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Figure 5 Hepatocyte-like cells were differentiated from hESCs/hiPSCs by using Nanopillar Plate.

(A) The procedure for differentiation of human ES/iPS cells into 3D ES/iPS-hepa via mesendoderm
cells, definitive endoderm cells, and hepatoblasts is presented schematically. In the differentiation, not only the
addition of growth factors but also stage-specific transient transduction of both FOXA2- and HNF1a-expressing
Ad vector (Ad-FOXA2 and Ad-HNF1a, respectively) was performed. The cellular differentiation procedure is
described in detail in the Materials and Methods section. (B) Photograph display of a 24-well format Nanopillar
Plate and its microstructural appearances of the hole and pillar structure. (C) Phase-contrast micrographs of
the hESC-hepa spheroids on the Nanopillar Plate are shown. Scale bar represents 100 pm.
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Figure 6 Hepatocyte functions in hESC-derived hepatocyte-like cells were enhanced by using Nanopillar Plate.

(A) The gene expression levels of ALB were measured by real-time RT-PCR on day 15, 20, 25, 30, and 35.
On the y axis, the gene expression levels in PHs (three lots of PHs were used in all studies), which were cultured for
48 hours after plating (PHs-48hr), were taken as 1.0. (B, C) The amount of ALB (B) and urea (C) secretion were
examined in the mono ES-hepa (day 20), the 3D ES-hepa (day 35), and PHs-48hr. (D-H) The gene expression levels
of CYP enzymes (D), conjugating enzymes (E), hepatic transporters (F), hepatic nuclear receptors (G), and bile
canaliculi transporters (H) were examined by real-time RT-PCR in the mono ES-hepa, the 3D ES-hepa, and PHs-48hr.
On the y axis, the expression levels in PHs-48hr were taken as 1.0. (I) The ability of bile acid uptake and efflux was
examined in the mono ES-hepa and 3D ES-hepa. Choly-lysyl-fluorescein (CLF) (6 uM) was used for the observation
of bile canaliculi uptake and efflux. To inhibit transportation by BSEP, the cells were pretreated with 1 uM Cyclosporin
A. *P<0.05; **P<0.01.
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Figure 7 Upregulation of the gene expression levels of hepatic transcription factors by culturing on
the Nanopillar Plate.

The gene expression levels of hepatic transcription factors of the 3D ES (H9)-hepa were measured
by real-time RT-PCR on day 35. On the y axis, the gene expression levels in PHs-48hr were taken as 1.0.
*P<0.05; **P<0.01.
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Figure 8
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Figure 8 Comparison of the hepatic differentiation capacities of various hESC and hiPSC lines

hESCs (H1 and H9) and hiPSCs (201B6, 201B7, 253G1, Dotcom, Tic, and Toe) were differentiated
into the 3D ES/iPS-hepa as described in Figure 1A. (A) On day 20, the gene expression level of ALB was
examined by real-time RT-PCR. On the y axis, the gene expression level of ALB in PHs-48hr was taken as
1.0. (B) On day 20, the amount of ALB secretion was examined by ELISA. The amount of ALB secretion
was calculated according to each standard followed by normalization to the protein content per well.
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Background & Aims: Hepatocyte-like cells differentiated from
human embryonic stem cells (hESCs) and induced pluripotent
stem cells (hiPSCs) can be utilized as a tool for screening for hep-
atotoxicity in the early phase of pharmaceutical development.
We have recently reported that hepatic differentiation is pro-
moted by sequential transduction of SOX17, HEX, and HNF4o
into hESC- or hiPSC-derived cells, but further maturation of hepa-
tocyte-like cells is required for widespread use of drug screening.
Methods: To screen for hepatic differentiation-promoting factors,
we tested the seven candidate genes related to liver
development.

Results: The combination of two transcription factors, FOXA2 and
HNF1o, promoted efficient hepatic differentiation from hESCs
and hiPSCs. The expression profile of hepatocyte-related genes
(such as genes encoding cytochrome P450 enzymes, conjugating
enzymes, hepatic transporters, and hepatic nuclear receptors)
achieved with FOXA2 and HNF1a transduction was comparable
to that obtained in primary human hepatocytes. The hepato-
cyte-like cells generated by FOXA2 and HNFlo transduction
exerted various hepatocyte functions including albumin and urea
secretion, and the uptake of indocyanine green and low density
lipoprotein. Moreover, these cells had the capacity to metabolize
all nine tested drugs and were successfully employed to evaluate
drug-induced cytotoxicity.

Conclusions: Our method employing the transduction of FOXA2
and HNF1a represents a useful tool for the efficient generation
of metabolically functional hepatocytes from hESCs and hiPSCs,
and the screening of drug-induced cytotoxicity.
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Introduction

Hepatocyte-like cells differentiated from human embryonic stem
cells (hESCs) [1] or human induced pluripotent stem cells
(hiPSCs) [2] have more advantages than primary human hepato-
cytes (PHs) for drug screening. While application of PHs in drug
screening has been hindered by lack of cellular growth, loss of
function, and de-differentiation in vitro [3], hESC- or hiPSC-
derived hepatocyte-like cells (hESC-hepa or hiPSC-hepa, respec-
tively) have potential to solve these problems.

Hepatic differentiation from hESCs and hiPSCs can be divided
into four stages: definitive endoderm (DE) differentiation, hepatic
commitment, hepatic expansion, and hepatic maturation. Various
growth factors are required to mimic liver development [4] and
to promote hepatic differentiation. Previously, we showed that
transduction of transcription factors in addition to treatment
with optimal growth factors was effective to enhance hepatic dif-
ferentiation [5-7]. An almost homogeneous hepatocyte popula-
tion was obtained by sequential transduction of SOX17, HEX,
and HNF4o into hESC- or hiPSCs-derived cells [7]. However, fur-
ther maturation of the hESC-hepa and hiPSC-hepa is required for
widespread use of drug screening because the drug metabolism
capacity of these cells was not sufficient.

In some previous reports, hESC-hepa and hiPSC-hepa have
been characterized for their hepatocyte functions in numerous
ways, including functional assessment such as glycogen storage
and low density lipoprotein (LDL) uptake {7}. To make a more
precise judgment as to whether hESC-hepa and hiPSC-hepa can
be applied to drug screening, it is more important to assess cyto-
chrome P450 (CYP) induction potency and drug metabolism
capacity rather than general hepatocyte function. Although Duan
et al. have examined the drug metabolism capacity of hESC-hepa,
drug metabolites were measured at 24 or 48 h [8]. To precisely
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estimate the drug metabolism capacity, the amount of metabo-
lites must be measured during the time when production of
metabolites is linearly detected (generally before 24 h). To the
best of our knowledge, there have been few reports that have
examined various drugs metabolism capacity of hESC-hepa and
hiPSC-hepa in detail.

In the present study, seven candidate genes (FOXA2, HEX,
HNF1a, HNF1B, HNF4o, HNF6, and SOX17) were transduced into
each stage of hepatic differentiation from hESCs by using an ade-
novirus (Ad) vector to screen for hepatic differentiation-promot-
ing factors. Then, hepatocyte-related gene expression profiles and
hepatocyte functions in hESC-hepa and hiPSC-hepa generated by
the optimized protocol, were examined to investigate whether
these cells have PHs characteristics. We used nine drugs, which
are metabolized by various CYP enzymes and UDP-glu-
curonosyltransferases (UGTs), to determine whether the hESC-
hepa and hiPSC-hepa have drug metabolism capacity. Further-
more, hESC-hepa and hiPSC-hepa were examined to determine
whether these cells may be applied to evaluate drug-induced
cytotoxicity.

Materials and methods
In vitro differentiation

Before the initiation of cellular differentiation, the medium of hESCs and hiPSCs
was exchanged for a defined serum-free medium, hESF9, and cultured as previ-
ously reported |9]. The differentiation protocol for the induction of DE cells,
hepatoblasts, and hepatocytes was based on our previous report with some mod-
ifications [5,6]. Briefly, in mesendoderm differentiation, hESCs and hiPSCs were
dissociated into single cells by using Accutase (Millipore) and cultured for 2 days
on Matrigel (BD biosciences) in differentiation hESF-DIF medium which contains
100 ng/ml Activin A (R&D Systems) and 10 ng/mi bFGF (hESF-DIF medium, Cell
Science & Technology Institute; differentiation hESF-DIF medium was supple-
mented with 10 pg/ml human recombinant insulin, 5 pg/ml human apotransfer-
rin, 10 uM 2-mercaptoethanol, 10 uM ethanolamine, 10 pM sodium selenite, and
0.5 mg/ml bovine serum albumin, all from Sigma). To generate DE cells, mesendo-
derm cells were transduced with 3000 VP/cell of Ad-FOXA2 for 1.5 h on day 2 and
cultured until day 6 on Matrigel in differentiation hESF-DIF medium supple-
mented with 100 ng/m! Activin A and 10 ng/ml bFGF. For induction of hepato-
blasts, the DE cells were transduced with each 1500 VP/cell of Ad-FOXA2 and
Ad-HNF1a for 1.5 h on day 6 and cultured for 3 days on Matrigel in hepatocyte
culture medium (HCM, Lonza) supplemented with 30 ng/ml bone morphogenetic
protein 4 (BMP4, R&D Systems) and 20 ng/ml FGF4 (R&D Systems). In hepatic
expansion, the hepatoblasts were transduced with each 1500 VP/cell of Ad-
FOXA2 and Ad-HNF1a for 1.5 h on day 9 and cultured for 3 days on Matrigel in
HCM supplemented with 10 ng/ml hepatocyte growth factor (HGF), 10 ng/ml
FGF1, 10 ng/ml FGF4, and 10 ng/ml FGF10 (all from R&D Systems). In hepatic mat-
uration, cells were cultured for 8 days on Matrigel in L15 medium (Invitrogen)
supplemented with 8.3% tryptose phosphate broth (BD biosciences), 10% FBS
(vita), 10 uM hydrocortisone 21-hemisuccinate (Sigma), 1 uM insulin, 25 mM
NaHCO; (Wako), 20 ng/ml HGF, 20 ng/ml Oncostatin M (OsM, R&D systems),
and 10~% M Dexamethasone (DEX, Sigma).

Results

Recently, we showed that the sequential transduction of SOX17,
HEX, and HNF4o into hESC-derived mesendoderm, DE, and
hepatoblasts, respectively, leads to efficient generation of the
hESC-hepa [5-7]. In the present study, to further improve the dif-
ferentiation efficiency towards hepatocytes, we screened for
hepatic differentiation-promoting transcription factors. Seven
candidate genes involved in liver development were selected.
We then examined the function of the hESC-hepa and hiPSC-hepa
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generated by the optimized protocol for pharmaceutical use in
detail.

Efficient hepatic differentiation by Ad-FOXA2 and Ad-HNF1u
transduction

To perform efficient DE differentiation, T-positive hESC-derived
mesendoderm cells (day 2) (Supplementary Fig. 1) were trans-
duced with Ad vector expressing various transcription factors
(Ad-FOXA2, Ad-HEX, Ad-HNFlo, Ad-HNF1B, Ad-HNF4o, Ad-
HNF6, and Ad-SOX17 were used in this study). We ascertained
the expression of FOXA2, HEX, HNF1o, HNF1p, HNF4a, HNF6, or
SOX17 in Ad-FOXA2-, Ad-HEX-, Ad-HNFlo-, Ad-HNF1B-, Ad-
HNF4a-, Ad-HNF6-, or Ad-SOX17-transduced cells, respectively
(Supplementary Fig. 2). We also verified that there was no cyto-
toxicity of the cells transduced with Ad vector until the total
amount of Ad vector reached 12,000 VP/cell (Supplementary
Fig. 3). Each transcription factor was expressed in hESC-derived
mesendoderm cells on day 2 by using Ad vector, and the effi-
ciency of DE differentiation was examined (Fig. 1A). The DE dif-
ferentiation efficiency based on CXCR4-positive cells was the
highest when Ad-SOX17 or Ad-FOXA2 were transduced
(Fig. 1B). To investigate the difference between Ad-FOXA2-trans-
duced cells and Ad-SOX17-transduced cells, gene expression lev-
els of markers of undifferentiated cells, mesendoderm cells, DE
cells, and extraembryonic endoderm cells were examined
(Fig. 1C). The expression levels of extraembryonic endoderm
markers of Ad-SOX17-transduced cells were higher than those
of Ad-FOXA2-transduced cells. Therefore, we concluded that
FOXA2 transduction is suitable for use in selective DE
differentiation.

To promote hepatic commitment, various transcription fac-
tors were transduced into DE cells and the resulting phenotypes
were examined on day 9 (Fig. 1D). Nearly 100% of the population
of Ad-FOXA2-transduced cells and Ad-HNFlo-transduced cells
was o-fetoprotein (AFP)-positive (Fig. 1E). We expected that
hepatic commitment would be further accelerated by combining
FOXA2 and HNFla transduction. The DE cells were transduced
with both Ad-FOXA2 and Ad-HNF1a, and then the gene expres-
sion levels of CYP3A7 [10], which is a marker of fetal hepatocytes,
were evaluated (Fig. 1F). When both Ad-FOXA2 and Ad-HNF1o
were transduced into DE cells, the promotion of hepatic commit-
ment was greater than in Ad-FOXA2-transduced cells or Ad-
HNFlo-transduced cells.

To promote hepatic expansion and maturation, we transduced
various transcription factors into hepatoblasts on day 9 and 12
and the resulting phenotypes were examined on day 20
(Fig. 1G). We ascertained that the hepatoblast population was
efficiently expanded by addition of HGF, FGF1, FGF4, and FGF10
(Supplementary Fig. 4). The hepatic differentiation efficiency
based on asialoglycoprotein receptor 1 (ASGR1)-positive cells
was measured on day 20, demonstrating that FOXA2, HNFla,
and HNF4a transduction could promote efficient hepatic matura-
tion (Fig. 1H). To investigate the phenotypic difference between
Ad-FOXA2-, Ad-HNF1o~, and Ad-HNF4o-transduced cells, gene
expression levels of early hepatic markers, mature hepatic mark-
ers, and biliary markers were examined (Fig. 1I). Gene expression
levels of mature hepatic markers were up-regulated by FOXA2,
HNFla, or HNF4a transduction. FOXA2 transduction strongly
upregulated gene expression levels of both early hepatic markers
and mature hepatic markers, while HNF1a or HNF4o transduc-
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Fig. 1. Efficient hepatic differentiation from hESCs by FOXA2 and HNF1a transduction. (A) The schematic protocol describes the strategy for DE differentiation from
hESCs (H9). Mesendoderm cells (day 2) were transduced with 3000 VP/cell of transcription factor (TF)-expressing Ad vector (Ad-TF) for 1.5 h and cultured as described in
Fig. 2A. (B) On day 5, the efficiency of DE differentiation was measured by estimating the percentage of CXCR4-positive cells using FACS analysis. (C) The gene expression
profiles were examined on day 5. (D) Schematic protocol describing the strategy for hepatoblast differentiation from DE. DE cells (day 6) were transduced with 3000 VP/cell
of Ad-TF for 1.5 h and cultured as described in Fig. 2A. (E) On day 9, the efficiency of hepatoblast differentiation was measured by estimating the percentage of AFP-positive
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Fig. 2. Hepatic differentiation of hESCs and hiPSCs by FOXA2 and HNF1a transduction. (A) The differentiation procedure of hESCs and hiPSCs into hepatocytes via DE
cells and hepatoblasts is schematically shown. Details of the hepatic differentiation procedure are described in Materials and methods. (B) Sequential morphological
changes (day 0-20) of hESCs (H9) differentiated into hepatocytes are shown. (C) The expression of the hepatocyte markers (ALB, CYP2D6, oAT, CYP3A4, and CYP7AL1, all
green) was examined by immunohistochemistry on day 0 and 20. Nuclei were counterstained with DAPI (blue).

tion did not up-regulate the gene expression levels of early hepa- bination of Ad-FOXA2 and Ad-HNF4a transduction result in the
tic markers. Next, multiple transduction of transcription factors most efficient hepatic maturation, judged from the gene expres-
was performed to promote further hepatic maturation. The com- sion levels of CYP2C19 (Fig. 1]). This may happen because the
bination of Ad-FOXA2 and Ad-HNF1a transduction and the com- mixture of immature hepatocytes and mature hepatocytes coor-

cells using FACS analysis. (F) The gene expression level of CYP3A7 was measured by real-time RT-PCR on day 9. On the y axis, the gene expression level of CYP3A7 in hESCs
(day 0) was taken as 1.0. (G) The schematic protocol describes the strategy for hepatic differentiation from hepatoblasts. Hepatoblasts (day 9) were transduced with 3000
VP/cell of Ad-TF for 1.5 h and cultured as described in Fig. 2A. (H) On day 20, the efficiency of hepatic differentiation was measured by estimating the percentage of ASGR1-
positive cells using FACS analysis. The detail results of FACS analysis are shown in Supplementary Table 1. (1) Gene expression profiles were examined on day 20. ()
Hepatoblasts (day 9) were transduced with 3000 VP/cell of Ad-TFs (in the case of combination transduction of two types of Ad vector, 1500 VP/cell of each Ad-TF was
transduced) for 1.5 h and cultured. Gene expression levels of CYP2C19 were measured by real-time RT-PCR on day 20. On the y axis, the gene expression level of CYP2C19 in
PHs, which were cultured for 48 h after the cells were plated, was taken as 1.0. All data are represented as mean  SD (n = 3),
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Fig. 3. The hepatic characterization of hiPSC-hepa. hESCs (H1 and H9) and hiPSCs (201B7, 253G1, Dotcom, Tic, and Toe) were differentiated into hepatocyte-like cells as
described in Fig. 2A. (A) On day 20, the gene expression level of ALB was examined by real-time RT-PCR. On the y axis, the gene expression level of ALB in PHs, which were
cultured for 48 h after cells were plated, was taken as 1.0. (B-1) hiPSCs (Dotcom) were differentiated into hepatocyte-like cells as described in Fig. 2A. (B) The amount of ALB
secretion was examined by ELISA in hiPSCs, hiPSC-hepa, and PHs. (C) hiPSCs, hiPSC-hepa, and PHs were subjected to immunostaining with anti-ALB antibodies, and then the
percentage of ALB-positive cells was examined by flow cytometry. (D-G) The gene expression levels of CYP enzymes (D), conjugating enzymes (E), hepatic transporters (F),
and hepatic nuclear receptors (G) were examined by real-time RT-PCR in hiPSCs, hiPSC-hepa, and PHs. On the y axis, the expression level of PHs is indicated. (H) The amount
of urea secretion was examined in hiPSCs, hiPSC-hepa, and PHs. (1} Induction of CYP1A2, 2B6, or 3A4 by DMSO or inducer (bNF, PB, or RIF) of hiPSC-hepa and PHs, cultured for
48 h after the cells were plated, was examined. On the y axis, the gene expression levels of CYP1A2, 286, or 3A4 in DMSO-treated cells, which were cultured for 48 h, were

taken as 1.0. All data are represented as mean + SD (n = 3).

dinately works to induce hepatocyte functions. Taken together,
efficient hepatic differentiation could be promoted by using the
combination of FOXA2 and HNFla transduction at the optimal
stage of differentiation (Fig. 2A). At the stage of hepatic expansion
and maturation, Ad-HNF4o can be substituted for Ad-HNFla
(Fig. 1]). Interestingly, cell growth was delayed by FOXA2 and

632

HNF40 transduction (Supplementary Fig. 5). This delay in cell
proliferation might be due to promoted maturation by FOXA2
and HNF1o transduction. As the hepatic differentiation proceeds,
the morphology of hESCs gradually changed into a typical hepa-
tocyte morphology, with distinct round nuclei and a polygonal
shape (Fig. 2B), and the expression levels of hepatic markers
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