These studies suggest that remaining RNA
of influenza virus in the whole virion vaccine might unintentionally
function as an adjuvant through TLR7 signaling. It is an interest-
ing concept that a whole virion vaccine product might contain a
“built-in adjuvant” when we call aluminum salts, MF59, or ASO3 are
artificially added as adjuvants. However, its generalization to other
single-stranded RNA virus vaccines is controversial, since TLR7 and
TLR8 polymorphisms did not affect the measles vaccine antibody
response [34] and a transcriptional analysis of human blood cells
found similar results for a vaccine against yellow fever and poly
ICLC, the specific ligand of TLR3 [35].

4. Mechanisms of influenza vaccine adjuvants

The differences in the mechanisms of aluminum and other adju-
vants are not yet fully understood, but they are commonly known
to induce mild inflammation with immune cell recruitment at the
injection site and not to induce Th1 cellular immunity.

Aluminum salts are generally thought fo catch antigens and
keep them at the local injection site for periods of days to weeks,
such that the antigen is slowly presented and processed by the
immune system. This “depot effect” was shown historically in diph-
theria toxin experiments, in which immunity was impaired when
the injection site was removed, while animals with transplanta-
tion of the injection site showed transferred immunity in paralle]
[2]. In addition, inflammation and cell damage caused by aluminum
salts were recently shown to be a critical step in their Th2-biased
adjuvanticity.

MF59 is still known to be effective when it is administered in
advance of avaccine antigen. However, when MF59 is administered
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at 24 h after an antigen, it is nat sufficiently immunogenic. These
observations show MF59 does not act via a “depot effect”, but
instead is supposed to condition the immune system to respond
effectively. At 2 days after injection, MF59 is found in lymph node
mature macrophages and the gene profile of the “adjuvant core
response genes” found in microarray analyses of the injected mus-
cle of mice suggests that the mechanism of action of MF59 involves
strong recruitment of antigen-presenting cells to the injection site
as early as 12 h after injection [36].

A recent comparison study between aluminum salts and MF59
in mice |37] has suggested that the degree of cell recruitment may
represent rhe current description of adjuvanticity, Specifically, in
the first 24 h, MF59 recruited significantly more neutrophils, mono-
cytes, eosinophils, macrophages, and dendritic cells than aluminum
salts.

MF59 is composed of 0.5% Tween-80 as a water-soluble surfac-
rant, 0.5% Span85 as an oil-soluble surfactant, 4.3% squalene oil, and
waler. It is anoil-in~water preparation and its emulsion droplet size
is approximately 130 nm. Experience with nanoparticle adjuvants
suggests that the particle size may be a key factor for adjuvanticity,
since microspheres with diameters of <10nm activate antigen-
presenting cells, while those with diameters of 30-100 nm act via
a “depot effect”. A study comparing the sizes of silica particles
showed that 30-nm-diameter particles induced the most inflam-
mation and toxicity compared with 70-nm- or 300-nm-diameter
particles [38]. If this situation is universal, the cell recruitment by
MF59 may not depend on ifs size, but on its components. A recent
study [39] compared several kinds of oil for particle size, emulsion
stability, and adjuvanticity in a malaria vaccine candidate and an
influenza vaccine, and found that the physical/chemical characters
were similar among squalene, sesame oil, grape seed oil, and soy-
bean oil, and that squalene oil showed the highest adjuvanticity in
both vaccines.

5. Concluding remarks

Adjuvanticity of MF59 and ASO3 has been shown invarious stud-
ies, but their mechanisms of action still remain unclear. Regardless
of how MF59 and ASO3 acr as vaccine adjuvants, there appears
to be more to do to achieve social agreement on the importance
of influenza vaccines. Vaccines that are “safer and more immuno-
genic” and “for the high-risk population" are the goals for vaccine
development.
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