Author contributions K.O., T.O., K.T. and N.M. designed the research and analysed the data. K.O., T.O., M.K., F.K., Y.F., K.S-F. and S.S. carried out immunoblotting experiments. K.O., M.I., K.I., M.K. and E.G. performed immunocytochemistry. M.F. carried out statistical analysis. H.K., N.T. and H.T. performed mass spectrometric analysis. H.S. did structural modelling. N.M. wrote the manuscript with help and supervision from M.K., N.H., K.M. and K.T. #### **Additional information** ${\bf Supplementary\ Information\ accompanies\ this\ paper\ at\ http://www.nature.com/naturecommunications}$ Competing financial interests: The authors declare no competing financial interests. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/ How to cite this article: Okatsu, K. et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. *Nat. Commun.* 3:1016 doi: 10.1038/ncomms2016 (2012). License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ #### RESEARCH ARTICLE ### VPS35 Mutation in Japanese Patients with Typical Parkinson's Disease Maya Ando, MD,¹ Manabu Funayama, PhD,^{1,2*} Yuanzhe Li, MD, PhD,² Kenichi Kashihara, MD, PhD,³ Yoshitake Murakami, MD,⁴ Nobutaka Ishizu, MD,⁵ Chizuko Toyoda, MD,⁶ Katsuhiko Noguchi, MD,⁷ Takashi Hashimoto, MD,⁸ Naoki Nakano, MD,⁹ Ryogen Sasaki, MD, PhD,¹⁰ Yasumasa Kokubo, MD, PhD,¹⁰ Shigeki Kuzuhara, MD, PhD,¹¹ Kotaro Ogaki, MD,¹ Chikara Yamashita, MD,¹ Hiroyo Yoshino, PhD,² Taku Hatano, MD, PhD,¹ Hiroyuki Tomiyama, MD, PhD,^{1,12} and Nobutaka Hattori, MD, PhD^{1,2,12*} ¹Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan ²Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan ³Department of Neurology, Okayama Kyokuto Hospital, Okayama, Japan ⁴Department of Neurology, Saiseikai Kurihashi Hospital, Saitama, Japan ⁵Department of Neurology, Jikei Daisan Hospital, Tokyo, Japan ⁶Department of Neurology, Jikei Daisan Hospital, Tokyo, Japan ⁷Department of Neurology, Kakio Kinen Hospital, Tokyo, Japan ⁸Hashimoto Clinic, Osaka, Japan ⁹Department of Neurosurgery, Kinki University Hospital, Osaka, Japan ¹⁰Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan 11 Department of Medical Welfare, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan ¹²Department of Neuroscience for Neurodegenerative Disorders, Juntendo University School of Medicine, Tokyo, Japan ABSTRACT: Vacuolar protein sorting 35 (VPS35) was recently reported to be a pathogenic gene for lateonset autosomal dominant Parkinson's disease (PD), using exome sequencing. To date, VPS35 mutations have been detected only in whites with PD. The aim of the present study was to determine the incidence and clinical features of Asian PD patients with VPS35 mutations. We screened 7 reported nonsynonymous missense variants of VPS35, including p.D620N, known as potentially disease-associated variants of PD, in 300 Japanese index patients with autosomal dominant PD and 433 patients with sporadic PD (SPD) by direct sequencing or high-resolution melting (HRM) analysis. In addition, we screened 579 controls for the p.D620N mutation by HRM analysis. The p.D620N mutation was detected in 3 patients with autosomal dominant PD (1.0%), in 1 patient with SPD (0.23%), and in no con- trols. None of the other reported variants of *VPS35* were detected. Haplotype analysis suggested at least 3 independent founders for Japanese patients with p.D620N mutation. Patients with the *VPS35* mutation showed typical tremor-predominant PD. We report Asian PD patients with the *VPS35* mutation. Although *VPS35* mutations are uncommon in PD, the frequency of such mutation is relatively higher in Japanese than reported in other populations. In *VPS35*, p.D620N substitution may be a mutational hot spot across different ethnic populations. Based on the clinical features, *VPS35* should be analyzed in patients with PD, especially autosomal dominant PD or tremor-predominant PD. © 2012 *Movement* Disorder Society **Key Words:** Parkinson's disease; *VPS35*; autosomal dominant; hotspot; mutation. *Correspondence to: Dr. Manabu Funayama or Prof. Dr. Nobutaka Hattori, Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; funayama@juntendo.ac.jp or nhattori@juntendo.ac.jp Funding agencies: This work was supported by Strategic Research Foundation Grant-in-Aid Project for Private Universities, Grants-in-Aid for Scientific Research (80218510 [to N.H.] and 21591098 [to H.T.]), Grant-in-Aid for Young Scientific Research on Innovative Areas (23111003 [to N.H.] and 23129506 [to M.F.]) from the Japanese Ministry of Education, Culture, Sports, Science and Technology, and Grant-in-Aid from the Research Committee on Muro Disease (Kii ALS/PDC; 21210301 [to Y.K.]), the Ministry of Health, Labor, and Welfare, and JST, CREST. Relevant conflicts of interest/financial disclosures: Nothing to report. Full financial disclosures and author roles may be found in the online version of this article. Received: 5 March 2012; Revised: 11 July 2012; Accepted: 17 July 2012 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.25145 Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive motor disturbances manifested by tremor, rigidity, akinesia, and postural instability. Neuropathologically, PD is characterized by selective loss of dopaminergic neurons in the substantia nigra and the presence of cytosolic inclusions called Lewy bodies (LBs) in the remaining neurons. The pathogenesis of PD is multifactorial, including genetic-environmental interaction. PD is a common disease in the elderly, with an incidence of about 1%-2% in individuals older than 60 years. Among PD patients, approximately 5%-10% have a positive family history of PD,² and among these, the Mendelian forms of PD can contribute to the elucidation of the molecular pathways that lead to the degeneration and death of dopaminergic neurons. Mutations in the vacuolar protein sorting 35 (VPS35) gene have recently been identified in families with autosomal dominant late-onset PD (MIM 601501).3,4 Patients with VPS35 mutations present with tremor-predominant dopa-responsive parkinsonism.^{3,4} VPS35, a key component of the retromer cargo-recognition complex, is thought to associate with sorting cargos into the tubular endosomal network for retrieval to the trans-Golgi network. 5 Therefore, pathogenic mutations of VPS35 may cause disruption of the retrograde transport system and contribute to dopaminergic neuronal cell death in PD. One missense mutation has been reported to be pathogenic for PD.^{3,4} Mutation of c.1858G>A (p.D620N) was identified in 3 Austrian families and 1 family each in Switzerland, the United States, Tunisia, and the United Kingdom, as well as 1 family and 1 patient with sporadic PD (SPD) among Yemenite Jews from Israel. 3,4,6 In addition, several variants, such as p.M57I, p.I241M, p.P316S, and p.R524W, have been reported in Europe and the United States as potentially pathogenic for PD.3,4 Although multipopulation screenings for *VPS35* mutations were preformed in recent reports, there is still no report of PD patients with *VPS35* mutations of Asian ancestry.^{3,4,6–8} In the present study, we screened Japanese patients with autosomal-dominant PD (ADPD), Japanese patients with SPD, and control subjects for mutations of *VPS35*, with a special focus on 7 reported nonsynonymous variants that were found in patients with PD, including the p.D620N. Here, we report 3 families and 1 SPD patient with the p.D620N mutation in *VPS35* and describe their clinical features. #### Patients and Methods #### **Subjects** The study was approved by the ethics committee of Juntendo University, and all subjects gave written informed consent to participate in the genetic research. The study subjects were 308 Japanese patients (300 index patients) with ADPD (age at disease onset [AAO; mean \pm SD], 51.1 \pm 11.7 years; range, 8-83 years; female/male [F/M] ratio, 1.35) and 433 Japanese SPD patients (AAO, 47.2 ± 12.9 years; range, 5-88 years; F/M ratio, 1.09) selected from the gene bank of Juntendo University. Some of the selected subjects had been confirmed negative for SNCA, PARK2, PINK1, PARK7, LRRK2, and PLA2G6 mutations.9-¹⁴ From the same gene bank, we also selected 579 healthy Japanese subjects without a family history of parkinsonism (age at sampling, 58.0 ± 9.3 years; range, 23-89 years; F/M ratio, 1.54). The criteria for the diagnosis of PD were adopted by the participating neurologists and were established based on the United Kingdom Parkinson's Disease Society Brain Bank. 15 #### Genetic Analysis Genomic DNA was extracted from peripheral blood using a standard protocol. Patients with ADPD and SPD were examined for the following 7 variants: p.M57I (exon 3), p.I241M (exon 7), p.P316S (exon 9), p.R524W (exon 13), p.D620N (exon 15), p.A737V (exon 16), and p.L774M (exon 17) of VPS35 (RefSeq accession number NM_018206.4). PCR direct sequencing was performed using a BigDve Terminator v1.1 Cycle Sequencing kit and 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA) or 3730 DNA Analyzer (Applied Biosystems). In addition, SPD patients and control subjects were also genotyped for c.1858G>A (p.D620N) mutation by high-resolution melting (HRM) analysis using Light-Scanner and LCGreen plus (Idaho Technology, Salt Lake City, UT). HRM analysis was performed using a previously described protocol¹⁶ and the following pri-GAGGATGGTTGGTCCTTGAA; mers: forward, reverse, TGCCAATGATCAAGGTGATG. All exons of
VPS35 were also analyzed in patients with the p.D620N mutation using the method described previously.3 Haplotype analysis of the *VPS35* flanking region was performed using 3130 Genetic analyzer and Gene-Mapper software (Applied Biosystems, Foster City, CA). To adjust the size of PCR products, we also genotyped Centre d'Étude du Polymorphisme Humain (CEPH) control samples (1331-01 and 1331-02) for comparison of haplotypes with previously reported patients carrying the p.D620N mutation. The sequences of the PCR primers were reported previously.³ #### Results #### Detection of p.D620N Mutation We detected the heterozygous missense p.D620N mutation in 3 unrelated patients with ADPD and 1 **FIG. 1.** Pedigrees of families with the *VPS35* p.D620N mutation (open symbol, unaffected family member; closed symbol, affected member; arrow, proband; asterisk, individual analyzed for the p.D620N mutation and/or haplotype; forward slash through symbol, deceased individuals; square, male; circle, female; diamond, unspecified sex). patient with SPD (Fig. 1). The p.D620N has been reported previously as a pathogenic mutation for familial PD. 3,4,6 This mutation was not found in 1158 control chromosomes. Patients carrying the p.D620N mutation did not have any other variants in all exons of *VPS35*. In our population, the incidence of the p.D620N mutation was 1.0% (3 of 300) in ADPD and 0.23% (1 of 433) in SPD. The remaining variants analyzed in this study were not identified in any patients. Haplotype analysis demonstrated that the Japanese patients with the p.D620N mutation had different genotypes from those of white patients with the same mutation.³ One disease allele was detected by analyzing patient AII-11 and his relatives. Patients AII-11 and BIII-8 in this study carried at least the same single allele of microsatellites in the flanking region of *VPS35* (Table 1). On the other hand, patients CII-3 and D had a different genotype of D16S3105, with a locus mapped very close to *VPS35*, compared with the disease allele of AII-11 (Table 1, boldface). **TABLE 1.** Haplotype analysis of VPS35 p.D620N mutation carriers | | Patient ID | | | | | |----------------|------------|-----------------|---------|---------|--| | Microsatellite | All-11 | BIII-8 | CII-3 | D | | | D16S401 | 170 | 166/170 | 166/172 | 166/170 | | | D16S3068 | 143 | 141/145 | 145/147 | 145/145 | | | D16S753 | 272 | 272/268 | 268/276 | 264/268 | | | VPS35 p.D620N | Α | A/G | A/G | A/G | | | Chr16_45.333M | 294 | 294 /298 | 294/300 | 294/304 | | | D16S3105 | 191 | 191 /189 | 189/193 | 187/187 | | | Chr16_45.615M | 147 | 147/147 | 147/145 | 147/145 | | | Chr16_45.806M | 246 | 246 /238 | 246/244 | 246/244 | | | Chr16_45.835M | 237 | 237/237 | 237/237 | 237/237 | | | Chr16_45.855M | 212 | 212/210 | 210/210 | 210/216 | | | D16S3044 | 195 | 195/195 | 195/197 | 197/197 | | Both alleles are shown when markers of phase could not be determined. TABLE 2. Clinical features of patients with p.D620N mutation | | Patient ID | | | | |------------------------------------|--|--|------------------|------------------| | | All-11 | BIII-8 | CII-3 | D | | Age at disease onset (y) | 62 | 55 | 34 | 42 | | Disease
duration (y) | 15 | 2 | 7 | 21 | | Resting tremor | + | + | + | + | | Bradykinesia | + | + | + | + | | Rigidity | + | + | + | + | | Gait disturbance | + | | - | + | | Postural instability | + | | | + | | Clinical response to levodopa | + | + | + | + | | Wearing off | + | | + | + | | Asymmetry at onset | + | + | + | + | | Orthostatic hypotension | + | | _ | _ | | Incontinence | + | | works. | ***** | | Urinary urgency | _ | | | | | Levodopa-
induced
dyskinesia | + | abas | + | + | | Sleep benefit | + | | + | Unknown | | Dystonia at onset | _ | Average Control of the th | | ontoon | | Hyperreflexia | | | | **** | | Hallucination | _ | _ | | | | Other psychosis | _ | | | | | Dementia | + | | | | | Gaze palsy | **** | | | | | Brain MRI | WNL | WNL | WNL | WNL | | Cardiac MIBG
scintigraphy | H/M ratio (E/L),
2.38/2.68;
washout ratio,
4.15% ^a | Not
performed | Not
performed | Not
performed | ^aMIBG scintigraphy was performed when All-11 was 76 years old. WNL, within normal limit; H/M ratio, heart-to-mediastinum ratio; (E/L), early/late stage. #### Clinical Presentation Table 2 summarizes the clinical features of the 4 VPS35 mutation-positive patients. Patient AII-11 was a 77-year-old man who developed right upper limb rest tremor at age 62. At age 75, he underwent gastrostomy for progressive dysphagia, then developed cognitive dysfunction without hallucination. Singlephoton emission computed tomography of cerebral blood flow showed no reduction in blood flow in the basal ganglia. His father and 4 of 8 siblings were diagnosed with PD (Fig. 1A) and presented levodopa-responsive typical parkinsonism: upper limb tremor and small-step gait. His nephew and niece were also diagnosed with PD, and the nephew developed parkinsonism in his early fifties. Patients BIII-8 and CII-3 both developed upper limb rest tremor at ages 34 and 55, respectively. The mother and aunts of patient BIII-8 and the father of patient CII-3 also developed PD (Fig. 1B, C). Patient D, who developed upper limb rest tremor at age 42, had no family history of PD. She underwent subthalamic nucleus deep brain stimulation (STN-DBS) at age 60 because of disabling motor fluctuation and dyskinesia refractory to pharmacological treatment. All affected patients were born to nonconsanguineous parents. #### Discussion VPS35 has been reported as the pathogenic gene for ADPD, and only 1 mutation, p.D620N, has been reported in several unrelated white families. To our knowledge, there have been no reports of Asian PD patients with VPS35 mutations.^{3,8} Based on this background, we set out in this study to determine the incidence of VPS35 mutations in Japanese patients with PD. We detected the heterozygous p.D620N mutation of VPS35 in 3 ADPD families and 1 SPD patient with East Asian ancestry. On the other hand, we could not conclude the pathogenicity of 6 other variants that had been reported as potentially pathogenic for PD because none of the variants was detected in our patients with PD. The frequency of the p.D620N mutation in Japanese patients was 1.0% in ADPD and 0.23% in SPD. Although the exact frequency among whites is undetermined, the frequency is relatively higher in Japanese patients compared with that reported in previous studies (0%-1.22%). ^{3,4,6,7,17} Moreover, the frequency in Japanese patients also differs greatly from those of other Asian populations such as Taiwanese patients and mainland Chinese patients (0%). 3,8 Although the mutation frequency was expected to be lower than that of other pathogenic genes for ADPD, such as multiplication of *SNCA*^{9,18} and point mutation of *LRRK2*, ¹⁹⁻²¹ *VPS35* may be one of the most important genes in Japanese PD. Because we screened for only 7 reported variants, we cannot determine the exact frequency of VPS35 mutations in ADPD; we would need to analyze all 17 exons of VPS35 in ADPD patients to screen for other variants and to assess the incidence of all disease-associated VPS35 mutations.3,4 Furthermore, we would need to perform mutational analysis for SPD patients, in addition to ADPD, to identify Asian population-specific variants, such as LRRK2 p.G2385R, associated with susceptibility for PD. 19 Based on haplotype analysis reported in previous studies, the substitution of *VPS35* c.1858G>A (p.D620N) occurs from independent mutational events.³ We were able to determine the chromosomal phase only in patient AII-11 (family A). The p.D620N mutation possibly shared a common founder between Japanese ADPD families A and B; however, it was inconclusive because the phase of patient BIII-8 was undetermined. On the other hand, the same p.D620N mutation
probably occurred independently in patient CII-3 (family C) and patient D. By genotyping of D16S3105, which is located approximately 1.5 kb centromeric of *VPS35*, there were at least 3 different haplotypes in Japanese because families A and C and patient D (SPD) did not have the same alleles for this microsatellite. To determine the chromosomal phase of families B and C, detailed genetic analyses of other family members are needed in future studies. These results suggest the existence of 3 or more founders in Japanese patients, in addition to the reported white patients with the p.D620N mutation or de novo mutations, indicating that the p.D620N mutation site is a mutational hot spot in *VPS35* across different ethnic populations. According to previous reports, the average AAO of patients with the VPS35 mutation was 50–60 years $(50.6 \pm 7.3 \text{ years})$, with a distinctive feature of a slightly younger AAO compared with patients with idiopathic PD. In our study, the AAO was nonspecific with a wide range between 30–70 years. Because the family history of patient D was unknown, she was categorized as SPD. With regard to VPS35 mutation penetrance, it is incomplete from the results of a previous report. Therefore, although the frequency is low, patients with p.D620N mutation could be found among SPD patients. The clinical symptoms of our patients with *VPS35* mutation closely resembled the idiopathic PD form, with tremor-dominant dopa-responsive parkinsonism. Psychiatric problems were inconspicuous; however, dementia may occur in patients with a long disease course, similar to patient AII-11, who had PD for 15 years. Our patients with *VPS35* mutations had normal brain MRI and cardiac MIBG scintigraphy. There have been no definite pathological mutations of *VPS35* in the spectrum of LB disorders. On the basis of these results, patients with *VPS35* mutation could show comparatively benign disease course without widespread LBs pathology. ^{22,23} VPS35 assembles into the retromer cargo-recognition complex that associates with the cytosolic face of the endosomes. The retromer mediates the retrograde transport of transmembrane cargo from the endosomes to the trans-Golgi network.5 The p.D620N mutation of VPS35 might cause impairment of interaction with other components of the retromer complex and impaired retrograde trafficking of recycling proteins, similar to α-synuclein and LRRK2, which are involved in vesicle trafficking. ^{24,25} Mutations in familial PD genes, including VPS35, may cause disruption of intracellular trafficking and lead to neurodegeneration. These findings suggest that impairment of intracellular trafficking systems is associated with the pathogenesis of PD. Although the association between the p.D620N mutation of VPS35 and PD remains unknown, further functional studies might shed light on the pathogenesis of *VPS35* mutation and the effects of interaction with other known pathogenic gene products on PD. In conclusion, we have reported Asian PD patients with the *VPS35* p.D620N mutation. The p.D620N substitution may be a mutational hot spot across different ethnic populations. The frequency of *VPS35* mutation was low in ADPD; however, it is relatively high in Japanese patients compared with that reported in other populations. ^{3,4,6–8} Based on the clinical features of patients with *VPS35* mutation, *VPS35* should be analyzed in patients with PD, especially ADPD or tremor-predominant PD. ■ Acknowledgments: We thank all the participants in this study. #### References - Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med 1998;339:1044–1053. - Lesage S, Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009;18: R48-R59. - Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011;89:162–167. - Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes lateonset Parkinson disease. Am J Hum Genet 2011;89:168–175. - Bonifacino JS, Hurley JH. Retromer. Retromer. Curr Opin Cell Biol 2008;4:427–436. - Sheerin UM, Charlesworth G, Bras J, et al. Screening for VPS35 mutations in Parkinson's disease. Neurobiol Aging 2012;4: 838,e1-e5. - Guella I, Soldà G, Cilia R, et al. The Asp620asn mutation in VPS35 is not a common cause of familial Parkinson's disease. Mov Disord 2012;27:800-801. - Zhang Y, Chen S, Xiao Q, et al. Vacuolar protein sorting 35 Asp620Asn mutation is rare in the ethnic Chinese population with Parkinson's disease. Parkinsonism Relat Disord 2012;18:638–640. - Nishioka K, Hayashi S, Farrer MJ, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease. Ann Neurol 2006;59:298–309. - Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392;605-608. - 11. Kumazawa R, Tomiyama H, Li Y, et al. Mutation analysis of the PINK1 gene in 391 patients with Parkinson disease. Arch Neurol 2008;65:802-808. - Tomiyama H, Li Y, Yoshino H, et al. Mutation analysis for DJ-1 in sporadic and familial parkinsonism: screening strategy in parkinsonism. Neurosci Lett 2009;455:159–161. - 13. Tomiyama H, Li Y, Funayama M, et al. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 countries. Mov Disord 2006;21:1102–1108. - Yoshino H, Tomiyama H, Tachibana N, et al. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 2010;75:1356–1361. - Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181–184. - Funayama M, Tomiyama H, Wu RM, et al. Rapid screening of ATP13A2 variant with high-resolution melting analysis. Mov Disord 2010;25:2434–2437. - Lesage S, Condroyer C, Klebe S et al. Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 2012;78:1449–1450. - Ibáñez P, Lesage S, Janin S, et al. Alpha-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. Arch Neurol 2009;66:102–108. - 19. Seki N, Takahashi Y, Tomiyama H, et al. Comprehensive mutational analysis of LRRK2 reveals variants supporting association with autosomal dominant Parkinson's disease. J Hum Genet 2011;56:671–675. - Di Fonzo A, Rohe C. F, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 2005;365:412–415. - Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 2005;365:415–416. - Orimo S, Amino T, Yokochi M, et al. Preserved cardiac sympathetic nerve accounts for normal cardiac uptake of MIBG in PARK2. Mov Disord 2005;10:1350-1353. - 23. Verstraeten A, Wauters E, Crosiers D, et al. Contribution of VPS35 genetic variability to LBD in the Flanders-Belgian population. Neurobiol Aging 2012;33:e11-e13. - Caudle WM, Colebrooke RE, Emson PC, et al. Altered vesicular dopamine storage in Parkinson's disease: a premature demise. Trends Neurosci 2008;31:303–308. - Berwick DC, Harvey K. LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol 2011;21:257–265. RESEARCH Open Access # Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue Yoichi Imaizumi¹, Yohei Okada^{1,2}, Wado Akamatsu¹, Masato Koike³, Naoko Kuzumaki¹, Hideki Hayakawa⁴, Tomoko Nihira⁴, Tetsuro Kobayashi⁵, Manabu Ohyama⁵, Shigeto Sato⁶, Masashi Takanashi⁶, Manabu Funayama^{6,7}, Akiyoshi Hirayama⁸, Tomoyoshi Soga⁸, Takako Hishiki⁹, Makoto Suematsu⁹, Takuya Yagi¹⁰, Daisuke Ito¹⁰, Arifumi Kosakai¹⁰, Kozo Hayashi¹¹, Masanobu Shouji¹¹, Atsushi Nakanishi¹¹, Norihiro Suzuki¹⁰, Yoshikuni Mizuno¹², Noboru Mizushima¹³, Masayuki Amagai⁵, Yasuo Uchiyama³, Hideki Mochizuki^{4,14}, Nobutaka Hattori^{6,7} and Hidevuki Okano^{1*} #### **Abstract** Background: Parkinson's disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra (SN). The familial form of PD, PARK2, is caused by mutations in the parkin gene. parkin-knockout mouse models show some abnormalities, but they do not fully recapitulate the pathophysiology of human PARK2. Results: Here, we generated induced pluripotent stem cells (iPSCs) from two PARK2 patients. PARK2 iPSC-derived neurons showed increased oxidative stress and enhanced activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. iPSC-derived neurons, but not fibroblasts or iPSCs, exhibited abnormal mitochondrial morphology and impaired mitochondrial homeostasis. Although PARK2 patients rarely exhibit Lewy body (LB) formation with an accumulation of g-synuclein, g-synuclein accumulation was observed in the postmortem brain of one of the donor patients. This accumulation was also seen in the iPSC-derived neurons in the same patient. **Conclusions:** Thus, pathogenic changes in the brain of a PARK2 patient were recapitulated using iPSC technology. These novel findings reveal mechanistic insights into the onset of PARK2 and identify novel targets for drug screening and potential modified therapies for PD. Keywords: Induced pluripotent stem cells, Parkinson's disease, Parkin, Oxidative stress, Mitochondria, α-synuclein #### **Background** Parkin is a causative gene of autosomal recessive juvenile Parkinson's disease (PARK2). It encodes a component of an E3 ubiquitin ligase involved in mitochondrial homeostasis [1-5]. Parkin deficiency is thought to result in aberrant ubiquitination and compromised mitochondrial integrity, leading to neuronal dysfunction and degeneration. Several PARK2 mouse models exist, but they do not replicate all of the pathogenic changes seen in human PARK2 neurons;
thus, these models do not fully account for the molecular mechanisms of PD [6-9]. A recent report demonstrated that there is a defect in dopamine (DA) utilization in PARK2 induced pluripotent stem cell (iPSC)-derived neurons [10]. However, it is not known whether neuronal homeostasis is disrupted in PARK2 patients. Furthermore, studies have yet to demonstrate whether the phenotype of PD-specific iPSC-derived neurons recapitulates the in vivo phenotype of the corresponding cell donor. To address these questions, we generated iPSCs from two PARK2 patients Full list of author information is available at the end of the article ^{*} Correspondence: hidokano@a2.keio.jp ¹Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (PA and PB) [11]. In PARK2 iPSC-derived neurons, but not PARK2 fibroblasts or iPSCs, abnormal mitochondrial morphology and aberrant tubulovesicular structures adjacent to the Golgi were observed, as was increased oxidative stress. Although α-synuclein accumulation and Lewy body (LB) formation are very rare in PARK2 patients [1,12,13], we observed pathological changes and prominent LB formation, including the accumulation of α-synuclein, in postmortem brain tissue from one of the donor patients (PA). However, we obtained autopsied brain tissue from the father of donor PB, who carried the same parkin deletion as PB, and observed no evidence of LB formation or α -synuclein-positive cells. Consistent with these observations in postmortem brain tissue, increased α-synuclein accumulation was clearly observed in PA iPSC-derived neurons in vitro, but not in PB iPCS-derived neurons. These results are the first demonstration of pathogenic changes in the brain of a PARK2 patient that were recapitulated using iPSC technology. Our findings also provide mechanistic insights into PARK2 pathophysiology. # Results & discussion Generation of PARK2 iPSCs iPSCs were generated from dermal fibroblasts isolated from two PARK2 patients carrying parkin mutations and two control subjects using retroviruses carrying Oct4, Sox2, Klf4, and c-Myc to reprogram the cells as previously described [14,15]. The PARK2 patients were a 71-year-old female (PA) with a homozygous deletion of parkin exons 2-4 and a 50-year-old male (PB) with a homozygous deletion of exons 6 and 7 (Table 1 and Additional file 1A and B). Patient PA died 1 year after enrollment in the study at the age of 72. A previously-established human iPSC clone from control subject A, 201B7 (B7), was also used [15]. In addition, the following human embryonic stem cell (hESC)like iPSC clones were selected for detailed analysis: three controls (B7 and YA9 from control A, and WD39 from control B), three from patient PA (PA1, PA9 and PA22), and four from patient PB (PB1, PB2, PB18 and PB20) (Figure 1A and Additional file 2A and B). The PARK2 iPSCs expressed pluripotent hESC markers (Figure 1A and Additional file 2A-C) and formed teratomas containing all three germ layers (Additional file 2D). Table 1 PA and PB patient information | | PA patient | PB patient | |--------------------|-------------------------------|--------------------------------| | Race | Japanese | Japanese | | Age | 72 y/o | 50 y/o | | Sex | Female | Male | | Age of onset | 62 y/o | 28 y/o | | Mutation of parkin | Exon 2–4 homozygous deletions | Exon 6, 7 homozygous deletions | All of the retroviral transgenes were silenced in each clone (Additional file 2E). The iPSCs derived from PA and PB retained the corresponding homozygous *parkin* deletions and exhibited genomic stability (Figure 1B-D; Additional file 3A and B; and Table 1). All of the clones differentiated into neurons, including tyrosine hydroxylase (TH)-positive neurons, through a process of embryoid body and neurosphere formation (Figure 1A). Thus, all of the lines were successfully reprogrammed into a pluripotent state and were suitable for further analysis. #### Increased oxidative stress accompanied by activation of the Nrf2 pathway in PARK2 iPSC-derived neurons Because increased levels of oxidative stress have been documented in other PD models [7,10,16,17], we examined oxidative metabolism in the iPSC clones by measuring the cellular levels of reduced glutathione (GSH). GSH reacts with reactive oxygen species (ROS) and is catalyzed by glutathione S-transferase[18]. Consistent with previous results from patient-derived cells [16], the levels of GSH in PARK2 iPSC-derived neurospheres were significantly lower than those in control iPSC-derived neurospheres (Figure 2A). We also examined ROS production using 2, 7'-dichlorodihydrofluorescin (DCF) fluorescence to measure the levels of intracellular oxidants. The DCF fluorescence intensity in the PARK2 iPSC-derived neurons was significantly higher than that in control iPSC-derived neurons (Figure 2B and C), which indicated an increased level of oxidative stress. A recent study showed that, in PARK2 iPSC-derived neurons, monoamine oxidase (MAO)-A and -B levels and oxidative stress levels are increased, as is spontaneous DA release [10]. Here, we found no significant differences in MAO-A and -B expression levels between PARK2 and control neurons (Additional file 4A and B). The Nrf2 pathway plays a cytoprotective role under conditions of ROS accumulation. Recent studies show that activation of the Nrf2 pathway reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity[19]. Elevated Nrf2 expression was observed in the postmortem brain of a PD patient [20]. These data suggest a putative link between the Nrf2 pathway and PD, and prompted a closer investigation of this signaling pathway in control and PARK2 iPSC-derived neurons [19-21]. The expression of Nrf2 pathway proteins, such as Nrf2 and NADH quinone oxidoreductase (NQO1), was significantly increased in PARK2 iPSC-derived neurons (Figure 2D and E). These data are in line with previous reports [19-21], and suggest that the Nrf2 cytoprotective pathway may be activated in PARK2 iPSC-derived neurons to prevent further damage from oxidative stress. Taken together, these data demonstrated an increased level of **Figure 1 Generation of PARK2 iPSCs. (A)** iPSCs derived from control and PARK2 subjects, embryoid bodies (EBs), neurospheres (NSs), and neurons. *Left three rows*: iPSCs from Control A (YA9), Control B (WD39), PA (PA9), and PB (PB2) were immunopositive for the pluripotency markers Oct4 (green) and Nanog (red). *Right three rows*: Differentiation of iPSCs into tyrosine hydroxylase (TH)-positive (red) neurons via EB and NS formation. Scale bars: Phase contrast, 400 μm; Nanog and Oct4 immunostaining, 100 μm; EBs, 25 μm; NSs, 50 μm; neurons, 10 μm. (**B**) Deletion of exons 2–4 in clones PA1, 9 and 22; and of exons 6 and 7 in clones PB1, 2, 18, and 20 was confirmed. (**C**) Exons 2–4 were deleted in human dermal fibroblasts (HDFs) from PA and in PA1 iPSC lines. Exons 6 and 7 were deleted in HDFs from PB and PB1 iPSC lines. (**D**) Copy number profiles of whole chromosomes in PARK2 HDFs and iPSCs were assessed by comparative genomic hybridization (CGH) microarray analysis; there was no evidence that genomic aberrations were introduced during the process of establishing PARK2 iPSCs. oxidative stress accompanied by activation of the Nrf2 pathway in PARK2 neurons. Abnormal mitochondrial morphology and impaired mitochondrial turnover in PARK2 iPSC-derived neurons Increased oxidative stress (which affects anti-oxidant defense systems) and mitochondrial dysfunction are implicated in the pathogenesis of PD [1,13,21-23]. Furthermore, ROS accumulation causes both oxidative damage and mitochondrial dysfunction in the substantia nigra (SN) of *parkin*-deficient mice [7]. However, the exact mechanism of mitochondrial pathogenesis associated with PARK2 is controversial. For example, while *Drosophila parkin* mutants show abnormal mitochondrial morphology, *parkin*-knockout mice do not [7,24]. In addition, while a greater degree of mitochondrial branching is observed in **Figure 2** Increased oxidative stress accompanied by activation of the Nrf2 pathway in PARK2 iPSC-derived neurons. (A) GSH levels were significantly reduced in PARK2 (PA1, 9 and 22, and PB2, 18 and 20) iPSC-derived neurospheres compared with those in control A (YA9) and B (WD39) neurospheres. (**B, C**) DCF fluorescence intensity in PARK2 (PA1, 9 and 22, and PB2 and 20) iPSC-derived neurons was significantly higher than that in control A (B7) and B (WD39) neurons. (**D, E**) Immunoblot analysis of Nrf2 and NQO1 levels in iPSC-derived neurons from PA and PB. Expression of Nrf2 and NQO1 in PARK2 (PA9 and PB2) iPSC-derived neurons was significantly higher than that in control A (YA9) and B (WD39) neurons. Relative protein abundance was normalized to β-actin. ** indicates P < 0.01 (Mann–Whitney U-test). Data represent the mean and SEM of at least three experiments for each group. fibroblasts derived from PARK2 patients, the detailed morphology of the mitochondria in these cells has not been characterized [25]. To investigate these mitochondrial abnormalities in more depth, we performed a detailed morphological analysis of mitochondria in PARK2 iPSC-derived neurons using electron microscopy. Mitochondria in PARK2 neurons from both patients showed a highly electron-dense matrix and swollen mitochondrial cristae within the inner mitochondrial membrane (IMM) (Figure 3A, black arrowheads). The perikaryal volume density of the abnormal mitochondria was significantly increased in PA and PB iPSC-derived neurons relative to control clones (Figure 3B). Furthermore, the density of normal mitochondria decreased (Figure 3B). Importantly, both abnormal and normal mitochondria were observed in PARK2 neurons (Figure 3A, white arrowheads). Abnormal mitochondria were observed in 87.8% of iPSC-derived neurons from PA, and 79.5% of iPSC-derived neurons from PB. These data indicated that abnormal mitochondrial morphology was
a feature of most PARK2 iPSC-derived (See figure on previous page.) Figure 3 Dysregulation of mitochondrial homeostasis in PARK2 iPSC-derived neurons. (A) Electron micrographs of control A (B7), control B (WD39) and PARK2 (PA9 and PB2) iPSC-derived neurons. Boxed areas are shown in the enlarged images to the right. Control mitochondria showed a characteristically long, cylindrical profile with well-organized cristae, and the electron density of the matrix was relatively low (white arrowheads). By contrast, increased electron density of the matrix was evident in PARK2 mitochondria (black arrowheads), and the cristae often appeared swollen. As shown in PB2, some of the neurons contained both morphologically intact (white arrowheads) and abnormal (black arrowheads) mitochondria. Furthermore, abnormal tubulovesicular structures (asterisks) were observed adjacent to the Golgi cisternae (G). (B) The relative perikaryal volume of the abnormal mitochondria was significantly increased, and that of the normal mitochondria was decreased, in PARK2 neurons compared with control neurons. (C) Double labeling for the IMM marker, ComplexIII corel (CIII-Core I; magenta) and βIII-tubulin (green) of control A (B7), control B (WD39) and PARK2 (PA9 and PB2) iPSC-derived neurons. The volume of the IMM area was reduced in control neurons treated with CCCP, but not in PARK2 neurons treated with CCCP. Administration of Baf A₁ rescued the CCCP-induced phenotype in control neurons. (D) The CCCP/DMSO ratio in control A (B7 and YA9) and B (WD39) neurons was reduced after CCCP treatment. This reduction was not observed in PARK2 (PA1, 9 and 22, and PB2 and 20) iPSC-derived neurons (black bars indicate CCCP/DMSO ratio; white bars indicate Baf A₁+CCCP/Baf A₁ ratio). ** indicates P < 0.01 compared with the control; ¶¶ indicates P < 0.01 when comparing the black and white bars (Mann-Whitney U-test). At least three experiments were performed for each group, with 5–36 cells quantified per experiment. Scale bars: a, 1 μm; c, 10 μm. Error bars represent the SEM. N.D., not detected. neurons from these patients. In addition, abnormal tubulovesicular structures were observed adjacent to the Golgi cisternae in PARK2 iPSC-derived neurons (Figure 3A). These abnormal mitochondrial and tubulovesicular structures were not observed in PARK2 fibroblasts or in undifferentiated iPSCs (Additional file 5A and B). These histological abnormalities represent novel PARK2-related neuronal pathologies. PARKIN is involved in the mitochondrial fission/fusion system and is recruited to depolarized mitochondria to promote mitophagy [5,26-29]. In iPSC-derived neurons containing a mutation in PINK1 (a protein kinase upstream of PARKIN), PARKIN is not recruited appropriately to mitochondria [30]. We hypothesized that PARKINdeficient human neurons would show aberrant removal of depolarized mitochondria. To examine the turnover of damaged mitochondria, we treated iPSC-derived neurons with carbonyl cyanide m-chlorophenyl hydrazine (CCCP), which triggers the loss of mitochondrial membrane potential and results in the removal of damaged mitochondria. The intensity of TMRE, a mitochondrial membrane potential-dependent dye, clearly decreased in both control and PARK2 iPSC-derived neurons treated with CCCP. which indicated a reduced mitochondrial membrane potential in both sets of neurons (Additional file 6). To determine the extent to which the damaged mitochondria were eliminated, we measured the area of the IMM after CCCP treatment. Compared with untreated cells, there was a dramatic loss of IMM area in the treated control neurons, but not in the treated PARK2 neurons (Figure 3C, left four columns; Figure 3D, black bars). To assess whether lysosomes were involved in the CCCP-induced elimination of mitochondria, we treated cells with Bafilomycin (Baf) A₁, an inhibitor of the vacuolar type H(+)-ATPase. Baf A₁ attenuated the CCCP-dependent reduction in the IMM area in control neurons (Figure 3C, right four columns; Figure 3D, white bars). To confirm that the abnormal turnover of damaged mitochondria was characteristic of neuronal cells, PARK2 fibroblasts and undifferentiated iPSCs were treated with CCCP. CCCP-treated PARK2 fibroblasts and undifferentiated iPSCs exhibited the same mitochondrial dynamics as CCCP-treated control cells (Additional file 5C-E). Together, these data indicated aberrant degradation of mitochondria damaged by CCCP treatment in PARK2 iPSC-derived neurons. These results support a recently proposed working model for PD, in which damaged mitochondria accumulate due to a disruption in PARKIN-mediated mitochondrial quality control [28]. The electron microscopy data, which showed a mixture of abnormal and normal mitochondria, indicated that PARKIN-mediated mitochondrial quality control is compromised, even in young PARK2 iPSC-derived neurons. In these cells, residual normal mitochondria may have compensated for the damaged ones. Thus, while our findings suggest that the PARKIN-dependent mechanisms that regulate mitochondrial homeostasis are disrupted in PARK2 cells, further detailed analyses are required to fully understand the mechanism underlying this disruption and the implications for PD. # Patient-specific accumulation of α-synuclein in PARK2 iPSC-derived neurons and its correlation with LB formation LBs are pathological neuronal inclusions composed principally of α -synuclein. They are typically associated with PD and certain forms of dementia [1,13,31]. Although LBs are generally thought to be absent from PARK2 patients [1,13,31], rare cases of LB formation in the brains of PARK2 patients have been reported recently [12,32,33]. The PARKIN protein co-localizes with LBs in some patients with sporadic PD [34], and a functional interaction between PARKIN and α -synuclein is indicated by both *in vitro* and *in vivo* findings [35-37]. These results suggest that PARKIN-pathway may contribute to LB formation in PD patients. We were able to conduct a histopathological analysis of postmortem brain tissue from patient PA. Hematoxylin and eosin staining of the SN revealed low levels of brown-black melanin pigment compared with healthy SN tissue (Figure 4A and A'). Surprisingly, LBs accumulated in the SN and other areas of the brain in patient PA (Figure 4B and Table 2). Furthermore, α-synuclein and pα-synuclein immunoreactive puncta and neurites were observed in the areas where LBs were present (Figure 4B). TH/pα-synuclein double-positive neurons were also detected in the SN (Figure 4C). Of note, α-synuclein-positive/TH-negative or pα-synuclein-positive/TH-negative neurons in the SN and other areas of the brain tissue from patient PA's brain were observed (Table 2). These data suggested that α -synuclein accumulated not only in TH+ neurons, but also in other types of neurons. Postmortem tissue from the brain of the father of patient PB was also examined. The father carried a homozygous deletion of exons 6 and 7 of the parkin gene (Figure 1B, Additional file 1B and 7A), similar to patient PB. There was no evidence of LBs or α-synucleinpositive neurons in the autopsied brain tissue of the father (Figure 4D). Thus, since the genetic background of patient PB and his father are likely to be very close (Additional file Figure 4 Accumulation of LBs in the postmortem brain of patient PA. (A-C) Immunohistochemical staining of postmortem brain tissue from patient PA. (A) Low magnification image of a midbrain section stained with hematoxylin and eosin (H&E). (A') High magnification image of the boxed area. Melanin levels were reduced in most of the substantia nigra (SN). (B) (Left) High magnification image of a midbrain section stained with H&E showing the presence of Lewy bodies (LBs) in the SN. (Middle and Right) a-synuclein-positive and pa-synuclein-positive cells in the SN. (C) Confocal microscopy image of a TH (green) and pα-synuclein (red) double-positive SN neuron and a projected merged image: pasynuclein accumulated in the TH-positive neuron. (D) Melanin levels were reduced in most of the SN. No LBs or α-synuclein-positive neurons were observed in postmortem brain tissue from the father of patient PB. Scale bars: A, 1000 μm; A', 350 μm; B, C, 50 μm; D, 100 μm. 1B and 7A), these results are probably reflective of a specific phenotype of patient PB, which was different from that in patient PA (Figure 4A-D). To determine whether iPSC-derived neurons recapitulated the in vivo phenotypes of the corresponding cell donors, we next examined a-synuclein accumulation in PARK2 iPSC-derived neurons. To rule out the possibility that α-synuclein expression in undifferentiated PARK2 iPSCs was increased by multiplication of the SNCA gene, genomic aberrations acquired during the process of iPSC establishment, or by repeated passage of the cells, the SNCA gene copy number in iPSCs was quantified by genomic qPCR. A comparison with control iPSCs showed that iPSCs from both PA and PB carried the normal number of SNCA gene copies (Additional file 8A). Moreover, immunostaining for a-synuclein did not reveal any increase or decrease in α-synuclein protein levels in PARK2 iPSCs (Additional file 8B). As a control for LB formation, we generated iPSC-derived neurons from a 106year-old woman (designated Cent1-8), since previous work suggested that aging is a predisposing factor for LB formation in PD patients [31,38]. Since α -synuclein was also expressed in non-neural cells, triple labeling for α-synuclein, βIII-tubulin, and TH was performed to ensure that only neurons were examined (Figure 5A, asterisks). The proportion of α-synuclein-positive iPSCderived neurons that were also positive for BIII-tubulin from PB was similar to that in the controls (including Cent1-8); however, the proportion was significantly higher in PA. These results were consistent with the in vivo phenotypes of the cell donors based on analysis of postmortem brain tissue (1629, 357, 805, 3747, and
4330 iPSC-derived βIII-tubulin+ neurons in control A, control B, Cent1-8, PA and PB respectively; Figure 5A-C, arrows and arrowheads). Thus, the increase in α -synuclein expression levels seen in PARK2 iPSC-derived neurons Table 2 LB type pathology in PA patient's postmortem brain | Brain area | LB type pathology | | |------------------------|-------------------|-----| | Brainstem lesion | IX-X | +++ | | | LC | +++ | | | SN | ++ | | Basal forebrain/Limbic | nbM | ++ | | | Amy | ++ | | | Ent | + | | | Cing | + | | Neocortical | Т | - | | | F | - | | | Р | - | IX-X, motor cranial nerves IX-X; *LC*, Locus Coeruleus; *SN*, Substantia Nigra; *nbM*, nucleus basal of Meynert; Amy, Amygdala; Ent, Entorhinal cortex; T, Temporal lobe; F, Frontal lobe; P, Parietal lobe. cannot be attributed solely to the effects of aging, but associated with the disease phenotype. The obvious LB-formation was observed in the postmortem brain of PA patient, who showed a late onset at 61 years, corresponding to the enhanced α-synuclein accumulation in the iPSC-derived neurons from the same patient. Thus, it is likely that early-stage LB formation was recapitulated in vitro in iPSC-derived neurons. Furthermore, the present findings are consistent with recent work by several groups, which suggest that the age of onset of PARK2 in patients with LB formation (41 on average) is later than in patients without LB formation (below 40) [12,32,33]. The earlier onset in patient PB (at 28 years) than in PA (at 61 years) would be consistent with the finding of lower α-synuclein accumulation in PB iPSC-derived neurons compared with PA iPSC-derived neurons. On the other hand, and in contrast to the observations of brain tissue from PA, analysis of brain tissue from the father of patient PB, in whom the onset of PD was 39 years of age, revealed no evidence of LB formation (Figure 4D). Importantly, PA iPSC-derived neurons showed significantly more a-synuclein accumulation than PB iPSCderived neurons (Figure 5A and C). These results suggest that the extent of α-synuclein accumulation is an important factor in LB formation. Then, how can we explain the difference of α-synuclein accumulation between PA and PB patients-derived neuronal cells? It is possible that PA is a rare example of PARK2 complicated by sporadic PD. Although both PA and PB iPSCs showed a normal SNCA gene copy number, it is possible that PA-derived cells acquired an unknown gene mutation relating to LB formation. Thus, we cannot rule out the possibility that other factors may affect LB formation in PARK2 patients. Further analyses will be required to identify these putative factors. Although iPSC clones from sporadic and familial PD patients were recently established [17,30,39-42], this report is the first to demonstrate that the phenotype of PD-specific iPSC-derived neurons replicates the in vivo phenotype seen in postmortem brain tissue from the corresponding cell donor. #### Conclusions In summary, dysfunctional neuronal homeostasis (characterized by increased oxidative stress and activation of the Nrf2 pathway), impaired mitochondrial function, and increased α -synuclein accumulation were observed in PARK2 iPSC-derived neurons. These results indicate that PARK2-associated phenotypes may appear soon after, or possibly even before, the onset of PARK2. Detailed analyses of PARK2 iPSC-derived neurons, particularly mature neurons, to determine the time course of LB accumulation and synaptic dysfunction will be of great interest. Such analyses will further our understanding of the pathogenesis of PARK2 as well as sporadic PD. The ultimate goal is the development and application of novel preventative therapies for PD. #### **Materials & methods** # Isolation of human skin fibroblasts and generation of iPSCs For control A, human dermal fibroblasts (HDFs) from the facial dermis of a 36-year-old Caucasian female (Cell Applications Inc.) were used to establish iPSCs (201B7; Passage 20-29, YA9; Passage 15-24). The 201B7 iPSCs were kindly provided by Dr. Yamanaka [15]. A skin-punch biopsy from a healthy 16-year-old Japanese female obtained after written informed consent (Keio University School of Medicine) was used to generate the control B iPSCs (WD39; Passage 8-17). PA iPSCs (PA1, 9, and 22; Passage 10-19) and PB iPSCs (PB1, 2, 18, and 20; Passage 8-17) were generated from a 71-year-old Japanese female patient and a 50-yearold Japanese male patient, respectively, using the same methods used to generate control B iPSCs. The maintenance of HDFs, lentiviral production, retroviral production, infection, stem cell culture and characterization, and teratoma formation were performed as described previously [14,15]. All of the experimental procedures for skin biopsy and iPS production were approved by the Keio University School of Medicine Ethics committee (Approval Number: 20-16-18) and Juntendo University School of Medicine Ethics committee (Approval Number: 2012068). hESCs (KhES-1; Passage 29-38 (kindly provided by Dr. Norio Nakatsuji) were cultured on feeder cells in iPS culture media [43]. #### In vitro differentiation of human iPSCs Neural differentiation of iPSCs was performed as previously described [44] with slight modifications (Okada et al., manuscript in preparation). Briefly, iPSC colonies were detached from feeder layers and cultured in suspension as EBs for about 30 days in bacteriological dishes. EBs were then enzymatically dissociated into single cells and the dissociated cells cultured in suspension in serum-free media (MHM) [44] for 10 to 14 days to allow the formation of neurospheres. Neurospheres were passaged repeatedly by dissociation into single cells followed by culture in the same manner. Typically, neurospheres between passages 3 and 8 were used for analysis. For terminal differentiation, dissociated or undissociated neurospheres were allowed to adhere to poly-L-ornithine- and fibronectin-coated coverslips and cultured for 10 days. #### Immunocytochemical analysis of iPSCs and neurons For immunocytochemical analysis, cells were fixed with phosphate buffered saline (PBS) containing 4% paraformal-dehyde (PFA) for 30 min at room temperature (RT). The cells were analyzed by immunofluorescence staining using antibodies to the following proteins: β -III-tubulin (1:1000, Figure 5 α-synuclein accumulation in PARK2 iPSC-derived neurons. (A–C) Triple labeling for α-synuclein (red), tyrosine hydroxylase (TH; cyan), and βIII-tubulin (green) along with Hoechst (blue) staining of control A (B7), control B (WD39), Cent1-8, and PARK2 (PA9 and PB20) iPSC-derived neurons. (A) Arrows indicate α-synuclein+/TH+/βIII-tubulin+ neurons; arrowheads indicate α-synuclein+/TH-/βIII-tubulin+ neurons. Note the presence of α-synuclein+/TH-/βIII-tubulin- non-neural cells (asterisks). (B) High magnification confocal projection image of an α-synuclein (magenta)/βIII-tubulin (green) double-positive PA9 iPSC-derived neuron. (C) The proportion of α-synuclein+/βIII-tubulin+ neurons relative to βIII-tubulin-positive neurons was significantly higher in PA (PA1, 9 and 22) iPSC-derived neurons than in control A (B7 and YA9), control B (WD39) and Cent1-8 iPSC-derived neurons. Scale bars: A, 50 μm; C, 5 μm. ** indicates P < 0.01; * and ¶ indicate P < 0.05 (Mann–Whitney *U*-test). Data represent the mean and SEM of at least three experiments for each group. Sigma), NANOG (1:100, ReproCELL), OCT3/4 (1:200, Santa Cruz Biotechnology), SSEA-4 (1:200, Millipore), TRA-1-60 (1:200, Millipore), TH (1:100, Millipore), α -synuclein (1:500, Invitrogen), p α -synuclein (1:1000, Wako), cleaved-Caspase3 (1:500, Cell Signaling) and ComplexIII (C-III)-core I (1:200, Invitrogen). Cells were washed with PBS after incubation with the primary antibody, followed by incubation with an Alexa Fluor 488-, Alexa Fluor 555-, or Alexa Fluor 647-conjugated secondary antibody (1:500, Invitrogen). Images were obtained using Apotome (Zeiss) or LSM-710 confocal (Zeiss) microscopes. #### PCR amplification of genomic DNA Genomic DNA was purified from HDFs and iPSCs using a DNeasy kit (Qiagen). The PCR conditions used have been previously described [2,42]. #### Reverse transcription (RT)-PCR RNA isolation and reverse transcription (RT)-PCR were performed as previously described [44]. The amount of cDNA was normalized to β -actin mRNA. Real-time RT-PCR was performed on a ABI PRISM Sequence detection System 7900HT (Applied BioSystems) using SYBR premix ExTaq (Takara). Primers for the detection of Oct4, the transgenes Oct4-tg, Sox2-tg, Klf4-tg and c-Myc-tg, and MAO-A, and -B have been previously described [10,15]. #### Teratoma assay To assess teratoma formation, iPSCs were injected into the testis of 8-week-old NOD/SCID mice (OYG International) as previously described [14]. Eight weeks after transplantation, tumors were dissected and fixed with 4% PFA in PBS. Paraffin-embedded tissue was sectioned and stained with H&E. Images were obtained using a BZ-9000 (Keyence) microscope. #### CGH array Genomic DNA was restricted, labeled, and purified using the Agilent Oligo CGH Microarray Kit (Agilent Technologies) according to the manufacturer's protocol. Labeled genomic DNA was processed for hybridization on a 4x 180K microarray (Agilent Technologies). Processing was performed as instructed by the manufacturer. The genomic analysis was performed using Agilent Genomic Workbench ver. 6.0 software (Agilent Technologies). #### Metabolism assays Reduced GSH levels were measured according to the kit manufacturer's protocol (GSH-Glo Glutathione Assay; Promega). Chymotrypsin-like proteasome activity was measured using a Cell-Based Proteasome-Glo Assay according to the manufacturer's instructions (Promega). Briefly, neural cells (1.0×10^4) derived from neurospheres were seeded in triplicate into a white 96-well plate (Nunc). Prepared reagent (100 μ l) was added to each well. After incubation for 10 min at RT, luminescence
intensity was recorded. ROS levels were determined by measuring DCFH-DA fluorescence (Invitrogen). Briefly, neurons were incubated with 5 μ M DCFH-DA and Hoechst (1:2000) for 30 min at 37°C, after which they were washed with PBS and then incubated in differentiation media. Fluorescence was measured by an In Cell Analyzer 2000 system (GE Healthcare Biosciences). #### Protein analysis Differentiated neurons were harvested in MAPK lysis buffer containing proteinase inhibitor, and protein concentrations were measured by BCA assay (Thermo Scientific). Samples were diluted to yield equivalent protein concentrations and then 4 µg was denatured by the addition of 4X sample buffer (Invitrogen) supplemented with β-mercaptoethanol followed by boiling. Samples (7 µl/lane) were loaded onto a 4-20% SDS-polyacrylamide gradient gel. Membranes were incubated in blocking solution with the indicated primary antibodies at 4°C overnight. Immunoreactive proteins were detected with horseradish peroxidase (HRP)-conjugated secondary antibodies and then visualized by chemiluminescence (Pierce, Rockford, IL, USA) according to the manufacturer's instructions. Quantification of band intensities was performed using an RAS4000 system. The primary antibodies used were anti-NOO1 (1:1000, Abcam), anti-NRF2 (1:1000, Santa Cruz Biotechnology) and β-actin (1:5000, Cell Signaling). #### CCCP and Baf A₁ treatments Neurons were cultured with 30 μ M CCCP (Sigma-Aldrich) or DMSO, with or without 5 μ M Baf A₁ (Sigma-Aldrich), for 48 h. The cells were then fixed and stained for β III-tubulin and C-III Core I, and counterstained with Hoechst. To quantify the IMM area of the neurons, the cytoplasmic area was extracted as shown in Figure 3C. The C-III Core I-positive signals within the extracted area were then converted to gray-scale and digitized. The IMM area was quantified from the digitized values using Image J software. #### Tetramethylrhodamine ethyl ester (TMRE) staining iPSC-derived neurons were incubated with 1nM TMRE (Invitrogen) for 15 min at 37°C and then observed under an Olympus IX81 microscope. #### **Electron microscopy** Cells were fixed with 2% glutaraldehyde/2% PFA in 0.1 M phosphate buffer (PB) (pH7.2), post-fixed with 1% OsO4 in 0.1 M PB (pH 7.2), blocked and stained with a 2% aqueous solution of uranyl acetate, dehydrated with a graded series of ethanol, and then embedded in Epon 812 (TAAB). Coverslips were detached and the embedded samples were placed under a stereomicroscope to identify the cells of interest. Ultrathin sections were cut with a Leica UC6 or UC7 ultramicrotome (Leica Microsystems) and then stained with uranyl acetate and lead citrate. Samples were observed with a Hitachi H7100 or HT7700 electron microscope. #### Morphometry Morphometric analysis was used to measure the volume density of mitochondria in the neuronal perikarya as previously described [45]. Briefly, electron micrographs of neurons (n = 20, 23, 41, and 44 for control A (B7), control B (WD39), PA9 and PB2, respectively) were obtained at a magnification of ×7000. After enlarging to three times the original magnification, point-counting was carried out to determine the volume density using a double-lattice test system with 1.5 cm spacing. Mitochondria were classified as normal, abnormal, or undetermined. The abnormal mitochondria were defined as those with irregularly arranged cristae, or with a high electron-dense matrix. The volume density (Vv) of each type of mitochondrion was expressed as percent volume according to the following formula: $Vv = (Pi/Pt) \times 100$ (%), where Pi is the number of points falling on each mitochondrial structure and Pt is the number of points falling on the neuronal perikarya. #### Immunohistochemical analysis of autopsied brain tissue The ethical committee of the Kitasato University School of Medicine and Juntendo University School of Medicine reviewed and approved the protocol for analysis of autopsied brain tissue. Patients and control subjects were informed of the study and gave written informed consent. Brain tissue from patient PA was obtained following her death at age 72; brain tissue from the father of patient PB was obtained when he died at age 70 [46]. Tissue was fixed with 10% formalin and then embedded in paraffin. Midbrain sections (6 µm thick) were cut, deparaffinized with xylene, and then rehydrated in ethanol. After being boiled and treated with H2O2, sections were subjected to immunofluorescence staining with antibodies to the following proteins: α-synuclein (1:500, Invitrogen), pα-synuclein (1:1000, Wako), and TH (1:1000, Calbiochem). After washing with PBS, sections were incubated with a biotinylated secondary antibody (1:500; Vector Laboratories Inc.) at RT for 1 hr followed by incubation with an avidin-biotin peroxidase complex (Vector Laboratories Inc.) for 1 hr. Immunoreactive proteins were visualized using 3,3-diaminobenzidine (DAB; Wako Pure Chemical Industries) and nuclear fast red staining. For immunofluorescence, FITCconjugated and Cy3-conjugated secondary antibodies (1:500; Jackson Immunoresearch Laboratories) were used. Images were obtained using a BIOREVO (Keyence) and a confocal laser-scanning LSM710 (Zeiss) microscope. #### Statistical analysis Values represent the mean \pm SEM. The Mann–Whitney *U*-test was used to evaluate differences between groups. A *P* value of < 0.05 was considered significant. #### **Additional files** **Additional file 1: Genetic studies of family.** (A) An arrow indicates PA patient. (B) An arrow indicates PB patient. Filled circles and squares, women and men with PARK2 mutation; Open circles and squares, normal women and men; Diamond shapes, family members whose DNA samples were not analyzed. Symbols with lines through them represent the deceased. Additional file 2: Characterization of control and PARK2 iPSCs. (A) Control A (YA9), Control B (WD39), PA (PA9), and PB (PB2) iPSCs expressed the pluripotency markers SSEA4 (red) and TRA1-60 (green). Scale bar, 100 µm. (B) iPSCs established from patients PA (PA1, PA22) and PB (PB1, PB18, and PB20) were positive for the pluripotency markers Nanog (red), Oct4 (green), SSEA4 (red), and TRA1-60 (green). Scale bars: phase images, 200 um; immunofluorescence images, 100 um, (C) Levels of endogenous Oct4 mRNA in the generated iPSCs were similar to those in KhES1 cells, a human embryonic stem cell (hESC) line [42]. Expression levels were normalized to that of KhES1 (set as 1). (D) Cont A (YA9), Cont B (WD39), PA (PA1, 9 and 22), and PB (PB1, 2, 18 and 20) iPSCs gave rise to teratomas with all three germ layers, confirming pluripotency. Scale bar, 100 µm. (E) Silencing of transgenes in control and PARK2 iPSC clones. Expression levels were normalized to the positive control of fibroblasts in cultures assayed 6 days after retroviral infection (= 100). Cont A, Control A; Cont B, Control B. Additional file 3: Confirmation of *parkin* deletions and genomic stability of PARK2 iPSCs using comparative genomic hybridization (CGH) microarray analysis. (A) Exons 2–4 were deleted in the PA9 and PA22 iPSC lines. Exons 6 and 7 were deleted in the PB2, 18, and 20 iPSC lines. (B) Copy number profiles of whole chromosomes in PARK2 iPSCs assessed by CGH microarray analysis revealed that no genomic aberrations were introduced during the process of establishing PARK2 iPSCs. Additional file 4: Expression level of MAO-A and -B showed no difference among Control and PARK2 iPSC-derived neurons. (A,B) qRT-PCR measurement of MAO-A and -B transcripts in PARK2 (PA (1, 9 and 22) and PB (1, 2 and 20)) iPSC-derived neurons showed no difference compared to those in Cont A (B7 and YA9). ContA; Control A, ContB; Control B. Additional file 5: Healthy mitochondria in PARK2 fibroblasts and iPSCs. (A, B) Electron micrographs of fibroblasts (upper panels) and iPSCs (lower panels) from Control (Cont A and Cont B) and PARK2 patients (PA and PB). Mitochondria in the fibroblasts and iPSCs from both groups showed long, cylindrical profiles with well-organized cristae, and the electron density of the matrix was relatively low (asterisks). Scale bar, 0.25 μm. Cont A, Control A; Cont B, Control B. (C) Fibroblasts were treated with 30µM CCCP or DMSO for 48 h, followed by staining for CIII corel (magenta) to label the internal mitochondrial membrane (IMM) and counterstaining with Hoechst (Ho, blue). Mitochondrial size decreased after CCCP treatment in both Control (Cont A and Cont B) and PARK2 (PA and PB) fibroblasts. Scale bar, 20 µm. (D) iPSCs were treated with 30 uM CCCP or DMSO for 48 h and then stained for CIII corel (magenta) to label IMM, Oct4 (blue) to label iPSCs, and Hoechst (Ho, white). Mitochondrial size in Control (Cont A (B7), Cont B (WD39)), and PARK2 (PA9 and PB2) iPSCs decreased after CCCP treatment. Scale bar, 20 μm (E) CCCP/DMSO ratios in Control (Cont A (B7, YA9), Cont B (WD39)), and PARK2 (PA9 and 22 and PB2 and 20) iPSCs (Mann Whitney U-test). Data represent the mean and SEM (n > 3 for each group). Additional file 6: Mitochondrial membrane potential after CCCP treatment in control and PARK2 iPSC-derived neurons. (A) iPSC-derived neurons were treated with 30 μ M CCCP or DMSO for 48 h, after which they were stained for the mitochondrial membrane potential marker, TMRE. The intensity of TMRE (yellow) was clearly reduced in control (Cont A (B7), Cont B (WD39)), and PARK2 (PA9 and PB2) iPSC-derived neurons. Scale bar, 50 μ m. Additional file 7: Confirmation of *parkin* deletions carried by the father of patient PB. (A) Deletion of exons 6 and 7 was confirmed in blood samples from PB and the father of PB by PCR. Additional file 8: α-Synuclein signals are not seen in PARK2 iPSCs. (A) Quantitative genomic PCR analysis for SNCA exons 1 and 4 demonstrated a normal copy number in PARK2 (PA1, 9 and 22, and PB1, 2, 18 and 20) iPSCs. The copy number was the same as that observed for Cont A (B7 and YA9) and Cont B (WD39). The SNCA gene
copy number was normalized to β-globin (HBB) and β2-microglobulin (B2MG). (B) iPSCs were stained for α-synuclein (red), Oct4 (green; to label iPSCs) and Hoechst (blue). No α-synuclein signals were observed in Cont A (B7 and YA9), Cont B (WD39), or PARK2 (PA9 and 22, PB2 and 20) iPSCs. Scale bar, 50 μm. #### Competing interests The authors declare that they have no competing interests. #### Authors' contributions YI, YO, WA, and HO conceived and designed the experiments. YI performed most of the experiments, analyzed data, and wrote the manuscript. YO, and HO edited the manuscript. YO developed the quality control system, neural differentiation method for the iPSCs and performed CGH microarray data analysis. WA generated the WD39 iPSCs. NK, KH, MS and AN performed western blotting analysis. TN performed some parts of *in vitro* culture assay. SS, MF, YM, HM and NH examined and recruited PARK2 patients. TK, MO, and MA performed biopsies and established the skin fibroblasts. AH, TS, TH and MS performed preliminary experiments for the metabolome analysis. TY, DI, AK and NS provided cent8-1 iPSCs. YI and NM designed the CCCP treatment experiment. MK and YU performed the electron microscopic analysis. HH, MT, HM and NH performed the histopathological studies of the postmortem brain of PA. All authors read and approved the final manuscript. #### Acknowledaments We would like to thank S. Yamanaka (CiRA) for the 201B7 iPSCs; N. Nakatsuji (Kyoto University) for the KhES cells; N. Izawa, S. Banno, Y. Matsuzaki, M. Fujiwara, Y. Nagahata, N. Hirose (Keio University), C. Kishi (Tokyo Medical and Dental University), M. Ogino, S. Miyakawa, (Kitasato University) and G. Takata (GE Healthcare Biosciences) for technical assistance and suggestions. This work was supported by the Project for the Realization of Regenerative Medicine and Support for the Core Institutes for iPS cell research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to H.O., Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project from Japan Science and Technology Agency (JST) to M.S., a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) to W.A. and Y.O., the Keio Kanrinmaru Project and a Grant-in-Aid for Scientific Research on Innovative Areas to Y.O., a Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from the MEXT to Y. O. and Y. I., a Grant-in-Aid for Encouragement of Young Medical Scientists from Keio University and the Japan Society for the Promotion of Science Fellows to Y.I., and a Grant-in-Aid for the Global COE Program at Keio University. #### **Author details** ¹Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan. ²Kanrinmaru Project, Keio University School of Medicine, Tokyo, Japan. ³Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan. ⁴Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan. ⁵Department of Dermatology, Keio University School of Medicine, Tokyo, Japan. ⁶Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan. ⁷Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan. ⁸Institute for Advanced Biosciences, Keio University, Yamagata, Japan. ⁹Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan. ¹⁰Department of Neurology, Keio University School of Medicine, Tokyo, Japan. ¹¹Advanced Science Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan. ¹²Department of Neuro-Regenerative Medicine, Kitasato University School of Medicine, Kanagawa, Japan. ¹³Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan. ¹⁴Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan. Received: 19 September 2012 Accepted: 2 October 2012 Published: 6 October 2012 #### References - Farrer MJ: Genetics of Parkinson disease: paradigm shifts and future prospects. Nature reviews 2006, 7:306–318. - Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605–608. - Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000, 25:302–305. - 4. Whitworth AJ, Pallanck LJ: The PINK1/Parkin pathway: a mitochondrial quality control system? *J Bioenerg Biomembr* 2009, 41:499–503. - 5. Youle RJ, Narendra DP: Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011. 12:9–14 - Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, et al: Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003, 278:43628–43635. - Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004, 279:18614–18622. - Perez FA, Palmiter RD: Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 2005, 102:2174–2179. - Sato S, Chiba T, Nishiyama S, Kakiuchi T, Tsukada H, Hatano T, Fukuda T, Yasoshima Y, Kai N, Kobayashi K, et al: Decline of striatal dopamine release in parkin-deficient mice shown by ex vivo autoradiography. J Neurosci Res 2006, 84:1350–1357. - Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J: Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 2012. 3:668. - Mattis VB, Svendsen CN: Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 2011, 10:383–394. - Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K, Petrucelli L, Hussey J, et al: Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001, 50:293–300. - Savitt JM, Dawson VL, Dawson TM: Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 2006, 116:1744–1754. - Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, Amagai M, Matsuzaki Y, Yamanaka S, Okano H, Kawakami Y: Generation of human melanocytes from induced pluripotent stem cells. PLoS One 2011, 6:e16182. - Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861–872. - Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J, Anderson M, Beckhouse AG, et al: Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 2010, 3:785–798. - Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, et al: LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 2011, 8:267–280. - Sies H: Glutathione and its role in cellular functions. Free Radic Biol Med 1999. 27:916–921. - Williamson TP, Johnson DA, Johnson JA: Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity. Neurotoxicology 2012, 33:272–279. - Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL: Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 2007, 66:75–85. - Tufekci KÜ, Civi Bayin E, Genc S, Genc K: The Nrf2/ARE Pathway: a promising target to counteract mitochondrial dysfunction in parkinson's disease. Parkinsons Dis 2011, 2011:314082. - Fukae J, Mizuno Y, Hattori N: Mitochondrial dysfunction in Parkinson's disease. Mitochondrion 2007, 7:58–62. - Schapira AH: Mitochondrial dysfunction in neurodegenerative disorders. Biochim Biophys Acta 1998, 1366:225–233. - Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003, 100:4078–4083. - Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, Wood NW, Willems PH, Smeitink JA, Cookson MR, Bandmann O: Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 2008, 64:555–565. - Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010, 189:211–221. - Narendra D, Tanaka A, Suen DF, Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008, 183:795–803. - Tanaka A: Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett 2010, 584:1386–1392. - Yoshii SR, Kishi C, Ishihara N, Mizushima N: Parkin mediates proteasomedependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 2011, 286:19630–19640. - Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D: Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 2011, 31:5970–5976. - 31. Shults CW: Lewy bodies. Proc Natl Acad Sci USA 2006, 103:1661–1668. - Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelson C, Pepivani I, Hedrich K, Adel S, Gonzales-McNeal M, Hilker R, et al: Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol 2005, 58:411–422. - Sasaki S, Shirata A, Yamane K,
Iwata M: Parkin-positive autosomal recessive juvenile Parkinsonism with alpha-synuclein-positive inclusions. *Neurology* 2004, 63:678–682. - Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, et al: Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 2002, 160:1655–1667. - Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM: Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001, 7:1144–1150. - Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR: Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002, 36:1007–1019. - Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ: Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science (New York, NY) 2001, 293:263–269. - 38. Yagi T, Kosakai A, Ito D, Okada Y, Akamatsu W, Nihei Y, Nabetani A, Ishikawa F, Arai Y, Hirose N, et al: Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. PLoS One 2012, 7:e41572. - Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, et al: Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA 2010, 107:15921–15926. - Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ: Disease-Specific Induced Pluripotent Stem Cells. Cell 2008, . - Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al: Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009, 136:964–977. - 42. Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, et al: Parkinson's disease - induced pluripotent stem cells with triplication of the alpha-synuclein locus. *Nat Commun* 2011, 2:440. - Suemori H, Yasuchika K, Hasegawa K, Fujioka T, Tsuneyoshi N, Nakatsuji N: Efficient establishment of human embryonic stem cell lines and longterm maintenance with stable karyotype by enzymatic bulk passage. Biochem Biophys Res Commun 2006, 345:926–932. - Okada Y, Matsumoto A, Shimazaki T, Enoki R, Koizumi A, Ishii S, Itoyama Y, Sobue G, Okano H: Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem cells (Dayton, Ohio) 2008, 26:3086–3098. - Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, et al: Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 2005, 167:1713–1728. - Mitsui J, Takahashi Y, Goto J, Tomiyama H, Ishikawa S, Yoshino H, Minami N, Smith DI, Lesage S, Aburatani H, et al: Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. Am J Hum Genet 2010, 87:75–89. #### doi:10.1186/1756-6606-5-35 Cite this article as: Imaizumi *et al.*: Mitochondrial dysfunction associated with increased oxidative stress and α -synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. *Molecular Brain* 2012 5:35 # Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit 14 March 2013 FEBS Letters xxx (2013) xxx-xxx # ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons - Q1 Hideaki Matsui ^{a,g,1,2}, Fumiaki Sato ^{b,g,1,3}, Shigeto Sato ^{b,g}, Masato Koike ^f, Yosuke Taruno ^{a,g}, Shinji Saiki ^{b,g}, Manabu Funayama ^{d,g}, Hidefumi Ito ^{a,g}, Yoshihito Taniguchi ^{c,g,4}, Norihito Uemura ^{a,g}, Atsushi Toyoda ^{e,6}, Yoshiyuki Sakaki ^{e,5}, Shunichi Takeda ^{c,g}, Yasuo Uchiyama ^f, Nobutaka Hattori ^{b,g,*}, Ryosuke Takahashi ^{a,g,*} - ^a Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan - ^b Department of Neurology, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan - ^c Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan - d Research Institute for Diseases of Old Age, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan - e RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan - Department of Cell Biology and Neuroscience, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan - ^g Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan #### ARTICLE INFO Article history: Received 5 January 2013 Revised 22 February 2013 Accepted 25 February 2013 Available online xxxx Edited by Barry Halliwell Q2 Keywords: Parkinson's disease Medaka fish ATP13A2 Lysosome #### ABSTRACT Kufor-Rakeb syndrome (KRS) was originally described as an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia. *ATP13A2* was identified as the causative gene in KRS. *ATP13A2* encodes the ATP13A2 protein, which is a lysosomal type5 P-type ATPase, and ATP13A2 mutations are linked to autosomal recessive familial parkinsonism. Here, we report that normal ATP13A2 localizes in the lysosome, whereas disease-associated variants remain in the endoplasmic reticulum. Cathepsin D activity was decreased in ATP13A2-knockdown cells that displayed lysosome-like bodies characterized by fingerprint-like structures. Furthermore, an atp13a2 mutation in medaka fish resulted in dopaminergic neuronal death, decreased cathepsin D activity, and fingerprint-like structures in the brain. Based on these results, lysosome abnormality is very likely to be the primary cause of KRS/PARK9. © 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. #### 1. Introduction Parkinson's disease (PD) is one of the most common movement disorders, and it is caused by loss of dopaminergic neurons. The molecular mechanisms underlying neuronal degeneration in PD remain unknown; however, it is now clear that genetic factors * Corresponding authors. E-mail addresses: nhattori@juntendo.ac.jp (N. Hattori), ryosuket@kuhp.kyoto-u.ac.jp (R. Takahashi). ¹ These authors contributed equally to this work. heavily contribute to the pathogenesis of this disease [1]. In approximately 10% of patients with clinical features of PD, the disease state has a strict familial etiology. PARK9-linked PD is an autosomal recessive early-onset disorder that is characterized by levodopa-responsive parkinsonism, supranuclear gaze palsy, pyramidal signs, and dementia; this condition is also called Kufor-Rakeb syndrome (KRS), being named for a consanguineous Jordanian family containing four members with this disorder [2]. Recently, *ATP13A2* was identified as the causative gene for KRS/PARK9. The *ATP13A2* gene comprises 29 exons that encode a lysosomal type 5 P-type ATPase with 10 transmembrane domains [3]. Thus far, eight mutations have been reported in just five families and in two additional unrelated patients, and no neuropathological examination of an autopsy case has been documented [3–8]. The function of the ATP13A2 protein remains largely unknown, but it is supposed that ATP13A2 might participate in autophagic protein degradation via the lysosomal pathway [9]. Here, we established and analyzed a cell culture model of ATP13A2 knockdown and Atp13a2 mutant medaka fish to elucidate the mechanisms underlying PARK9-associated pathology. 0014-5793/\$36,00 © 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. http://dx.doi.org/10.1016/j.febslet.2013.02.046 Please cite this article in press as: Matsui, H., et al. ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons. FEBS Lett. (2013), http://dx.doi.org/10.1016/j.febslet.2013.02.046 ² Current address: Department of Cell Physiology, Zoological Institute, Technical University Braunschweig, Spielmannstrasse 8, Braunschweig 38106, Germany. ³ Current address: Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan. ⁴ Current address; Department of Preventive Medicine and Public Health, School of Medicine, Kejo University, 35, Shinano-cho, Shiniuku-ku, Tokyo 160-8582, Japan. ⁵ Current address: Toyohashi University of Technology, 1-1, Hibarigaoka, Tenpakucho, Toyohashi, Aichi 441-8580, Japan. ⁶ Current address: Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.