Fig. S4 Temporal hepatocyte differentiation efficacy was investigated in the 3D
ES-hepa.

On day 11, the hESC (H9)-derived cells were plated onto the Nanopillar Plate or
the flat plate, and then the cells were cultured until day 35. (A) Onday 0, 5, 10, 15, 20,
25, 30, and 35, the efficiency of hepatocyte differentiation was measured by estimating
the percentage of ASGR1-positive cells using FACS analysis. (B) The cells were
counted on day 20, 25, 30, and 35 of the differentiation. The number of cells on day
20 was taken as 1.0. *P<0.05; **P<0.01.

Fig. S5 Upregulation of the gene expression levels of hepatic transcription factors
by culturing on the Nanopillar Plate.

The gene expression levels of hepatic transcription factors of the 3D ES
(H9)-hepa were measured by real-time RT-PCR on day 35. On the y axis, the gene
expression levels in PHs-48hr were taken as 1.0. *P<0.05; **P<0.01.

Fig. S6 WST-8 assay was the most sensitive method for detecting the
drug-induced cytotoxicity.

The cell viability of 3D iPSC (Dotcom)-hepa (day 35) was assessed by WST-8,
ATP, Alamar blue, or Crystal violet assay after 24 hr exposure to different
concentrations of Benzbromarone. The cell viability is expressed as the percentage of
cells treated with solvent only.

Fig. S7 The drug-induced cytotoxicity was more sensitively detected in the 3D
iPS-hepa than in the mono iPS-hepa.

On day 11, the hiPSC (Dotcom)-derived cells were plated onto the Nanopillar
Plate or the flat plate, and then the cells were cultured until day 35. The cell viability
of 3D iPSC-hepa was assessed by WST-8 assay after 24 hr exposure to different
concentrations of drugs. Cell viability is expressed as a percentage of cells treated
with solvent only.

Fig. S8 Hepatocyte function was enhanced by culturing HepG2 cells on
Nanopillar Plate.

HepG2 cells were cultured for 5 days on the Nanopillar Plate. (A, B) The
amount of ALB (A) and urea (B) secretion was examined in the monolayer cultured
HepG2 cells (mono HepG2), the 3D spheroid cultured HepG2 cells (3D HepG2), and
PHs-48hr. (C-G) The gene expression levels of CYP enzymes (C), conjugating



enzymes (D), hepatic transporters (E), hepatic nuclear receptors (F), and bile canalicular
transporters (G) were examined by real-time RT-PCR in the mono HepG2, the 3D
HepG2, and PHs-48hr.  On the y axis, the expression levels of PHs-48hr were taken as
1.0. *P<0.05; **P<0.01.

Supplemental Table 1 The antibodies used in this study
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Abstract

Induced hepatocytes differentiated from human embryonic stem cells (ESCs) or induced pluripotent stem cells
(iPSCs) have a wide range of potential applications in biomedical research, drug discovery, and the treatment of
liver disease. Differentiation of human ESCs and iPSCs into endodermal and hepatic cell types has been achieved
by several methods, including addition of soluble factors into culture medium, transduction of differentiation-related
genes, co-cultivation with other lineage cells, and a three-dimensional culture system. Each of these methods has an
advantage from various points of view, such as the degree of maturation of differentiated hepatocytes, differentiation
efficiency, clinical safety, and ease of handling. Currently, it is possible to select or combine the differentiation
protocols to obtain ideal hepatocytes. The aim of this review is to describe the recent progress in endodermal and
hepatic differentiation protocols from human ESCs and iPSCs in order to foster the suitable choice of induced

hepatocytes on clinical and industrial applications.

Keywords: Embryonic stem cells; Induced pluripotent stem cells;
Liver; Definitive endoderm; Differentiation

Introduction

The liver has many functions, including carbohydrate metabolism,
glycogen storage, lipid metabolism, urea synthesis, drug detoxification,
production of plasma proteins, and destruction of erythrocytes.
The liver is composed of several types of cells, including epithelial,
endothelial, and hematopoietic cells. Of these cells, hepatocytes play
the most important role in major hepatic functions. Hepatocytes are
thus useful cells for biomedical research, regenerative medicine, and
drug discovery. They are particularly useful for drug screenings, such
as for the determination of metabolic and toxicological properties of
drug compounds in in vitro models. For these applications, however,
it is necessary to prepare a large number of the functional hepatocytes,
which can no longer proliferate in in vitro culture. Isolated primary
hepatocytes are the current standard in vitro model, because they
express large amounts of drug-metabolizing enzymes and transporters
[1]. However, isolated hepatocytes lose their differentiated properties,
such as some cytochrome P450 activities that are induced by reference
compounds, even under the optimized culture conditions [2,3].
Moreover, it can be difficult to set up long-term cultures with primary
hepatocytes, because they can no longer proliferate in in vitro culture

[4].

Human embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs) are able to replicate indefinitely and differentiate
into most cell types of the body, and have the potential to provide an
unlimited source of cells for a variety of applications [5-8]. Among the
differentiated cells from ESCs and iPSCs, induced hepatocytes have
a wide range of potential applications in biomedical research, drug
discovery, and the treatment of liver disease. In this review, we provide
an up-to-date overview of the wide variety of endodermal and hepatic
differentiation protocols. These protocols were designed to reconstruct
the in vivo environment in a variety of ways, including by addition of
soluble factors into culture medium, transduction of differentiation-
related genes, co-cultivation with other lineage cells, and use of a three-
dimensional culture system.

Definitive Endoderm Differentiation from ESCs

Gastrulation of the vertebrate embryo starts with the formation
of three germ layers: the ectoderm, mesoderm, and endoderm. The
endoderm contributes to the digestive and respiratory tracts and
their associated organs [9]. The endoderm differentiates into various
organs, including the liver, pancreas, lungs, intestine, and stomach. To
examine the molecular mechanisms of endoderm specification during
early embryogenesis, endoderm differentiation from ESCs has been
widely investigated as an in vitro model [10]. It has been reported that
mouse ESCs have the ability to differentiate into definitive endoderm
(DE) cells [11-13]. In recent studies, specific growth factors are used
to generate DE cells from ESCs. In DE differentiation, it is well known
that nodal signaling plays a crucial role and induces the expression of
endoderm-related genes [14]. Activin A, a member of the nodal family,
is aligand of the type IT activin receptor and can transmit a downstream
signal by using Smad adaptor proteins [15-18]. Therefore, activin A is
widely used to generate DE from ESCs. Although embryoid body (EB)
formation is also used in the differentiation of ESCs, activin A could
generate DE more efficiently than the EB formation [19]. In addition,
using activin A with other factors such as fibroblast growth factor
(FGF) 2 or Wnt3a proved to be more effective. Simultaneous addition
of activin A and FGF2 could synergistically promote more efficient DE
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differentiation in comparison with using activin A alone [20,21]. It has
also been found that DE differentiation was promoted by using activin
A plus Wnt3a in comparison with activin A plus sodium butyrate [22].

Although DE differentiation methods using growth factors are
useful strategies for generating DE with the ability to differentiate
into hepatic or pancreatic lineages, they are not efficient enough for
generation of homogenous DE populations [23,24]. To improve
the DE differentiation efficacy, several groups have attempted a
modulation of expression levels in endoderm-related transcription
factors. It has been demonstrated that overexpression of SOX17, which
is an integral transcription factor for DE formation, promotes DE
differentiation, resulting in a DE differentiation efficacy of over 80%
based on the estimation of c-kit/CXCR4 double-positive cells [24,25].
The FOXA2 transcription factor as well as SOX17 also functions as a
crucial regulator of the initial intracellular signaling pathways in DE
differentiation [26]. Overexpression of FOXA2 in ESCs enhances the
efficacy of DE differentiation [27,28].

Hepatic Specification from ESC-derived DE cells

Hepatic differentiation is divided into two steps: hepatic
specification and hepatic maturation. In hepatic specification, DE
differentiates into hepatoblasts that express a-fetoprotein (AFP),
transthyretin, and albumin (ALB) [29-31]. At this stage, repression of
What signaling and FGF 4 is necessary for hepatic specification [32,33].
Also, interaction of FGFs with bone morphogenetic protein (BMP)
2 and BMP 4 is important for the induction of hepatocyte-related
genes [34-36]. The combination of FGF4 and BMP2 promotes hepatic
specification from human ESC-derived DE cells [37]. Similar results
were obtained by using the combinations of aFGF and BMP4, bFGF and
BMP4, or FGF4 and BMP4 [37]. [thas been reported that heterogeneous
hepatoblast populations could be differentiated from DE cells by using
the combination of BMP2/4 and FGF1/2/4 [20]. With respect to the
generation of homogeneous hepatoblast populations, several studies
have demonstrated that this can be accomplished by modulating the
expression levels of hepatocyte-related transcription factors as well as
DE differentiation stage. Overexpression of HEX, which is an integral
transcription factor for hepatic specification, has been shown to
promote hepatic specification, with the result that the expression levels
of ALB and AFP are up-regulated in HEX-transduced cells [38-40].
Conditioned medium from human hepatocellular carcinoma cell line,
HepG2, could also promote the hepatic differentiation from human ES
cells [41].

Hepatic Maturation from ESC-derived Hepatoblasts

Hepatoblasts differentiate into two distinct lineages, hepatocytes
and cholangiocytes. During the fetal hepatic maturation, the number of
hepatoblasts decreases, and in turn, the number of mature hepatocytes
increases [42]. In this process, AFP is highly expressed in the fetal
liver, and then the number of AFP-positive cells decreases in a later
maturation step and almost disappears in the adultliver [43,44]. Growth
factors that are secreted by surrounding non-parenchymal liver cells,
such as hepatocyte growth factor (HGF) and Oncostatin M (OsM),
are essential for hepatic maturation [42]. HGF enhances hepatocyte
proliferation but it inhibits biliary differentiation by blocking notch
signaling [43]. OsM, which is expressed in hematopoietic cells in
the fetal liver [45], promotes the hepatic differentiation from liver
progenitor cells [42,43,46].

As mentioned above, growth factors that are necessary for in
vivo hepatic development are utilized in hepatic differentiation from

ESC-derived hepatoblasts. Measurement of urea synthesis [47], ALB
production [47], glycogen storage [37], uptake low-density lipoprotein
(LDL) [48], uptake and secrete Indocyanine Green [48], coagulation
factor VII activity [49], have been used to verify if ESC-derived
hepatocyte-like cells function adequately as hepatocytes. Measurement
of the ability of human immunodeficiency virus (HIV)-hepatitis C
virus (HCV) pseudotype viruses to enter into human ESC-derived
hepatocyte-like cells, has also been used to estimate hepatic maturation
[37]. Although HGF is widely used for inducing hepatic phenotypes
(e.g, ALB and dipeptidyl peptidase IV expression) [50,51], this is
not enough to induce functional maturation [51,52]. To generate
functional hepatocytes, combinations of FGF, HGF, and a mixture of
insulin-transferrin-sodium selenite (ITS), dexamethasone, and OsM
are often used [53-55]. Combination of HGF, activin A, and Wnt3a
promoted the differentiation of human iPSCs into mature hepatocyte-
like cells [56]. Minor modifications to this strategy resulted in 70% to
-80% purity (based on estimating ALB-positive cells) of ESC-derived
hepatocytes [57,58].

Because drug discovery is one of the most anticipated applications
of ESC-derived hepatocyte-like cells, it is important to generate ESC-
derived hepatocyte-like cells that have the same characteristics as
primary human hepatocytes. Even when the various hepatic functions
described above are observed in ESC-derived hepatocytes, expression
level of hepatocyte-related genes in ESC-derived hepatocytes is often
lower than that of human hepatocytes [59]. To generate functional
hepatocytes which have characteristics similar to primary human
hepatocytes, exogenous transduction of transcription factor genes that
can control the expression of hepatocyte-related genes is suitable for
efficient differentiation of hepatocyte-like cells from ESCs. Sequential
transduction of the SOX17, HEX, and HNF4a genes, which are central
regulators of liver development, in ESC-derived hepatoblasts has
been shown to successfully induce mature hepatocyte-like cells that
have the same features as primary human hepatocytes [60] (Figure 1).
Furthermore, these hepatocyte-like cells could catalyze the toxication
of several compounds, suggesting that the ESC-derived hepatocytes
have potential for use in drug-screening applications. Overexpression
of the Foxa2, Hnf4q, and ¢/EBPa genes into expandable liver-derived
progenitor cells resulted in mature hepatocyte phenotypes [61].
Many other studies have shown the effect of the transduction of
differentiation-related genes to promote hepatic differentiation from
various origins (summarized in Table 1) {24,25,27,28,38,39,60,61,62-
671, demonstrating that transduction of differentiation-related genes
into ESCs would be a powerful strategy to generate mature hepatocyte-
like cells.

Hepatic Differentiation from iPSCs

The iPSC technology raises the possibility of generating patient-
specific cell types of all lineages [68,69]. Because drug metabolism
capacity differs among individuals [70], it is difficult to make a precise

3 days 3 days

11 days

Figure 1: A protocol for hepatic differentiation of human ESCs or iPSCs by an
i adenovirus vector-mediated gene transfer. ?

J Stem Cell Res Ther

Embryonic and Induced

ISSN:2157-7633 JSCRT, an open access journal

Pluripotent Stem Cells



Citation: Kawabata K, Takayama K, Nagamoto Y, Saldon MS, Higuchi M, et al. (2012) Endodermal and Hepatic Differentiation from Human Embryonic
Stem Cells and Human Induced Pluripotent Stem Cells. J Stem Cell Res Ther $10:002. doi:10.4172/2157-7633.510-002

Page 3 of 7

fhepatic transcription

:Origin Species factor genes ref
'ESCs mouse  FOXA2 271
ESCs mouse FOXA2 [28] B
ESCs mouse  E-cadherin 82
ESCs mouse HEX [38]
ESCs human  SOX17 C[24]
ESCs/iPSCs human :SOX17 - [28)
'ESCs/iPSCs human  HNF4a 0]
ESCs/iPSCs human HEX { [39] h
fkae‘;ﬁétic progenitor cells 5

;isolated from E14 fetal mouse EHNF4<:( . [63]
_mouse !

élineage-depleted OsM !

_receptor B expressing mouse kHNF4c1 . [64]
‘bone marrow cells :

e e s uman  TERT e
i 2:; n:qagez?:senchymal human k HNF4a ‘: [65]
Zz‘r’:;e';‘ggrt’lil‘fd mouse  FOXA2, HNF4a, o/EBPa 1]
fibroblasts mouse  HNF4a, FOXA1-3 | (e8]
;ﬁbroblasts mouse g:;ﬁl‘;ti:r:\jg; ;a QF,,??)A 3 [67]

Table 1: Strategies for in vitro hepatic differentiation by using hepatic transcription
factor genes.

prediction of drug toxicity by using primary human hepatocytes
isolated from a single donor. A hepatotoxicity screening utilizing
iPSC-derived hepatocyte-like cells would allow the investigation of
individual drug metabolism capacity [71-77]. A study has shown
the generation of hepatocyte-like cells from patient-specific human
iPSCs [78-80]. In the same study, it was demonstrated that patient-
specific iPSC-derived hepatocytes are a potential source for modeling
diseases whose phenotypes are caused by protein dysregulation within
adult cells. A novel drug discovery that reflects the individual genetic
information would be possible by using an iPSC library representing
different ethnic groups, sexes, and disease phenotypes.

Hepatic Differentiation by Co-culture and Three-
dimensional Culture

In order to facilitate maturation of the ESC- or iPSC-induced
hepatocyte-like cells and to enhance the differentiation efficiency of
those cells, development of a differentiation system that more closely
mimics progenitor development in vivo will be needed. Such culture
system is also relevant to the culture of primary hepatocytes. Normal
culture condition of hepatocytes in vitro differs substantially from the
environment in vivo. Thus, it is difficult to maintain the physiological
function of the hepatocytes. To overcome this difficulty, development
of a culture system for highly functional hepatocytes is required. So
far, co-culture methods with other lineage cells and three-dimensional
culture methods have been used to support these challenges.

Co-culture methods have been attempted with primary hepatocytes
and other kinds of cells [81-85], because cell-cell interactions are
important in embryogenesis and organogenesis. In particular,
heterotypic cell-cell interactions in the liver, such as interactions of
parenchymal cells with non-parenchymal cells, play a fundamental role

in liver function [86]. It has been reported that small hepatocytes could
be induced to differentiate into mature hepatocytes by co-culturing
with non-parenchymal cells in vitro [87]. Cell-cell interactions
between embryonic cardiac mesoderm and definitive endoderm have
been shown to be essential for liver development [88]. Transcription
factors that are critical for hepatic development have been identified
from these cell-cell interactions [88]. ES cells co-cultured with cardiac
mesoderm showed spontaneous differentiation into hepatocytes [89].
These results suggest that the combined differentiation methods, such
as addition of soluble factors into culture medium, transduction of
differentiation-related genes or co-cultivation with other lineage cells,
may further enhance the differentiation and maturation efficiency of
hepatocytes.

Recently, numerous three-dimensional (3D) culture methods
have been reported. Among these, the spheroid culture methods,
which include the hanging-drop method and the float-culture method
using culture dishes coated with non-adherent polymer, have been
widely used to culture primary hepatocytes in vitro. As various micro-
patterning technologies have been developed, various micro-patterned
substrates, employing both surface engineering and synthetic polymer
chemistry for utilizing spheroid culture, have been reported [90,91].
Spheroid culture methods permit the maintenance of liver-function of
primary hepatocytes in comparison with the two-dimensional (2D)-
culture.

The bioreactor method is also used for culturing primary
hepatocytes. By studying various optimized conditions, flow conditions
[92] and cell densities [93], this system has not only shown advantages
in terms of maintaining the functions of primary hepatocytes in vitro
in comparison with 2D-culture [94,95], but also has shown effects of
spontaneous differentiation from ESCs into hepatocytes [96,97]. It
has been reported that 3D culture using a bioreactor induces more
functional maturation in hepatocytes differentiated from ESCs than
2D-culture [97]. The 3D culture methods using polymer scaffold
systems have also demonstrated effectiveness both in culturing
primary hepatocytes [98,99] and in differentiation from ESCs into
hepatocytes in vitro [100-102]. These data showed that hepatocytes
could be induced from ESCs on a polymer scaffold. ALB expression
was detected earlier and the mRNA expression level of ALB was higher
than in 2D culture. Furthermore, cell-sheet engineering has recently
been reported [103,104]. Cell-sheet 3D culture was performed by using
a culture dish coated with a temperature-responsive polymer, poly
(N-isopropylacrylamide) [105-107]. Some groups have adopted culture
methods with a combination of 3D culture and co-culture and showed
that the liver function of primary hepatocytes could be maintained
more strongly and longer than without co-culture conditions [108-110].
These combined methods will likely be a more effective differentiation
condition to gain mature hepatocytes from ESCs and iPSCs.

Transplantation of Human ESC- or iPSC-derived
Hepatocyte-like Cells

Because of the species differences between humans and other
animals, it is difficult to apply biological phenomena of animals to
humans in the early phase of drug screening [111]. It is known that
chimera mice with human hepatocytes would be a powerful tool
to predict drug toxicity and drug metabolism in vivo [112-115].
In addition, chimera mice are useful to investigate the molecular
mechanisms involved in infection with human hepatitis B virus (HBV)
and HCV, because there is no suitable small animal model for such
study [116-118]. However, large amounts of human hepatocytes must
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be prepared for these technologies, thus requiring large numbers of
chimera mice. If it becomes possible to generate a robust chimera
mouse model with hepatocyte-like cells differentiated from human
ESCs or iPSCs, then chimera mice with humanized livers could be
widely used in pharmaceutical development. To this end, several
groups have reported the generation of chimera mice with hepatocyte-
like cells differentiated from human ESCs and iPSCs. Cai et al. reported
that human ESC-derived hepatocyte-like cells were transplanted into
the carbon tetrachloride (CCl,)-injured liver of severe combined
immunodeficiency (SCID) mice and human alpha-1-antitrypsin
(AAT) expression was detected in the liver [37]. Touboul et al. [119]
showed that human ESC-derived hepatocyte-like cells can engraft
and express human ALB and AAT in the liver of urokinase-type
plasminogen activator-transgenic Rag2IL-2Rg” (uPA-Rag2IL-2Rg"")
mice. Duan et al. [120] reported that human ESC-derived hepatocyte-
like cells were transplanted into the liver of NOD.CB17-Prkdc*d/
NecrCrl (NOD/SCID) mice and a significant level of human ALB was
detected in the recipient mouse serum. Basma et al. [49] generated
chimera mice and rats that secreted higher levels of human ALB than
previously reported chimera mice. They sorted human ESC-derived
hepatocyte-like cells based on surface asialoglycoprotein-receptor 1
(ASGPRI1) expression and injected them into the spleen of uPA-SCID
mice. Thereafter, they detected a much higher level of human ALB
and human AAT in the mouse serum on day 75 after transplantation.
They also performed transplantation into Nagase analbuminemic rats
treated with both retrorsine, which can prevent proliferation of rat
hepatocytes, and FK506, which can suppress immune response, after
partial hepatectomy, demonstrating that large clusters of engrafted
cells were observed in these rats and human ALB levels were reached
at 20,000 ng/ml [49].

The growth speed of hepatocyte-like cells is slower than that of
DE cells and hepatoblasts, both of which are immature stage cells as
compared with hepatocyte-like cells [60]. It is likely that immature cells
can proliferate better than mature cells in the mouse liver. Therefore,
several groups have attempted to transplant DE cells or hepatoblasts.
In one such attempt, human ESC-derived DE cells were successfully
engrafted into the livers of NOD/SCID mice, which were treated with
CCl, and retrorsine, and these mice expressed human AAT in the
liver [57]. Recently, Liu et al. [121] compared the engraft efficiency
of human ESC-derived multi-stage hepatic cells. They transplanted
human DE, hepatoblasts and hepatocyte-like cells differentiated from
human ESCs into the dimethylnitrosamine-injured liver of NOD/Lt-
SCID/IL-2Rg™~ (NSG) mice, demonstrating that at low cell dosages,
the engraftment efficiency of DE cells was slightly higher than that of
hepatoblasts and hepatocyte-like cells differentiated from human ESCs.
These results suggest that DE cells, which have proliferative capability,
can regenerate liver better than hepatocyte-like cells, which have lower
proliferative capability.

These technologies, which use ESC-derived cells, can be applied to
iPSC-derived hepatocyte-like cells. Si-Tayeb et al. [59] injected human
ESC- and iPSC-derived hepatocyte-like cells into the liver of neonatal
mice and they detected human ALB expression clusters. Liu et al. [121]
also transplanted human ESC- and iPSC-derived hepatocyte-like cells
into mice, and achieved similar results. These findings indicate that
human iPSC-derived hepatocyte-like cells can engraft into the rodent
liver in a manner similar to human ESC-derived hepatocyte-like cells.

Although human ESC- or iPSC-derived hepatocyte-like cells can
engraft in the mouse liver, the human ALB levels in chimera mice

engrafted with human ESC- or iPSC-derived hepatocyte-like cells
are much lower than those in chimera mice engrafted with human
primary hepatocytes [49,112,117,121], suggesting that the efficiency
of replacement in chimera mice generated with human ESC- or iPSC-
derived hepatocyte-like cells would be low. Therefore, the chimerism of
mice with human ESC or iPSC-derived hepatocyte-like cells should be
improved to apply this technology to industrial applications.

Conclusions

In this review, we have described several protocols that
could promote the differentiation of human ESCs or iPSCs into
endodermal and hepatic cells. These methods are all based on the
in vivo developmental process of embryos. In the future, by using a
combination of these protocols or through the discovery of molecular
findings about liver development, more efficient protocols for hepatic
differentiation could be developed for regenerative medicine and drug
development.
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Evaluation of Drug Toxicity by Using Hepatocytes Derived from Human iPS Cells
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DV IEYEF IS (FFEE) ch b5, KIHE
an DFASE 7 1 2 ORI 2 i R TR
TAHI &L, B A HIK - MR BN - B3R
V—Aney MEROMEEL-HL, BAFEOE
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