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ABSTRACT Cellular differentiation and lineage commitment are considered to be robust and
irreversible processes during development. Recent work has shown that mouse and human
fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcrip-
tion factors. We hypothesized that combinatorial expression of chondrocyte-specific tran-
scription factors could directly convert human placental cells into chondrocytes. Starting from
a pool of candidate genes, we identified a combination of only five genes (5F pool)—BCLé, T
(also called BRACHYURY), ¢-MYC, MITF, and BAF60C (also called SMARCD3)—that rapidly
and efficiently convert postnatal human chorion and decidual cells into chondrocytes. The
cells generated expressed multiple cartilage-specific genes, such as Collagen type Il .1, LINK
PROTEIN-1, and AGGRECAN, and exhibited characteristics of cartilage both in vivo and in
vitro. Expression of the endogenous genes for T and MITF was initiated, implying that the cell
conversion is due to not only the forced expression of the transgenes, but also to cellular
reprogramming by the transgenes. This direct conversion system from noncartilage tissue to
cartilaginous tissue is a substantial advance toward understanding cartilage development,
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cell-based therapy, and oncogenesis of chondrocytes.

INTRODUCTION

The possibility of redirecting cell differentiation by overexpression
of genes was suggested by H. Weintraub with the identification of
the “master gene,” MyoD (Davis et al., 1987). The process was be-
lieved to involve reversion to a less differentiated state, a kind of
dedifferentiation, before the new cell type is formed. Another pro-
cess has since been introduced—the concept of direct conversion
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.molbioclcell.org/cgi/doi/10.1091/mbc.E11-10-0869) on July 25, 2012.
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MEFs, mouse embryonic fibroblasts; PCA, principal component analysis; PDs, pop-
ulation doublings; RT-PCR, reverse transcriptase PCR; siRNA, small interfering RNA;
STRs, short tandem repeats.
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or direct reprogramming without dedifferentiation. This process is
believed to be direct lineage switching rather than lineage switching
back to a branch point and out again in a different direction
{(Hochedlinger and Jaenisch, 2006; Orkin and Zon, 2008). Direct
conversion has been shown in B cells, cardiomyocytes, and neurons.
A specific combination of three transcription factors (Ngn3, PdxT1,
and MafA) reprograms differentiates pancreatic exocrine cells in
adult mice into cells that closely resemble B cells (Zhou et al., 2008);
a combination of three factors (Gatad, Thx5, and Baf60c) induces
noncardiac mesoderm to differentiate directly into contractile car-
diomyocytes (leda et al., 2010); and a combination of three factors
(Ascl?, Brn2, and Myt1]) converts mouse fibroblasts into functional
neurons (Vierbuchen et al., 2010). In this study, we used the strategy
of direct conversion to generate chondrocytes from human somatic
cells.

During skeletal development, chondrogenesis starts from con-
densed mesenchyme tissue, which differentiates into chondrocytes
and begins secreting the molecules that form the extracellular ma-
trix and leads to endochondral ossification. Cartilage is a stiff yet
flexible connective tissue found in many areas in the bodies of
humans and other animals. It is composed of chondrocytes, which
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FIGURE 1: Characterization of infected cells. (A) Cell source for infection. Smooth chorion- and
decidua-derived cells were used to investigate chondrogenesis by direct reprogramming. Bars,
1 mm. (B) Cell cultivation. (a) Phase contrast micrograph of parental cells. Bars indicate 200 ym.
(b) Growth curve of parental cells. (C) Cells infected with five genes. (a) Phase contrast
micrograph of infected cells. Bars, 200 um. (b) Growth curve of infected cells. Orange, clone 01;
red, clone 02; blue, clone 03; green, clone 05. Vertical axis indicates population doublings (PDs),
and horizontal axis indicates days after infection. (D) Quantitative RT-PCR of TERT expression in
the infected cell fines (clones 01, 02, 03, and 05). Individual RNA expression levels were
normalized to respective GAPDH expression levels. Hela cells were used for reference. Error
bars, SD (n= 3). (E) Genomic DNA PCR analysis of uninfected and infected cells. To investigate
chromosomal integration of the genes by retroviral infection, we performed genomic DNA PCR
analysis, using transgene-specific primers of each gene. Five transgenes (BCL6, T, c-MYC, MITF,
and BAF60C) were detected in all of the infected cell lines. (F) Southern blot analyses of the
infected cells (clone 01). Genomic DNA was digested with Spel, Mfel, Bglll, Ncol, and BamHI
and then probed for probes of the genes for BCL6, T, c-MYC, MITF, and BAF60C, respectively.
The transgenes (BCLé, T, c-MYC, MITF, and BAF60C) were detected in all of the infected cell
lines. Arrows indicate bands corresponding to the endogenous genes. (G) STR analysis of
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produce a large amount of collagen fiber, an
abundant ground substance rich in proteo-
glycans, and elastin fibers. Developmentally,
the undifferentiated mesenchymal cells
migrate into the limb field and condense to
form the cartilage anlage. Bone morpho-
genic proteins and transforming growth
factor-B initiate the chondrogenic program
and have significant effects on chondrogen-
esis through distinct mechanisms in a stage-
specific manner. In addition to soluble
factors, the high mobility group-domain
transcription factors such as Sox5, Soxé, and
Sox9 control chondrogenic differentiation,
maintain the chondrocyte phenotype, and
regulate expression of extracellular matrix
molecules, such as cartilage-specific colla-
gen type Il (Lefebvre et al., 1997).

Murine chondrocytes can be converted
from fetal fibroblasts by the direct repro-
gramming method using the cartilage-spe-
cific transcription factors Sox9, c-Myc, and
Kif4 (Hiramatsu et al, 2011), but human
chondrocytes converted from different types
of cells have not yet been reported. In the
present study, we generated chondrosar-
coma cell lines derived from human pla-
centa by the direct reprogramming method,
using a different set of genes. Placental
membrane can be obtained at every deliv-
ery and is usually discarded. Therefore it is
an easily accessible cellular source without
ethical problems.

RESULTS

Isolation of cells from smooth chorion
and decidua

We used smooth chorion and decidua for a
cell source by removing the amnion from
the placental membrane and used the ex-
plant culture method in which the cells are
outgrown from pieces of smooth chorion
and decidua attached to dishes (Figure 1A
and Supplemental Figure S1). The adherent
chorion- and decidua-derived cells were
passaged when the cells reached ~80% con-
fluence. These placenta-derived cells con-
tinued to grow for 30 d, which was five
population doublings (PDs), before reach-
ing senescence (Figure 1B). The cells at four
PDs were used as "parental cells” for con-
version analysis.

parental cells and the infected cells. All of the
infected cells exhibited the same STR
patterns as parental cells. (H) G-band
chromosome analysis for parental cells with
XX chromosomes and infected cells 01.

(I) G-band chromosome analysis for parental
cells with XY chromosomes and infected

cells 05.
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Infection of transcription factors into placenta-derived cells
To select candidates for transcription factors that would be required
to reprogram fibroblasts to a cartilage fate, we used microarray analy-
ses to identify transcription factors and chromatin remodeling factors
with greater expression in mouse embryonic stem cell that are dif-
ferentiated into mesoderm. We started with a 14-gene set, that is,
genes for mesoderm-specific transcription factors (T, MITF, TBX5,
TBX20, CSX/NKX2.5, GATA4, MEF2C, MESP1, ISL1, BCLé, and
PRDM16) and  chromatin-remodeling/reprogramming  factors
(BAF60C, c-MYC, and KLF4). We generated individual retroviruses to
efficiently express each gene. Viral infections were preceded by
transfection of small interfering RNA (siRNA) to the p53 gene (Sup-
plemental Figure S2). Parallel experiments using retrovirus carrying
the EGFP gene indicated that infection efficiency was nearly 100%.
We investigated expression of cartilage-associated genes such as
Collagen Type Il 0.1 (COL2A1), Collagen Type X a.1 (COLT0A1T), LINK
PROTEIN-1 (CRTL1), and AGGRECAN (ACAN) by reverse tran-
scriptase (RT)-PCR and identified five genes (BCLS, T, c-MYC, MITF,
and BAF60C) that induced chondrocyte gene expression. The induc-
tion levels of the cartilage-associated genes were greatly reduced by
elimination of any one gene from the five-gene set. We thus decided
to use the five-gene set for chondrogenic induction for subsequent
experiments. After we seeded infected cells on mouse embryonic fi-
broblasts (MEFs), we detected a very large number of mouse embry-
onic stem cell-like colonies on MEFs 15 d after infection of the 5F
pool (Figure 1C, a). Efficiency of colony formation (colony number per
the number of cells infected) was 5.76 (£0.21) x 10-%. We randomly
picked four clones and analyzed cell growth rates. The cells repli-
cated at a rate of once every 2 d and continued to grow for >150 d
without reaching senescence (Figure 1C, b). All four clones expressed
the TERT gene after establishment as a cell line (Figure 1D). The cells
infected with the five genes exhibited a chondrogenic phenotype
with malignant transformation, as shown by following results, and
were thus designated induced chondrosarcoma (iCS) cells.

To determine chromosomal insertion of the genes, we performed
genomic DNA PCR analysis (Figure 1E). The genes encoding BCLS, T,
¢c-MYC, MITF, and BAF60C were detected in chromosomal genome
of the four clones. Southern blot analysis with cDNA probes of each
of the five genes (BCLé, T, c-MYC, MITF, and BAF60C) confirmed
that each clone had chromosomal integration of the exogenously in-
fected genes (Figure 1F and Supplemental Figure S3). The analysis of
the 16 short tandem repeats (STRs) revealed that the infected clones
were derived from parental cells: clones 1, 2 and 3 were derived from
parental cells of the same donor with XX chromosomes, and clone 5
was derived from different parental cells with XY chromosome (Figure
1G). The STR patterns of the infected cells differed from those of
any cell lines deposited on National Institutes of Health website
(http://stemcells.nih.gov/research/nihresearch/scunit/genotyping
.htm), implying that the cells generated are not a contamination of
previously established cell lines. To determine the karyotypes of the
iCS cell lines, karyotypic analysis was performed at different passages
(Pé~ P23). Chromosomal G-band analyses showed that each clone
had a normal karyotype with 46XX and 46XY (Figure 1, H and |, re-
spectively). We then performed karyotypic analysis on iCS clones af-
ter prolonged passages (P15 and P23 for iCS-01; P13 and P21 for
iCS-02; P12 and P21 for iCS-03; P7 and P23 for iCS-05, and did not
detect any significant karyotypic change (Supplemental Figure S4).

In vitro chondrogenic phenotypes of the cells infected

with the 5F pool

To investigate whether the infected cells exhibit a chondrogenic
phenotype in vitro, we performed RT-PCR analysis using primers
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of the cartilage-specific genes (Figure 2A and Supplemental
Table S1; Sekiya et al., 2002; Shirasawa et al., 2006). All the cell
lines expressed the chondrocyte-specific/associated transcription
factors (SOX5, SOX6, and SOX9), structural genes (COL1AT,
COL2A1, CRTL1, and ACAN), and immortalizing gene (TERT). To
see whether the endogenous genes for BCLé, T, c-MYC, MITF,
and BAF60C were expressed by reprogramming, we performed
RT-PCR analysis by the primers specific to the endogenous gene
but not the transgenes (Supplemental Figure S5). Endogenous
genes such as T, MITF, and BAF60C were induced (Figure 2B). To
determine the surface markers of the cells, we performed flow
cytometric analysis. All clones were positive for CD44, CD49c,
CD151, and CD166 but not CD117 and CD133, suggesting that
the cell marker pattern of iCS cells is compatible with that of
chondrocytes (Figure 2C; Grogan et al., 2007). Western blot anal-
ysis revealed that all the infected cells expressed COL2A1 and
COL1AT1 at the protein level (Figure 2D and Supplemental Figure
S6). Comprehensive gene expression analysis showed that the
expression pattern of the infected cells is similar to that of human
adult chondrocytes and human fetal chondrocytes (Figure 2E).
Expression of cartilage-specific genes such as Sox9, Aggrecan,
and Matrix Gla-protein was detected in the infected cells and
chondrocytes but not in the parent human smooth chorion and
decidua cells (Figure 2F). Conversely, expression of placenta-as-
sociated genes such as GATA3, CD200, PDCD1LG2, OLR1, TEK,
HSD17B2, and FOXF1 was lost in the infected cells. Hierarchical
clustering analysis revealed that the infected cells were grouped
into the same category that includes chondrocytes obtained from
human fetuses and adults (Figure 2G). In addition, principal com-
ponent analysis (PCA) revealed that the infected cells and chon-
drocytes showed similar scores in the PC2 axis (Figure 2H). The
representative genes (principal components) of the PC2 axis in
Table 1 include cartilage-specific genes such as Aggrecan, Fibro-
modulin, and Matrix Gla-protein (Plaas and Wong-Palms, 1993;
Yagami et al., 1999, Sekiya et al,, 2002; Hjorten et al., 2007,
Surmann-Schmitt et al., 2009).

Inhibition of five factors by small interfering RNA

To investigate the involvement of the five factors in chondrogen-
esis, we suppressed their expression by siRNA (Supplemental
Table S2). The mRNAs for the five factors (BCLé, T, c-MYC, MITF,
and BAF60C) were significantly decreased by siRNAs compared
with control cells transfected with control siRNAs (Figure 3, A and
B, and Supplemental Figures $7-S9). Morphological changes in
the siRNA-treated cells were too variable to interpret. Gene
expression of the chondrogenic-specific/associated transcription
factors (SOX5, SOX6, and SOX9) and structural genes (COLTAT,
COL2A1, CRTL1, and ACAN) decreased significantly in siT (siRNA
to the T gene)-transfected cells compared with cells treated with
control siRNA (Figure 3C and Supplemental Figure $10), suggest-
ing that T is necessary for chondrogenic conversion (Hoffmann
et al., 2002). In addition, expression of the genes for SOX5, SOX6,
COL1A1, and COL2AT decreased significantly in siMITF-trans-
fected cells compared with cells transfected with control siRNA,
suggesting that MITF is also necessary for chondrogenic conver-
sion. In contrast, treatment of siRNA to BCL6, c-MYC, and BAF60C)
did not alter cartilage-related genes (Zelzer and Olsen, 2003; Levy
and Fisher, 2011). siMITF diminished the cobblestone appearance
of iCS colonies and the cell lining at the periphery of iCS colonies
and altered the appearance of the iCS cells to a fibroblast-like
morphology, which may be related to decreased expression of the
cartilage-associated genes.
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FIGURE 2: Chondrogenic phenotypes of infected cells. (A) RT-PCR analysis of the genes encoding cartilage-specific
proteins (SOX5, SOX6, SOX9, COL1A1, COL2A1, COL10A1, CRTL1, and ACAN), immortalizing gene (TERT), and the
infected genes (BCLS, T, c-MYC, MITF, and BAF60C). Primers that detect both the transgenes and endogenous genes
for BCLS, T, -MYC, MITF, and BAF60C were used (Supplemental Figure S5C). RNAs from the following sources were
used for positive controls: heart for BCLé, MITF, BAF60C, and GAPDH; iPS cells for T, c-MYC, and TERT; and cartilage
for COL1A1, COL2A1, COL10A1, CRTL1, ACAN, SOX5, SOX6, and SOX9. H,O (water without RNA) served as a
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Descriptior __ Genesymbol  Descriptior ; .
Aggrecan CLEC4D C-type lectin domain family 4, member D
Fibromodulin NRAP Nebulin-related anchoring protein
Matrix Gla protein OR2V2 Olfactory receptor, family 2, subfamily V,
LRRC48 Leucine-rich repeat containing 48 member 2
SLPI Secretory leukocyte peptidase inhibitor KCNH7 Potassium voltage-gated channel,
RAB11FIP4 RAB11 family interacting protein 4 (class Il subfamily H (eag-related), member 7
TLRS Toll-like receptor 5 KCNK17 Potassium channel, subfamily K, member
7
NEBL Nebulette DRD 1D ] o1
RAB11FIP4 RAB11 family interacting protein 4 (class Il) opamine receptor
. . g L CTNNAZ Catenin (cadherin-associated protein), 0.2
CAPG Capping protein (actin filament), gelsolin-like FMRT Frail | dati b
SLC26A4 Solute carrier family 26, member 4 NB rag e. X.menta retardation 1‘ne|g or
MIF Macrophage migration inhibitory factor ABCC12 ATP-binding cassette, subfamily C (CFTR/
SRR MRP), member 12
(glycosylation-inhibiting factor) ] )
CALR3 Calreticulin 3 SLITRK3 SLIT and NTRK-like family, member 3
ESPN Espin CHITA Class I, ‘major histocompatibility complex,
transactivator
SLC7A2 Solute carrier family 7 (cationic amino acid GP2 Gl i 2 |
transporter, y+ system), member 2 ycoprotein 2 (zymogen granule
CHRNA4 Cholinergic receptor, nicotinic, 0.4 membrane)
S 9 ptor ST OR12D3 Olfactory receptor, family 12, subfamily D,
ZBTB10 Zinc finger and BTB-domain containing 10 member 3
ND3 NADH-ubiquinone oxidoreductase chain GALNTL4 UD .
P-N-acetyl-o-p-galact
3(NADH dehydrogenase subunit 3) BRSK2 BR seri ajfhy ¢ ’.D gak'ac osazmme
EENAT Ephrin-Al o : serine ! reonine lAnaslz(e‘ ",
RGMA RGM domain family, member A RAB33B Ri;;?;m rans tych>A315ne inase mf |
ENST00000390243  Immunoglobulin  light-chain V gene » ember RAS oncogene family
segment ELA1 Elastase 1, pancreatic
GPA33 Glycoprotein A33 (transmembrane) ASPA Aspartoacylase (Canavan disease)
CLMN Calmin (calponin-like, transmembrane) IL18RAP Interleukin 18 receptor accessory protein
RAB11FiP4 RAB11 family interacting protein 4 (class II) EPHAS EPH receptor A8
KRT26 Keratin 26 CXCR6 Chemokine (C-X-C moitif) receptor 6
YBX2 Y box-binding protein 2 BAGE B melanoma antigen
EEF1G Eukaryotic translation elongation factor 1 SIRPG Signal-regulatory protein y
NAG18 NAG18 protein on chromosome 19 AF083118 CATX-2 mRNA
CX62 Connexin 62 TSPAN16 Tetraspanin 16
KCNC2 Potassium voltage-gated channel, Shaw- AF028840 Kruppel-associated box protein mRNA
related subfamily, member 2 WIF1 WNT inhibitory factor 1
TSPAN33 Tetraspanin 33 TTTY9A Testis-specific transcript, Y-linked 9A
PTCH1 Patched homologue 1 (Drosophila) (TTTY9A) on chromosome Y
DEFB126 Defensin, 126 LRRCS50 Leucine-rich repeat containing 50
RAMP3 Receptor (G protein-coupled) activity— ENST0000037416  Collagen, type XXVII, a1
modifying protein 3 WFDC12 WAP four-disulfide ¢ ore domain 12

TABLE 1: Representative genes in PC2 axis of the PCA.

negative control. (B) RT-PCR analysis of the endogenous genes encoding T, MITF, and BAF60C. The primers were
prepared to amplify the endogenous genes but not the transgenes. RNAs from the following sources were used for
positive controls: heart for BCL6, MITF, BAF60C, and GAPDH; and iPS cells for T and c-MYC. H,O (water without RNA)
served as a negative control. (C) Flow cytometric analysis of cell surface markers on the parental cells and infected cells.
Al of the results were compared with each isotype control. The X- and Y-axes indicate the intensity and the cell number,
respectively. (D) Western blot analysis of COL2A1 protein in the infected cells and parental cells. (E, F) The heat map in
the infected cells and parental cells. Each row represents a gene; each column represents a cell population. Expression
levels of representative genes are shown in F. (G) Hierarchical clustering analysis (TIGR MeV; see Materials and
Methods), based on expression levels of the cartilage-associated genes. (H) Principal component analysis of gene
expression levels.
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FIGURE 3: Functional effect of genes in iCS cells. (A) Phase contrast microscopic views.

(a) Control siRNA-treated iCS cells. (b) BCL6 siRNA-treated iCS cells. (c) T siRNA-treated iCS cells.
(d) c-MYC siRNA-treated iCS cells. {(e) MITF siRNA-treated iCS cells. (f) BAF60C siRNA-treated
iCS cells. Bars, 200 um. (B) Quantitative RT-PCR of each gene in siRNA-treated cells. Individual
RNA expression levels were normalized to respective GAPDH expression levels. Error bars,
mean * SD (n = 3). (C) RT-PCR analysis of the genes encoding SOX5, SOX6, SOX9, COL1A1,
COL2A1, COL10A1, CRTL1, and ACAN. Human cartilage and H,O (water without RNA) served

as positive and negative controls, respectively.

Cartilage formation after implantation of the cells infected

with the 5F pool

To investigate whether iCS cells exhibit a chondrogenic pheno-
type in vivo, we intradermally injected the cells into dorsal flanks
of immunodeficient Balb/c nu/nu mice. The masses generated
underwent histopathological analysis 7 wk after injection. The
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injected cells generated cartilage that ex-
hibited metachromasia by toluidine blue
staining and were light blue when stained
with Alcian blue (Figure 4A). In contrast,
implantation of parental cells produced
neither tumor nor cartilage (Figure 4E).
RT-PCR analysis showed that iCS cartilage
expressed genes for COLTAT, COL2AT,
COL10A1, CRTL1, ACAN, CD44, CD49%,
CD151, and CD166 (Figure 4B). Western
blot analysis showed that iCS cartilage pro-
duced collagen type |l at the protein level
(Figure 4C). We also performed immuno-
histochemical analysis using antibodies to
vimentin, collagen type ll, and Ki-67. The
antibody for vimentin that we used specifi-
cally reacts with human protein but not mu-
rine protein. The antibody for Ki-67 reacts
with a human nuclear cell proliferation-as-
sociated antigen, and thus it does not react
with differentiated chondrocytes. iCS cells
stained positive for human vimentin, and
extracellular matrix was positive for colla-
gen type lI, implying that the injected hu-
man cells generate cartilage (Figure 4D).
Nearly 30% of iCS cells stained positive for
Ki-67, indicating that iCS cells continued to
replicate in cartilage at 7 wk after injection.
iCS cells in the tumor had large nuclei with
coarse chromatin structure and one or two
nucleoli, and the ratio of nucleus/cyto-
plasm was large. The tumors generated by
iCS cells were histopathologically diag-
nosed as chondrosarcoma by a certified
pathologist (A.U.). Anchorage-indepen-
dent colony formation is a hallmark of
transformation and an in vitro correlate of
tumorigenicity in vivo (Cremona and Lloyd,
2009). After cultivation in MethoCult H4034
medium, colony formation was evaluated
(Figure 5). The colony-forming assay clearly
revealed that iCS cells formed colonies but
parental cells did not, indicating that iCS
cells are transformed cells with chondro-
genic potential.

Generation of chondrocytes from
other human somatic cells

In addition to human smooth chorion, we
used primary cultured cells from human
menstrual blood and placental artery. We
obtained 10 and 9 clones, respectively,
from menstrual blood-derived cells and
placental arterial endothelium. All of them
proliferated as a chondrogenic cells with
transformation and exhibited the same

morphology with iCS in vitro (Figure é). The growth rates of the
clones generated from menstrual blood and placental artery
were essentially the same as those of iCS cells. After implanta-
tion into the dermal tissue of nude mice, they generated chon-
drogenic tissue that showed metachromasia with the toluidine
blue stain.
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FIGURE 4: In vivo chondrogenic phenotypes of iCS cells. (A) Cartilage at 7 wk after injection of
iCS cells. (a) HE stain, (b) Alcian blue, (c) toluidine blue. iCS cells at passage 3 were injected
subcutaneously to the dorsal flank of athymic nude mice. Areas of extracellular matrix
accumulation stain light to dark blue with Alcian blue (b) or light- to dark-red/purple with
toluidine blue (c). Bars, 50 pm. These results are representative of five independent experiments.
(B) RT-PCR analysis of the genes encoding SOX5, SOX6, SOX9, COL1A1, COL2A1, COL10A1,
CRTL1, and ACAN in cartilage generated by iCS cells. Human cartilage and H,O (water without
RNA) served as positive and negative controls, respectively. Parental cells in culture serve for
comparison. (C) Western blot analysis of COL2A1 protein in iCS cartilage at 7 wk after
subcutaneous injection of iCS cells into athymic nude mice. Human cartilage serves a positive
control. GAPDH was used as a loading control. (D) Immunohistochemical analysis of iCS
cartilage. (a) Vimentin, (b) collagen type Il (COL I}, (c) Ki-67. (E) Implantation of the parental
cells. We injected parental cells into athymic nude mice but did not detect any tumor formation.
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DISCUSSION

In mammals, cartilage does not regenerate
in limb tissue, but cells that derive cartilage
retain a strong memory of their embryonic
origin in the axolotl (Kragl et al., 2009). Celis
are undergoing reprogramming that allows
them to reenter embryonic programs of tis-
sue formation, even if they do not revert
back to the pluripotent state. Here we show
that expression of five transcription factors
can rapidly and efficiently convert nonchon-
drocytes (chorion- and decidua-derived
cells) into chondrocytes. iCS cells displayed
functional chondrogenic properties such as
the generation of extracellular matrices. The
possibility of redirecting cell differentiation
by overexpression of genes was suggested
by Weintraub with the identification of the
MyoD “master” gene (Davis et al., 1987).
The process was believed to involve rever-
sion to a less differentiated state, a kind of
dedifferentiation, before the new cell type is
formed. Another process has since been
suggested, the concept of direct conversion
or direct reprogramming without dediffer-
entiation. This process is believed to be di-
rect lineage switching rather than lineage
switching back to a branch point and out
again in a different direction. Direct conver-
sion has been shown in B cells, cardiomyo-
cytes, and neurons. A specific combination
of three transcription factors (Ngn3, PdxT,
and MafA) reprograms differentiated pan-
creatic exocrine cells in adult mice into cells
that closely resemble B cells (Zhou et al.,
2008); a combination of three factors (Gata4,
Tbx5, and Bafé60c) induces noncardiac me-
soderm to differentiate directly into contrac-
tile cardiomyocytes (leda et al., 2010); and a
combination of three factors (Ascl1, Brn2,
and Myt1)) converts mouse fibroblasts into
functional neurons (Vierbuchen et al., 2010).
In this study, we used the strategy of direct
conversion to generate chondrocytes from
human extraembryonic somatic cells. Based
on the same method, murine chondrocytes
were generated from skin fibroblasts
(Hiramatsu et al., 2011) using the three tran-
scription factors Sox9, c-Myc, and KIf4. Sox9
is a determinant of chondrogenic lineage
(Lefebvre et al., 1997), c-Myc is a cell cycle
driver (Schmidt, 1999), and Klf4 is involved
in the down-regulation of p53 (Rowland

We performed histological analysis and
immunohistochemical analysis using the
human vimentin-specific antibody. The
parental cells did not exhibit cartilage
formation at the injected site. Left, HE
stain. Right, immunohistochemistry using
human-specific antibody to vimentin. Bars,
100 pym.
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