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Figure 1
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Figure 1 Hepatic differentiation of hESCs and hiPSCs by FOXA2 and HNF1a transduction.

The procedure for differentiation of hESCs and hiPSCs into hepatocyte-like cells via definitive endoderm cells
and hepatoblasts is presented schematically. Details of the hepatic differentiation procedure are described in
the Materials and Methods section.

23



Figure 2

TA
£ 4 150
£%
ga
o .
_§§ 100
8
© N o
55| 0
=%
E
o
7] A 7}
Q 9,(: X
g ag =
E ]
[0 omso B onF [Jowso @ rB [ omso B RrRIF
A
25 A A
cypzpe 10.06 cyp3aaq 18345
5|20 5] W n g L4 -
] € | 1.54 s | 254
8|15 S S 1,0
E 2 BT
s |10 = = | 159
2l 2 | os- 2 ;'g'
0 — o " 0 =
O I3 4]
- g 2 gs 2
£ c o =2 o £ c o

Figure 2 The urea secretion capacity and CYP induction potency of hiPSC-hepa.

hiPSCs (Dotcom) were differentiated into hepatocyte-like cells as described in Figure 1. (A) The amount
of urea secretion was examined in hiPSCs, hiPSC-hepa (day 20 of the differentiation), and primary human
hepatocytes (48hr), which were cultured for 48 hr after plated. (B) Induction of CYP1A2, 2B6, or 3A4 by
DMSO (white bar) or inducer (black bar; -naphthoflavone [bNF], phenobarbital [PB], or rifampicin [RIF])
of hiPSC-hepa and PHs, which were cultured for 48 hr after the cells were plated, was examined. The
inducers used in this figure is summarized in Figure 3. On the y axis, the gene expression levels of
CYP1A2, 2B6, or 3A4 in DMSO-treated cells, which were cultured for 48 hr, were taken as 1.0. All data
are represented as means * SD (n=3).
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Figure 3

Figure 3 List of CYP inducers used in this study
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Figure 4
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Figure 4 The time course of metabolites formation in hiPSCs, hiPSC-hepa, or PHs.

hiPSCs (Dotcom) were differentiated into hepatocytes as described in Figure 1. Quantitation of
metabolites in hiPSCs, hiPSC-hepa, and PHs treated with nine substrates (Phenacetin [PHE],
Bupropion [BP], Paclitazel [PCT], Tolbutamide [TB], S-mephenytoin [MP], Bufuralol [BF], Midazolam
[MDZ], Testosterone [TS], and Hydroxyl coumarin [OHC]) was performed. Supernatants were
collected at 1, 2, 4, or 24 hr after incubation with each substrate, which were the probes for CYP1A2,
2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A4 and UGT, respectively. The quantity of metabolites
(Acetaminophen [AAP], Hydroxybupropion [OHBP], 6a-hydroxypaclitaxel [OHPCT],
Hydroxytolbutamide [OHTB], 4'-hydroxymephenytoin [OHMP], 1'-hydroxybufuralol [OHBF], 1'-
hydroxymidazolam [OHMDZ], 6B-hydroxytestosterone [OHTS], 7-Hydroxycoumarin glucuronide [G-
OHC], respectively) was measured by LC-MS/MS. The substrates and that metabolites used in this
study are summarized in Figure 5. All data are represented as means = SD (n=3).
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Figure 5
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Figure 5 List of CYP substrates and that metabolites used in this study.
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Figure 6
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Figure 6 Evaluation of the drug metabolism capacity and hepatic transporter activity of hiPSC-
hepa.

The hiPSCs (Dotcom) were differentiated into hepatocytes as described in Figure 1. (A and B)
Quantitation of metabolites in hiPSCs, hiPSC-hepa, and PHs, which were cultured for 48 hr after the cells
were plated, was examined by treating nine substrates (Phenacetin, Bupropion, Paclitazel, Tolbtamide, S-
mephenytoin, Bufuralol, Midazolam, Testosterone, and Hydroxyl coumarin; these compounds are
substrates for CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A4 (A) and UGT (B), respectively), and then
supernatants were collected at the indicated time. The quantity of metabolites (Acetaminophen [AAP],
Hydroxybupropion [OHBP], 6a-hydroxypaclitaxel [OHPCT], Hydroxytolbutamide [OHTB], 4'-
hydroxymephenytoin [OHMP], 1'-hydroxybufuralol [OHBF], 1'-hydroxymidazolam [OHMDZ], 6b-
hydroxytestosterone [OHTS], 7-Hydroxycoumarin glucuronide [G-OHC], respectively) was measured by
LC-MS/MS. The substrates and their metabolites are summarized in Figure 5. The ratios of the activity
levels in hiPSC-hepa to the activity levels in PHs rate are indicated in the graph. All data are represented
as means =+ SD (n=3).
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Figure 7
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Figure 7 The hepatic characterization of hiPSC-hepa.

The hiPSCs (Dotcom) were differentiated into hepatocytes as described in Figure 1. (A) hiPSCs, hiPSC-
hepa, and PHs were examined for their ability to take up ICG (left column) and release it 6 hr thereafter
(right column). (B) hiPSCs, hiPSC-hepa, and PHs were cultured with medium containing Alexa-Flour 488-
labeled LDL (green) for 1 hr, and immunchistochemistry was performed. Nuclei were counterstained with
DAPI (blue). The scale bars represent 50 uym. The percentage of LDL-positive cells was also measured
by FACS analysis. All data are represented as means = SD (n=3).
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Figure 8
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Figure 8 hiPSC-hepa have a potential to be applied in drug screening.

The hiPSCs (Dotcom) were differentiated into hepatocytes as described in Figure 1. The cell viability of
hiPSCs (black bar), hiPSC-hepa (blue bar), PHs (red bar), and their BSO-treated cells (0.4 mM BSO was
pre-treated for 24 hr) was assessed by Alamar Blue assay after 48 hr exposure to different concentrations
of benzbromarone. The cell viability is expressed as a percentage of that in the cells treated only with
solvent. All data are represented as means =+ SD (n=3).
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Figure 9
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Figure 9 Drug metabolism capacity and CYP induction potency were examined in the 3D iPS-hepa.
(A) The 3D iPS-hepa (day 35) were subjected to immunostaining with anti-ALB (green) or CYP3A4 (red)
antibodies. Nuclei were counterstained with DAPI (blue). Scale bar represents 100 um. (B) The CYP
activity was measured in the mono iPS-hepa (day 20), the 3D iPS-hepa (day 35), and PHs-48hr. On the y
axis, the CYP activity in PHs-48hr was taken as 1.0. (C) Induction of CYP2C9 (left) or CYP3A4 (right) by
DMSO (solvent only; white bar), Rifampicin (gray bar), or rifampicin and CYP inhibitor (Sulfaphenazole or
Ketoconazole, black bar) in the mono iPS-hepa, the 3D iPS-hepa, and PHs-48hr. On the y axis, the CYP
activity of the cells that have been cultured in DMSO-containing medium was taken as 1.0. *P<0.05;
*P<0.01.
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Figure 10 WST-8 assay was the most sensitive method for detecting the drug-induced cytotoxicity.

(A) The cell viability of 3D iPSC (Dotcom)-hepa (day 35) was assessed by WST-8, ATP, Alamar blue, or Crystal
violet assay after 24 hr exposure to different concentrations (or 40 uM (B))of Benzbromarone. The cell viability is
expressed as the percentage of cells treated with solvent only.
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Figure 11
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Figure 11 The drug-induced cytotoxicity was more sensitively detected in the 3D iPS-hepa than in the
mono iPS-hepa.

On day 11, the hiPSC (Dotcom)-derived cells were plated onto the Nanopillar Plate or the flat plate, and then the
cells were cultured until day 35. The cell viability of 3D iPSC-hepa was assessed by WST-8 assay after 24 hr
exposure to different concentrations of drugs. Cell viability is expressed as a percentage of cells treated with
solvent only.

33



Figure 12 120

120 120
100 100 Amiodaron 100
80 4 80 80
60 ~ 60 4 60 -
—@— 3D HepG2 40 - 40 4 &% 40 - *
20 4 Allopurinol 20 b 20 1 Benzbromarone
s s iPS- 0 — r 0 — T 0 Yoy T
3D iPS-hepa 0 25 50 100 (uM) 012525 50 (uW) 0 10 20 40 (uM)
A 120 120 120 120
aw 100 100 ,_.% 100 100 -
% 80 80 80 - 80 - Desipramine
S| e0q ** % 60 1 609 ** L. 60 - "
2| 401 x4k 40 Cyclizine 40 4 40 ¥k
&1 20+ Clozapine 20 4 20 - Dantrolene 2(;) -
0 E— T 0 T— T 0 " T yor v
012525 50 (uM) 012525 50 (uM) 0 25 50 100 (uM) 012525 50 (uM)
A 120 125 120 120
2| 100 ‘<o\'\::‘_i 100 p—Fceee 100 f= gt 100
Z1 809 & 75 . 80 4 * b
S| 60+ * S *x 60 4 60 **
S * 50 o .
z| 407 Erythromycin 401 401 *k
3 20 o Disufliram 25 - Y 20 4 Felbamate 204 Flutamide
0 — v 0 — r 0 — r 0 r—r r
0 25 50 100 (um) 0 25 50 100 (uM) 0125 250 500 (pM) 012525 50 (uM)
A 120 120 120 120
z| 100 100 100 100 Maprotiline
3| @] = ool I el ** poti I "
s 7 60 - L
21 991 coniazia & o4 *F 40 - ** 40 -
§ 20 { 'Soniazi 20 Labetalol 20 4 Leflunomide 20 4
0 0 ™ T 0 — T 0 T T
0 25 50 100 (uM) 0 25 50 100 (uM) 0 25 50 100 (uM) 012525 50 (uM)
A 120 120 125 120
Z] 100 Nefazodone 100 100 §Bon s el 100 Tacrine
=] 804 80 - 80 -
a2 75 -
K 60 * 60 - 50 4 60 4 FRNFE
2] 404 " oxx 40 4 40
Bl 20 - 20 4 Nitrofurantoin 25 4 Sulindac 20 4 ¥
0 T T 0 r— r 0 — r 0 — r
012525 60 (uM) 0 50 100 200 (M) 0 25 50 100 (uM) 0 50 100 200 (kM)
3-“ 120 120 120
£ 100 100 100 Zafirlukast
HE I 0] s o) —e— 3D HepG2
2| 60 A - 1
s *k 60 *E x
= 40 4 40 1 ' 40 4 =g 3D iPS-hepa
31 20 - Tebinafine 204 Tolcapone 20 4 3DiP p
0 +—r— . 0 +—r—r T wenfipe PHg -
0 +r—r 1 s-48hr
012525 50 (uM) 025 50 100 (uM) 025 50 100 (uM)

Figure 12 The possibility of applying 3D iPS-hepa to drug testing was examined.

The cell viability of the 3D HepG2 (black) and 3D iPSC-hepa (red) were assessed by WST-8 assay after 24 hr
exposure to different concentrations of 22 test compounds. Cell viability is expressed as a percentage of cells
treated with solvent only. *P<0.05; **P<0.01 (The data of 3D iPS-hepa was compared with that of 3D HepG2).
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Figure 13
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Figure 13 Hepatocyte function was enhanced by culturing HepG2
cells on Nanopillar Plate.

HepG2 cells were cultured for 5 days on the Nanopillar Plate. (A, B)
The amount of ALB (A) and urea (B) secretion was examined in the
monolayer cultured HepG2 cells (mono HepG2), the 3D spheroid
cultured HepG2 cells (3D HepG2), and PHs-48hr. (C-G) The gene
expression levels of CYP enzymes (C), conjugating enzymes (D),
hepatic transporters (E), hepatic nuclear receptors (F), and bile
canalicular transporters (G) were examined by real-time RT-PCR in the
mono HepG2, the 3D HepG2, and PHs-48hr. On the y axis, the
expression levels of PHs-48hr were taken as 1.0. *P<0.05; **P<0.01.
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Figure 14
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Figure 14 Drug-induced cytotoxicity in the 3D iPS-hepa is mediated by
cytochrome P450.

(A, B) The cell viability of the 3D iPSC-hepa was assessed by WST-8 assay after 24
hr exposure to different concentrations of (A) Aflatoxin B1 and (B) Benzbromarone
in the presence or absence of the CYP3A4 or 2C9 inhibitor, Ketoconazole or
Sulfaphenazole, respectively. Cell viability was expressed as the percentage of cells
treated with solvent only. *P<0.05; **P<0.01.
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