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Abstract

Introduction: Transplantation of mesenchymal stem cells (MSCs) derived from synovium is a promising therapy for
cartilage regeneration. For clinical application, improvement of handling operation, enhancement of chondrogenic
potential, and increase of MSCs adhesion efficiency are needed to achieve a more successful cartilage regeneration
with a limited number of MSCs without scaffold. The use of aggregated MSCs may be one of the solutions. Here,

and nutrient deprivation of aggregates of MSCs.

we investigated the handling, properties and effectiveness of aggregated MSCs for cartilage regeneration.

Methods: Human and rabbit synovial MSCs were aggregated using the hanging drop technique. The gene
expression changes after aggregation of synovial MSCs were analyzed by microarray and real time RT-PCR analyses.
In vitro and in vivo chondrogenic potential of aggregates of synovial MSCs was examined.

Results: Aggregates of MSCs cultured for three days became visible, approximately 1 mm in diameter and solid
and durable by manipulation; most of the cells were viable. Microarray analysis revealed up-regulation of
chondrogenesis-related, anti-inflammatory and anti-apoptotic genes in aggregates of MSCs. In vitro studies showed
higher amounts of cartilage matrix synthesis in pellets derived from aggregates of MSCs compared to pellets
derived from MSCs cultured in a monolayer. In in vivo studies in rabbits, aggregates of MSCs could adhere
promptly on the osteochondral defects by surface tension, and stay without any loss. Transplantation of
aggregates of MSCs at relatively low density achieved successful cartilage regeneration. Contrary to our
expectation, transplantation of aggregates of MSCs at high density failed to regenerate cartilage due to cell death

Conclusions: Aggregated synovial MSCs were a useful source for cartilage regeneration considering such factors as
easy preparation, higher chondrogenic potential and efficient attachment.

Introduction

Synovial mesenchymal stem cells (MSCs) are an attrac-
tive cell source for cartilage regeneration because of
their high expansion and chondrogenic potentials [1-5].
We previously reported that more than 60% of synovial
mesenchymal stem cells placed on osteochondral defects
adhered to the defect within 10 minutes and promoted
cartilage regeneration [6,7]. With this local adherent
technique, we can transplant synovial MSCs without
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scaffold. One of the disadvantages in this method is that
the cell component in the suspension is invisible to the
naked eye.

One of the solutions for this problem is to make aggre-
gates of synovial MSCs [8-10]. This could enable MSCs
not only to be visible but also to be heavier. Conse-
quently, aggregates of MSCs will sink faster in the sus-
pension medium than dispersed MSCs. The use of
aggregates of MSCs may help to avoid loss of MSCs from
targeted cartilage defects and improve the procedures of
transplantation of synovial MSCs. However, there are
still concerns; properties of synovial MSCs will be altered
when synovial MSCs are aggregated. We do not know

© 2012 Suzuki et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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whether aggregates of MSCs adhere on the cartilage
defect as we expect it will, and the proper number of
aggregates is unclear.

In this study, properties of aggregates of human syno-
vial MSCs were analyzed from the standpoints of mor-
phology, gene profile and in vitro chondrogenic potential.
Also, the effect of transplantation of aggregates of syno-
vial MSCs was investigated in a rabbit cartilage defect
model in terms of aggregate number, cell behavior and
influential factors in the in vivo chondrogenesis of aggre-
gates of synovial MSCs. Finally, we demonstrated the
usefulness of aggregates of synovial MSCs as a source for
cartilage regeneration therapy.

Materials and methods

Isolation and culture of human synovial MSCs

This study was approved by an institutional review board
of Tokyo Medical and Dental University (No.1030), and
informed consent was obtained from all subjects. Human
synovium was harvested from donors during anterior
cruciate ligament reconstruction surgery for ligament
injury and digested in a 3 mg/ml collagenase D solution
(Roche Diagnostics, Mannheim, Germany) in o.-minimal
essential medium (o MEM) (Invitrogen, Carlsbad, CA,
USA) at 37°C. After three hours, digested cells were fil-
tered through a 70 pm nylon filter (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA), and the remaining
tissues were discarded. The digested cells were plated in a
150 cm? culture dish (Nalge Nunc International, Roche-
ster, NY, USA) in complete culture medium (CCM):
oMEM containing 10% fetal bovine serum (FBS; Invitro-
gen), 100 units/ml penicillin (Invitrogen), 100 pg/ml strep-
tomycin (Invitrogen), and 250 ng/ml amphotericin B
(Invitrogen) and incubated at 37°C with 5% humidified
CO,. The medium was changed to remove nonadherent
cells one day later and cultured for 14 days as passage 0,
then replated at 100 cells/cm® in a 150 cm? culture dish,
cultured for 14 days and cryopreserved as passage 1. To
expand the cells, a frozen vial of the cells was thawed,
plated in 60 cm? culture dishes, and incubated for four
days in the recovery plate. These cells were replated at
100 cells/cm? in a 150 cm? culture dish (passage 3), and
cultured for an additional 14 days. These passage 3 cells
were harvested and used in this study.

Isolation and culture of rabbit synovial MSCs

This study was approved by the Animal Experimentation
Committee of Tokyo Medical and Dental University
(N0.0120296A). Wild type skeletally mature Japanese
White Rabbit and GFP transgenic rabbits [11,12] were
anesthetized with an intramuscular injection of 25 mg/kg
ketamine hydrochloride and with an intravenous injection
of 45 mg/kg sodium pentobarbital and 150 pg/kg medeto-
midine hydrochloride. Synovium was harvested aseptically
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from knee joints of the rabbits, and digested in a 3 mg/ml
collagenase type V in aMEM for three hours at 37°C. The
digested cells were plated at 5 x 10* cells/cm?® in a
150 cm? culture dish in CCM and incubated at 37°C with
5% humidified CO,. The medium was changed to remove
nonadherent cells one day later and cultured for seven
days as passage 0. The cells were then trypsinized, har-
vested and resuspended to be used for further assays. The
cells that were transplanted in animals to be sacrificed at
Day 0 and Day 14 were labeled for cell tracking by the
fluorescent lipophilic tracer Dil (Molecular Probes,
Eugene, OR, USA). For labeling, synovial MSCs were
resuspended at 1 x 10° cells/ml in « MEM without FBS
and a Dil was added at a final concentration of 5 pl/ml.
After incubation for 20 minutes at 37°C with 5% humidi-
fied CO,, the cells were centrifuged at 450 g for 5 minutes
and washed twice with phosphate-buffered saline (PBS)
and the cells were then resuspended in CCM and cultured
in hanging drops. We already reported that these cells had
characteristics of MSCs [3,6,7,11].

Preparation of aggregates of synovial MSCs

A total of 2.5 x 10° synovial MSCs were trypsinized, har-
vested and resuspended in 35 ul of CCM, plated on an
inverted culture dish lid. The lid was inverted and placed
on a culture dish containing PBS. The cells were cultured
at 37°C with 5% humidified CO, for three days in hanging
drops.

Histology of aggregates of human synovial MSCs
Aggregates of human synovial MSCs were fixed with 2.5%
glutaraldehyde in 0.1 M PBS for two hours. The aggregates
were washed overnight at 4°C in the same buffer and post-
fixed with 1% OsO4 buffered with 0.1 M PBS for two
hours. The aggregates were dehydrated in a graded series
of ethanol and embedded in Epon 812. Semi-thin (1 um)
sections for light microscopy were collected on glass slides
and stained for 30 seconds with toluidine blue.

In vitro chondrogenic differentiation assay

A total of 2.5 x 10° human synovial MSCs cultured as a
monolayer were pelleted by trypsinization and centrifu-
gation. The pellets or aggregate of human synovial
MSCs cultured for three days in hanging drops were
cultured in 400 ul chondrogenic medium consisting of
high-glucose Dulbecco’s modified Eagle’s medium (Invi-
trogen) supplemented with 1,000 ng/ml BMP-7 (Stryker
Biotech, Boston, MA, USA), 10 ng/ml transforming
growth factor-B3 (R&D Systems, Minneapolis, MN,
USA), 100 nM dexamethasone (Sigma-Aldrich Corp., St.
Louis, MO, USA), 50 ug/ml ascorbate-2-phosphate,
40 pg/ml proline, 100 pug/ml pyruvate, and 1:100 diluted
ITS+Premix (6.25 pug/ml insulin, 6.25 pg/ml transferrin,
6.25 ng/ml selenious acid, 1.25 mg/ml bovine serum
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albumin, and 5.35 mg/ml linoleic acid; BD Biosciences
Discovery Labware, Bedford, MA, USA). The medium
was changed every 3 to 4 days for 21 days.

Histology of pellets of human synovial MSCs

The pellets were embedded in paraffin, cut into 5-pum sec-
tions and stained with 1% Toluidine Blue. For immunohis-
tochemistry, sections were treated with 0.4 mg/ml
proteinase K (DAKO, Carpinteria, CA, USA) in Tris-HCl
and normal horse serum after deparaffinization. Primary
antibodies for type II collagen (Daiichi Fine Chemical,
Toyama, Japan) and a secondary antibody of biotinylated
horse anti-mouse IgG (Vector Laboratories, Burlingame,
CA, USA) were employed. Immunostaining was detected
with VECTASTAIN ABC reagent (Vector Laboratories)
followed by 3,3’-diaminobenzidine staining.

Real-time RT PCR analysis

Total RNA was extracted from human synovial MSCs in a
monolayer culture, aggregates of human synovial MSCs
cultured for 1, 2 and 3 days, and the pellets cultured for 7,
14 and 21 days using QIAzol (Qiagen, Hiden, Germany)
and the RNeasy mini kit (Qiagen). cDNA was synthesized
with oligo-dT primer from total RNA using the Transcrip-
tor High Fidelity cDNA Synthesis kit (Roche Diagnostics)
according to the manufacturer’s protocol. Reverse tran-
scription (RT) was performed by 30 minutes incubation at
55°C followed by 5 minutes incubation at 85°C. Real-time
PCR was performed in a LightCycler 480 instrument
(Roche Diagnostics). Primer sequences and TagMan
probes are listed in Table 1. After an initial denaturation
step (95°C for 10 minutes), amplification was performed
for 40 cycles (95°C for 15 seconds, 60°C for 60 seconds).
Relative amounts of mRNA were calculated and standar-
dized as previously described [13,14].

DNA microarray analysis

Total RNA was extracted from human synovial MSCs in a
monolayer culture, aggregates of human synovial MSCs
cultured for three days. Human Genome U133 Plus 2.0
Array (GeneChip; Affymetrix, Santa Clara, CA, USA) con-
taining the oligonucleotide probe set for more than 47,000
transcripts was used. The fluorescence intensity of each
probe was quantified by using the GeneChip Analysis
Suite 5.0 (Affymetrix). Gene expression data were normal-
ized in Robust MultiChip Analysis (RMA). To analyze the
data, we used hierarchical clustering using TIGR MultiEx-
periment Viewer (MeV) [15]. The microarray data have
been deposited to the public database (GEO accession#
GSE 31980).

In vivo transplantation
Under anesthesia, the left knee joint was approached
through a medial parapatellar incision, and the patella
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Table 1 Real time-RT PCR primer sequences
Primer name Sequences Probe No.
B-actin  forward 5-ATTGGCAATGAGCGGTTC-3' 11
reverse  5-TGAAGGTAGTTTCGTGGATGC-3'
BMP2 forward 5-CGGACTGCGGTCTCCTAA-3 49
reverse  5-GGAAGCAGCAACGCTAGAAG-3
SOX5 forward 5-TCTGTCCCAGCAGCGTTAG-3 41
reverse  5-TGACAGCATCATGGTCATITAAG-3
SOX6 forward  5-GCTTCTGGACTCAGCCCTTTA-3 50
reverse 5-GGCCCTTTAGCCTTTGGTTA-3
SOX9 forward 5'-GTACCCGCACTTGCACAAC-3' 61
reverse 5-TCGCTCTCGTTCAGAAGTCTC-3
75G6 forward  5-CCAGATGACATCATCAGTACAGG-3' 78
reverse  5-CATTGCAACATATTTGATTTGGA-3'
sTC1 forward  5-CCCAATCACTTCTCCAACAGA-3' 40
reverse  5-TGCTGACTGTGTCTTCATCACA-3
COL2A1  forward S-GTGTCAGGGCCAGGATGT-3 75
reverse  5-TCCCAGTGTCACAGACACAGAT-3
AGGRECAN forward  5-CTGGAAGTCGTGGTGAAAGG-3 21

reverse  5-TCGAGGGTGTAGCGTGTAGA-3'

was dislocated laterally. Full-thickness osteochondral
defects (5 mm x 5 mm wide, 1.5 mm deep) were cre-
ated in the trochlear groove of the femur. A total of 5,
10, 20, 40 and 80 aggregates of autologous rabbit syno-
vial MSCs (2.5 x 10° cells/aggregate) or 25 and 100
smaller aggregates of autologous rabbit synovial MSCs
(1.0 x 10° cells/aggregate) suspended in PBS were trans-
planted to the defect. To trace the transplanted cells,
Dil-labeled aggregates of autologous rabbit synovial
MSCs and aggregates of allogenic synovial MSCs
derived from GFP transgenic rabbit were transplanted to
the defect. For the control group, the defect was left
empty. All rabbits were returned to their cages after the
operation and were allowed to move freely. Animals
were sacrificed with an overdose of sodium pentobarbi-
tal at 1, 2, and 4 days and at 12 weeks after the opera-
tion (# = 5 at each time).

Macroscopic examination

The cartilage defects were examined macroscopically for
color, integrity and smoothness. Osteoarthritic changes
and synovitis of the knee were also investigated. Digital
images were taken using an Olympus MVX10 (Olympus,
Tokyo, Japan).

Histological examination and fluorescent microscopic
examination

The dissected distal femurs were immediately fixed in a
4% paraformaldehyde (PFA) solution. The specimens
were decalcified in 4% ethylenediamine tetraacetic acid
solution, dehydrated with a gradient ethanol series and
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embedded in paraffin blocks. Sagittal sections 5 um
thick were obtained from the center of each defect and
were stained with toluidine blue and Safranin O. For
fluorescent microscopic examination and terminal deox-
ynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining, the fixed specimens were incubated
at 4°C for three hours in 5%, 10%, 15% and 20% sucrose
solution, respectively. After incubation, the fixed speci-
mens were mounted on a holder. Then 30% optimal
cutting temperature (OCT) (Sakura Finetek, Tokyo,
Japan) in sucrose solution was added gently into the
holder. The holder was frozen in hexan chilled by dry
ice and stored at -80°C. Cryosections (10 gum) were pre-
pared with an ultracut S microtome (Reichert, Wien,
Austria) and a Microm HM560 cryostat.

Histological score

Histological sections of the repaired tissue were analyzed
using a grading system consisting of five categories (cell
morphology, morphology, matrix staining, surface regular-
ity, cartilage thickness and integration of donor with host),
which were modified from the repaired cartilage score
described by Wakitani and colleagues [16], so that overly
thick, regenerated cartilage could not be overestimated [6].
The scoring was performed in a blinded manner by two
observers and there was no significant interobserver differ-
ence. The ratio of the safranin-O positive area over the
defect was evaluated. Zeiss AxioVison software (Carl
Zeiss, Oberkochen, Germany) was used for measurement
of defects and safranin-O positive areas.

In vitro viability assay

Aggregates of rabbit synovial MSCs were plated at 1 or
40 aggregates/well in 96-well plates (Nunc) in CCM, and
incubated at 37°C with 5% humidified CO, for seven
days without medium change. Aggregates were fixed in
4% PFA for TUNEL staining.

TUNEL staining

For TUNEL staining, an apoptosis in situ detection kit
(Wako Pure Chemical Industries, Ltd, Osaka, Japan) was
used. The frozen semi-thin sections were incubated with
terminal deoxynucleotidyl transferase for 10 minutes at
37°C in a moist chamber. The sections were washed with
0.1 M PBS for 15 minutes. Peroxidase-conjugated antibody
was then applied to the specimens at 37°C for 10 minutes
in a moist chamber. The sections were developed with
3,3-diaminobenizidine and counterstained with methyl
green.

Statistical analysis

Comparisons between two groups were analyzed using
the Mann-Whitney U test. Comparisons between multi
groups were analyzed using the Kruskal-Wallis test and
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the Steel test. A P-value of < 0.05 was considered statisti-
cally significant.

Results

Appearance of aggregates of human synovial MSCs
Human synovial MSCs were aggregated using the hanging
drop technique (Figure 1A). Three days after being cul-
tured in the drop (Figure 1B), the aggregate, consisting of
250,000 MSCs, became approximately 1 mm in diameter
(Figure 1C). The aggregate was not easily broken by
manipulation. Sagittal sections of the aggregates showed
heart-shape as a whole (Figure 1Da). The superficial layer
was composed of spindle cells parallel to the surface,
whereas the deep layer was comprised of round cells both
at top and bottom of the aggregate (Figure 1Db, c). Though
cells positive for TUNEL staining were observed, the num-
ber was only approximately under 5% (Figure 1Dd).

Transcriptome profile of aggregates of human synovial
MSCs

To examine the sequential changes of gene expression
profiles during aggregation of human synovial MSCs,
microarray analyses were performed. The differences of
gene profile between before and after aggregation
exceeded those among donor variances (Figure 2A). The
number of genes up-regulated more than five-fold was
621. The number of genes up-regulated more than 100-
fold was 10, and these genes were related to hypoxia
(integrin, alpha 2 (ITGA2), stanniocalcin 1 (STCI), chemo-
kine (C-X-C motif) receptor 4 (CXCR4)), nutrient (BMP2,
proprotein convertase subtilisin/kexin type 1 (PCSKI),
secreted phosphoprotein 1 (SPP1), ITGA2, STCI), extra-
cellular region (MMPI, MMP3), and cell adhesion (SPP1,
ITGA2) (Table 2). The most up-regulated gene was BMP2,
increased to 273 folds (Table 2). STCI was also highly up-
regulated in aggregates of synovial MSCs. The number of
genes down-regulated less than one-fifth was 409, and the
ontology for the genes was related to cell cycle. The
microarray data are available at the public database (GEO
accession# GSE 31980).

To further investigate gene expressions during aggrega-
tion of human synovial MSCs, real time RT-PCR analyses
were additionally used for chondrogenesis-related genes
(SRY (sex determining region Y)-box (SOX)S5, -6, -9, and
BMP2) and anti-inflammatory genes (TNFa inducible
gene 6 (TSG-6), and STC-1) in four donors. In most
cases, expressions for these genes increased sequentially
(Figure 2B).

In vitro chondrogenesis of aggregates of human synovial
MSCs

In vitro chondrogenic ability of human synovial MSCs
after hanging drop culture was compared to that of
MSCs after monolayer culture (Figure 3A). Aggregates
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Figure 1 Preparation and appearance of aggregates of human synovial MSCs. (A): Scheme of preparation of aggregates using hanging
drop technique. (B): Drops hanging on the cover of 15 cm dish. (C): Macroscopic image of aggregate consisted of 250,000 MSCs, three days
after cultured in hanging drop. (D): Sagittal sections of aggregates stained with toluidine blue {a, b, ¢) and TUNEL (d). TUNEL positive cells are

indicated with arrows.
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of MSCs differentiated into chondrocytes as well (Figure
3B). The wet weight of pellets derived from MSCs after
hanging drop culture was heavier than that of pellets
derived from MSCs after monolayer culture in all four
donors at 14 or 21 days (Figure 3C). Real time RT-PCR
analysis showed higher expression levels of collagen
(COL)2A1, aggrecan and SOX9 for pellets derived from
MSCs after hanging drop culture compared to MSCs
after monolayer culture at 14 and 21 days (Figure 3D).
Cartilage extracellular matrix synthesis and accumula-
tion of type II collagen were confirmed by histological

analysis stained with toluidine blue and immunohisto-
chemical analysis (Figure 3E).

In vivo analysis for cartilage regeneration by
transplantation of aggregates of synovial MSCs in rabbits
To examine whether transplantation of aggregates of
synovial MSCs promotes cartilage regeneration, in vivo
study was performed in rabbits. To further investigate
the optimal number of aggregates consisting of 250,000
MSCs, 0 to 80 aggregates were transplanted into the
defect.
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Table 2 The top 10 upregulated genes in aggregates of MSCs
No. Genebank No. Gene name Symbol fold change
1 AA583044 bone morphogenetic protein 2 BMP2 273
2 NM_002421 matrix metalloproteinase 1 MMP1 205
3 NM_000439 proprotein convertase subtilisin/kexin type 1 PCSK1 179
4 M86849 gap junction protein, beta 2 GJB2 170
5 M83248 secreted phosphoprotein 1 (osteopontin) SPP1 156
6 127624 tissue factor pathway inhibitor 2 TFPI2 137
7 NM_002422 matrix metalloproteinase 3 MMP3 136
8 N95414 integrin, alpha 2 (CD49B) ITGA2 129
9 AW003173 stanniocalcin 1 STC1 124
10 AJ224869 chemokine (C-X-C motif) receptor 4 CXCR4 101

The top 10 genes which increased higher in aggregates of MSCs cultured in hanging drops for three days compared with MSCs in a monolayer culture.

Values are the means among three individual donors.

At 0 days, in the case of 40 and 80 transplanted aggre-
gates, the osteochondral defects were filled with aggre-
gates labeled with Dil macroscopically (Figure 4A).

At four weeks, in the case of 5 and 10 transplanted aggre-
gates, the osteochondral defect was mostly covered with a
thick cartilage matrix (Figure 4B, C). In the case of 20 and
40 transplanted aggregates, the defect was partially covered
with cartilage matrix. In the case of 80 transplanted aggre-
gates, the defect was filled with only fibrous tissue, which
appeared to be similar to the control (Figure 4B).

At 12 weeks, in the case of 10 transplanted aggregates,
the border between cartilage and bone moved up, and
thickness of the regenerated cartilage became similar to
the neighboring cartilage (Figure 4B, D). In the case of 5
and 20 transplanted aggregates, the bone defect was
repaired, but the cartilage defect was filled partially with
cartilage matrix. In the case of 40 and 80 transplanted
aggregates, the osteochondral defect was poorly
repaired, similar to the control (Figure 4B). Histological
score was the best and the safranin-O positive area ratio
was highest in the case of 10 transplanted aggregates
both at 4 and 12 weeks (Figure 4E, F).

To trace MSCs, 10 aggregates of GFP positive MSCs
were transplanted into the defect. At Day 1, no GFP
positive aggregates could be observed in the knee joint
except the defects with a fluorescent stereomicroscope.
Histologically, aggregates changed their forms but have
not fused yet (Figure 5A). At four weeks, the defect was
filled with cartilage matrix and the GFP positive cells
were still observed both at the bottom and the center of
the regenerated cartilage (Figure 5B). Regenerated carti-
lage consisted of both GFP positive cells and GFP nega-
tive cells.

Influences of cell number per aggregate and of
aggregate number for transplantation

Cell number per aggregate as well as aggregate number
may be a factor affecting properties of the aggregates.

To answer this question, 25 or 100 aggregates, in which
an aggregate consisted of 100,000 MSCs, were trans-
planted into the osteochondral defect.

At four weeks, in the case of 25 transplanted aggre-
gates, the defect was fully filled with cartilage matrix (Fig-
ure 6A), in which the result was different from the case
of 20 or more aggregates, in which an aggregate consisted
of 250,000 MSCs. In the case of 100 transplanted aggre-
gates, the defect was filled with fibrous tissue, and the
histological score was inferior and the safranin-O positive
area ratio was smaller. (Figure 6B, C).

Influences of aggregate number on viability of MSCs

To clarify why transplantation of aggregates over a cer-
tain number resulted in poor outcome, viability of cells
was first examined by TUNEL staining. Compared to
the case of 10 transplanted aggregates, much more
TUNEL positive cells could be observed in the case of
80 transplanted aggregates (Figure 6D).

Another factor might be a nutrient deprivation and in
vitro analyses using aggregates of rabbit synovial MSCs
were performed. Seven days after 1 or 40 aggregates
were cultured in a well of 96-well plates, the medium
color changed to yellow in the case of 40 aggregates,
while the color remained red in the case of only 1
aggregate (Figure 6E). TUNEL positive cells were much
higher in the case of 40 aggregates than in the case of
only 1 aggregate.

Discussion

In this study, to form aggregates of synovial MSCs, the
hanging drop technique was used [8-10]. This is a sim-
ple method; expensive or specific tools are not required.
Three days after cultured in the drop, the aggregate,
consisting of 250,000 MSCs, became approximately 1
mm in diameter, large enough to be visible and solid
enough to aspirate with a pipette. Aggregates of MSCs
sank faster in the suspension medium than dispersed
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MSCs and helped to avoid loss of MSCs from targeted
cartilage defect. The use of aggregates was practically
convenient for transplantation of MSCs.

In the previous report, the number of apoptotic or
necrotic cells was greater in aggregates prepared with
100,000 or 250,000 human bone marrow MSCs, which
‘was examined by flow cytometry, measuring propidium
iodide uptake and annexin V labeling [10]. We exam-
ined the viability of aggregates of MSCs by TUNEL
staining and confirmed that cells positive for TUNEL
staining were observed; the number was small compared
to the previous report. This difference may have been
due to the difference of methods. Microarray analysis
showed up-regulation of genes with ontology for regula-
tion of cell death. The microarray data are available at
the public database (GEO accession# GSE 31980). These
results suggest that aggregation of 250,000 MSCs affect
the viability of cells. However, we thought that aggre-
gates of MSCs could be used as a source for cartilage
regeneration because most cells which are cultured in
drops for three days are viable.

Aggregation of synovial MSCs changed the gene
expression profile dramatically without any special tools

or chemical factors. This is possibly due to environmen-
tal changes, including cell-to-cell contact, hypoxic con-
dition and low nutrient condition. Aggregation of
human synovial MSCs increased expressions of several
chondrogenesis-related genes and the most up-regulated
gene was BMP2, which was also up-regulated in bone
marrow MSCs [8,10].

In this study, we compared in vitro chondrogenesis
potential of synovial MSCs after hanging drop culture
with that of MSCs after monolayer culture. We used
1,000 ng/ml BMP7 for in vitro chondrogenic differentia-
tion assay. We previously examined the dose effect of
BMP6 between 0 to 500 ng/ml for in vitro chondrogen-
esis of bone marrow MSCs. Cartilage pellets increased in
size along with the concentration of BMP6, and a maxi-
mal effect was at 500 ng/ml [17]. Our preliminary experi-
ments showed that 1,000 ng/ml BMP6 induced larger
cartilage pellets than 500 ng/ml BMP6 in bone marrow
and synovial MSCs. We obtained similar results with
BMP7. Real time RT-PCR analysis showed higher expres-
sion levels of COL2A1, aggrecan and SOX9 for pellets
derived from MSC-aggregates after hanging drop culture
compared to those of MSCs in a monolayer culture.
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aggregates in which an aggregate consisted of 250,000 MSCs labeled with Dil. Sagittal sections under fluorescence and the serial sections
stained with TUNEL were shown. (E): In vitro analyses of aggregates of rabbit synovial MSCs. One or 40 aggregates, in which an aggregate
consisted of 250,000 MSCs, were cultured in a well of 96-well plates. Macroscopic images for the wells and sagittal sections of the aggregates

Furthermore, the wet weight of pellets derived from
MSC-aggregates after hanging drop culture was heavier
than that of pellets derived MSCs in a monolayer culture.
These indicate that chondrogenic potential increased in
aggregates of MSCs after hanging drop culture.

In this study, we used an osteochondral defect model
of rabbits, which have a higher, self-renewal capacity
than bigger animals and humans. Therefore, the results
obtained here should be critically evaluated. However,

we prepared negative controls, which healed poorly at 4
and 12 weeks. We previously confirmed that the osteo-
chondral defect created in the trochlear groove of the
femur, similar to this study, was not repaired without
any treatments 24 weeks after surgery [6]. These find-
ings indicate that this rabbit model is useful to evaluate
the effects of the treatments for cartilage regeneration.
For in vivo analysis of cartilage regeneration by trans-
plantation of aggregates of synovial MSCs in rabbits,
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successful cartilage regeneration was observed in the
cases of a relatively small number of transplanted aggre-
gates of MSCs, and the worst results were observed
when the highest number of aggregates of MSCs was
transplanted. These results were not what we expected,
because we previously reported that better cartilage
regeneration was obtained when higher cell densities of
MSCs were embedded in collagen gel [3].

Why were poor results obtained when more than a
certain number of aggregates were transplanted? We
listed three possible reasons. First, nutrition to maintain
transplanted MSCs was depleted and the environment
around transplanted MSCs worsened when too many
aggregates were transplanted. As shown in Figure 6E, in
the case of 40 aggregates that were cultured for seven
days in a well of 96-well plates, medium color changed
to yellow. This means that adjustment of pH could not
be controlled. Second, TUNEL positive cells increased
when too many aggregates were transplanted. The num-
ber of TUNEL positive cells was higher when too many
aggregates were transplanted (Figure 6D) than before
transplantation (Figure 1D) and after a suitable number
of aggregates were transplanted (Figure 6D). Third,
transplantation of too many aggregates prevented chon-
dro-progenitor cells from moving to the osteochondral
defect from bone marrow and from synovial fluid.

We confirmed that transplanted aggregates of synovial
MSCs were directly differentiated into chondrocytes by
transplanting MSCs derived from GFP transgenic rabbit.
This result suggests that aggregates of synovial MSCs
were involved in the reparative process. However, as
shown in Figure 5B, in the case of aggregates of GFP
positive MSCs being transplanted, regenerated cartilage
consisted of both GFP positive cells and GFP negative
cells. MSCs existed in synovial fluid [18] and these
MSCs contributed to the repair of cartilage injury [6,19].
These results suggest that some host MSCs were also
involved in the reparative process. In addition, host
MSCs may have been involved in the anti-inflammatory
process. In our rabbit osteochondral defect model,
inflammation like a synovitis was not severe even in the
control group. Therefore, we could not confirm the
anti-inflammatory effect of MSCs. It would be interest-
ing to investigate the anti-inflammatory effect of trans-
plantation of aggregates of synovial MSCs and host
MSCs in other arthritis models.

As previously reported, in bone marrow MSCs [10],
aggregates of human synovial MSCs expressed anti-
inflammatory genes TSG6 and STCI. TSG6 is secreted
by synoviocytes, mononuclear cells and chondrocytes
under inflammatory conditions and has an anti-inflam-
matory effect. Overexpression of 75G6 or administration
of recombinant 7SG6 inhibited inflammation and joint
destruction in a murine collagen induced arthritis model
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[20-23]. STC1 is reported to have an anti-apoptotic
effect as well as an anti-inflammatory effect [24,25].
However, their roles in joint homeostasis are unknown.

In this study, transplantation of low numbers of aggre-
gates, in other words, low density of aggregates to the
volume of the cartilage defect, showed better regenera-
tion (Figures 4 and 6). This is favorable for clinical
application. We have performed clinical trials of autolo-
gous human synovial MSCs transplantation for cartilage
defects. In the experiences of 12 patients, approximately
50 million synovial MSCs at passage 0 were transplanted
for approximately 280 mm? cartilage defects (unpub-
lished data). In a rabbit model, we transplanted synovial
MSC-aggregates into the osteochondral defects without
any loss of cells, and 10 MSC-aggregates (2.5 x 10°
cells) per 25 mm? defects were needed for better carti-
lage regeneration. According to these data, we can pre-
pare a sufficient amount of human synovial MSCs at
passage 0.

In this study, we did not use scaffolds for transplanta-
tion of aggregates of synovial MSCs. We were able to
adhere aggregates of synovial MSCs on the osteochon-
dral defect without scaffolds; however, the use of scaf-
folds or materials to improve survival of transplanted
cells is attractive. One of the methods is the use of a
fibrin glue, which has an effect of improving survival of
transplanted cells [26]. In addition, cell transplantation
of MSCs with a fibrin glue can probably be performed
under arthroscopic surgery. Further studies are needed
to improve cell transplantation procedures.

Conclusion
Aggregated synovial MSCs were a useful source for car-
tilage regeneration considering such factors as easy pre-
paration, higher chondrogenic potential and efficient
attachment.
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Arthroscopic, histological and MRI analyses of cartilage repair
after a minimally invasive method of transplantation of allogeneic
synovial mesenchymal stromal cells into cartilage defects in pigs
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Abstract

Background aims. Transplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects.
We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair
process in a pig model. Methods. The chondrogenic potential of the porcine MSCs was compared n vitro. Cartilage defects
were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs
were injected into the defect, and the knee was kept immobilized for 10 min before wound closure. To visualize the actual
delivery and adhesion of the cells, fluorescence-labeled synovial MSCs from transgenic green fluorescent protein (GFP)
pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs
were injected and observed for 10 min under arthroscopic control. The defects were analyzed sequentially arthroscopically,
histologically and by magnetic resonance imaging (MRI) for 3 months. Results. Synovial MSCs had a higher chondrogenic
potential in virro than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and mem-
brane formation on the cartilage defects before cartilage repair. Quantification analyses for arthroscopy, histology and MRI
revealed a better outcome in the MSC-treated knees than in the non-treated control knees. Conclusions. Leaving a synovial
MSC suspension in cartilage defects for 10 min made it possible for cells to adhere in the defect in a porcine cartilage
defect model. The cartilage defect was first covered with membrane, then the cartilage matrix emerged after transplantation
of synovial MSCs.

Key Words: carrilage repair, mesenchymal stromal cells, pig, synovium

Introduction . . S . .
cartilage repair (4-6) and i virro expansion with

Cartilage injuries are a common clinical problem
and if left untreated may cause osteoarthritis, one of
the leading causes of disability (1). Stem cell ther-
apy for cartilage repair may be one possible strategy
for improvement of cartilage injury. The candidate
therapeutic cells are mesenchymal stromal cells
(MSCs), which can be isolated from various mesen-
chymal tissues (2,3). We have reported previously
the superiority of human synovial-derived MSCs for

autologous human serum (7).

Various methods have been used to transplant
MSCs into cartilage defects, such as intra-articular
injection (8,9) and the use of scaffolds (10). We have
demonstrated recently that leaving the knee immo-
bilized for 10 min immediately after delivering a
suspension of synovial MSCs into the defect results
in approximately 60% of the cells adhering to the
defect to promote cartilage repair in rabbits (11).
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This ‘local adherent technique’ can be performed
less invasively and without scaffolds compared with
other methods.

We hypothesized that this method will also be
useful in animals that are more closely related to
humans. The purpose of the present study was to
examine the usefulness of the local adherent tech-
nique with synovial MSCs in pigs. The knee joints
of pigs are similar to those of humans in terms of
size (12) and cartilage-specific properties (13). In
this study, synovial MSCs were transplanted into the
cartilage defect of pigs using the local adherent tech-
nique, and repaired cartilage was examined sequen-
tially arthroscopically, histologically and by delayed
gadolinium-enhanced magnetic resonance imaging
of cartilage (AGEMRIC) (14,15).

Methods
Awnimals

All experiments were conducted in accordance with
the institutional guidelines for the care and use of
experimental animals of the Tokyo Medical and
Dental University (Tokyo, Japan) and Jichi Medical
University (Tochigi, Japan). Nine male and six
female Mexican hairless pigs (National Livestock
Breeding Center, Ibaraki, Japan) were used. They
were 13 months old, on average 33.5 kg in weight,
and skeletally mature, with the growth plates closed.
All pigs were bred under specific pathogen-free
conditions and had free access during the study
period to food and water in a post-operative care cage
(400 mm in width, 1210 mm in length and 1090 mm
in height). One wild-type pig and one transgenic
green fluorescent protein (GFP) pig (16) were used
as donors for synovial MSC for transplantation. Two
other pigs were also used as sources for MSCs for
wn vitro proliferation and differentiation assays. These
four pigs were euthanized on the day when the tis-
sues were harvested. Twelve other wild-type pigs
were used as recipients. For GFP observation, two
pigs were euthanized on the day MSCs were trans-
planted, and for observation of 1,1’-dioctadecyl-
3,3,3’,3’-tetramethylindocarbocyanine  perchlorate
(Dil; Molecular Probes, Eugene, OR, USA) two
pigs were euthanized at 7 days after transplantation.
For arthroscopic, histological and MRI analyses,
three pigs were euthanized at 1 month, and five pigs
were euthanized at 3 months, after transplantation.

Cell isolation and culture

Synovial tissue was harvested from the suprapatellar
pouch, which overlays the non-cartilaginous areas of
the femur, through an arthrotomy of the knee. The

tissue was digested in 3 mg/mL collagenase D solu-
tion (Roche Diagnostics, Mannheim, Germany) in
o-minimal essential medium (oMEM; Invitrogen,
Carlsbad, CA, USA) at 37°C for 3 h, filtered through
a 70-um nylon filter (Becton-Dickinson and Co.,
Franklin Lakes, NJ, USA) and the nucleated cells
plated in a 150-cm? culture dish (Nalge Nunc Inter-
national, Rochester, NY, USA) in complete cul-
ture medium [0MEM containing 10% fetal bovine
serum (FBS), 100 U/mL penicillin, 100 pg/mL
streptomycin and 250 ng/ml. amphotericin B (all
from Invitrogen)] and incubated at 37°C with 5%
humidified CO,. The medium was changed to
remove non-adherent cells every 4-5 days and then
cultured for 14 days as passage 0 without refeeding.
To cryopreserve the cells, they were resuspended at a
concentration of 2 X 109 cells/mL in cMEM with 5%
dimethylsulfoxide (Wako, Osaka, Japan) and 10%
FBS. Aliquots of 2 mlL were frozen slowly in a Cryo
1°C freezing container (Nalge Nunc International)
and cryopreserved at —80°C. To expand the cells, a
frozen vial of the cells was thawed, plated in 60-cm?
culture dishes, and incubated for 4 days. Then
the cells were replated at 5X10° cells/150-cm?
culture dish (passage 2) and cultured for an addi-
tional 14 days. The nucleated cells derived from
periosteum, muscle and adipose tissue were isolated
and expanded in the same manner as those from
synovium.

Bone marrow was aspirated from the tibial tuber-
osity. Periosteum was peeled off from the tibia. Muscle
was obtained from the quadriceps. Adipose tissue was
prepared from the subcutaneous fat around the knee.
Nucleated cells from the bone marrow were isolated
with a density gradient (Ficoll-Paque; Amersham
Biosciences, Uppsala, Sweden).

Colony-formation assay

Nucleated cells derived from synovium were plated at
0.5, 5, 50 and 500 X 10? cells/60-cm? dish, cultured
for 14 days, and stained with crystal violet. The opti-
mal initial cell density was determined based on the
following criteria: (a) the colony size was not affected
by contact inhibition, and (b) the greatest number of
colonies was obtained. We then harvested the cells
plated at optimal densities from the remaining dishes
and expanded them as mentioned above.

In vitro proliferation assay

Synovial MSCs were plated at 5 X 103 cells/60-cm?
dish in complete culture medium and passaged
every 14 days. Cells from each passage were har-
vested and counted with a hemocytometer, and the
total accumulated cell number was calculated.



In wvitro differentiation assay

For chondrogenesis, 250 000 cells were placed in a
15-mL polypropylene tube (Becton-Dickinson and
Co.) and centrifuged at 450 g for 10 min. The
pellets were cultured in chondrogenesis medium
consisting of high-glucose Dulbecco’s modified
Eagle’s medium (Invitrogen) supplemented with
1 pg/mL bone morphogenetic protein (BMP)-7
(Stryker Biotech, Hopkinton, MA, USA), 10 ng/
mL transforming growth factor (TGF)-B3 (R&D
Systems, Minneapolis, MN, USA), 100 nm dex-
amethasone (Sigma-Aldrich Corp., St Louis, MO,
USA), 50 ug/mL ascorbate-2-phosphate, 40 ug/mL
proline, 100 pg/mL pyruvate and 1:100 diluted
ITS + Premix (6.25 ug/mL insulin, 6.25 pg/mL
transferrin, 6.25 ng/mL selenious acid, 1.25 mg/
mL bovine serum albumin and 5.35 mg/mL lino-
leic acid; BD Biosciences Discovery Labware, Bed-
ford, MA, USA). For microscopy, the pellets were
embedded in paraffin, cut into 5-um sections, and
stained with toluidine blue (17-19).

For adipogenesis, cells were cultured in adipogenic
medium, which consisted of complete medium supple-
mented with 100 nm dexamethasone (Sigma-Aldrich
Corp.), 0.5 mm isobutyl-methylxanthine (Sigma-Al-
drich Corp.) and 50 um indomethacin (Wako), for 21
days. The adipogenic cultures were fixed in 4% para-
formaldehyde and then stained with fresh Oil Red O
solution (20).

For calcification, cells were cultured in calcifica-
tion medium, which consisted of a complete medium
of 1 nm dexamethasone, 20 mMm B-glycerol phosphate
(Wako) and 50 pg/ml. ascorbate-2-phosphate (Sig-
ma-Aldrich Corp.), for 21 days. The cells were fixed
in 4% paraformaldehyde and stained with 0.5%
Alizarin Red solution (21).

Dil labeling

Synovial MSCs were resuspended at 13X 10¢ cells/
mL in cMEM without FBS, and a fluorescent lipo-
philic tracer, Dil, was added at a final concentration
of 5 uL/mL. After incubation for 20 min at 37°C and
two washings with phosphate-buffered saline (PBS),
Dil-labeled cells were resuspended in 100 pL culture
medium (22).

Experimental set-up

The first pig was used for anatomical study and har-
vesting mesenchymal tissues to stock the MSCs for
further analyses. When pigs for the i vivo study were
prepared, cryopreserved synovial MSCs were thawed
and expanded 2 weeks before transplantation. On
the day of transplantation surgery, all colony-forming
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cells were harvested and suspended in 100 pL culture
medium and transplanted as described. Four pigs were
used for an early adhesion assay with transplantation
of GFP porcine synovial MSCs (n=2) (Figure 2A)
and Dil-labeled MSCs (n=2). Other pigs were ana-
lyzed by arthroscopy every month, and two pigs were
sacrificed at 1 month after treatment for histological,
macroscopical and MRI analyses. Five pigs were sac-
rificed at 3 months after treatment and analyzed by
histology and MRI (Figure 2D).

Transplantation of synovial MSCs into the
cartlage defects

All pigs underwent general anesthesia, and the medial
femoral condyle was approached through a medial
parapatellar incision. Full-thickness osteochondral
defects (8 X 8 mm square and 2 mm deep; approxi-
mately 1.5 mm cartilaginous and 0.5 mm bony part)
were created with various sizes of drills in the weight-
bearing area of the medial femoral condyles in both
knees, 10 mm below the terminal ridge. When the
defects were created, bleeding was not observed, and
a procedure to stop bleeding from the bottom of the
defect was not required.

The right knee of each pig was treated with MSCs
and the left knee served as a vehicle internal control.
The MSCs were harvested and collected from the cul-
ture dishes several hours before transplantation, and
harvested MSCs were suspended in a 50-mL conical
tube containing 40 mL culture medium. Just before
the transplantation, the tube was centrifuged for
5 min at 1500 r.p.m., and the supernatant was
removed. Centrifuged MSCs were suspended in
100 pL culture medium. The transplanted cell
number was a maximum of 5.3 X 107, a minimum
of 2.2 X107, and on average 3.8 X 107.

The cartilage defect was faced upward, and its
position was held manually. A suspension of pre-
pared MSCs in 100 pL culture medium was placed
into the defect through an 18-gauge needle. Culture
medium alone (100 uL) was placed into the defects
in the left knee in the same manner. After 10 min,
the incisions were closed without washing the inside
of the knee joint. After the anesthetic wore off, the
pigs were allowed to walk freely without fixation. To
reduce the risk of infection, we avoided the use of an
immune SUppressor.

For euthanasia, an overdose intravenous injec-
tion of KCI was used under adequately deep general
anesthesia. For macroscopic analyses, all samples at
1 month (n=3) and 3 months (n=15) were evalu-
ated with the International Cartilage Repair Society
(ICRS) macroscopic score (23) (see the supplemen-
tary tables).
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Arthroscopy

All knees were observed with arthroscopy (Linvatec
8180A camera console surgical video equipment,
with LIS8430 for the light source; Zimmer Inc.,
Warsaw, IN, USA) at 1, 2 and 3 months after trans-
plantation. An arthroscope, a probe and a shaver
system were inserted through longitudinal incisions
at the medial and lateral sides of the patella ten-
don. All arthroscopic observations were evaluated by
Oswestry arthroscopy score (23) (see the supplemen-
tary tables). For arthroscopic observation of GFP
MSCs, a newly developed fluorescence arthroscope
(Olympus Medical Systems Corp., Tokyo, Japan) was
used.

Histological analyses

The samples were cut into a thickness of a 15 mm
square with 5 mm containing a defect, fixed in
4% paraformaldehyde, and decalcified with 0.5 m
ethylene diamine tetra acetic acid (EDTA; pH 7.5)
for 3 days at 4°C. Paraffin sections were stained
with Safranin O. All samples were evaluated with a
modified Wakitani score (11) (see the supplementary
tables).

dGEMRIC

Before histological analyses, medial femoral con-
dyles were collected and pre-contrast MRI was per-
formed. An MRI system at 1.5 Tesla (Signa HDx;
GE Healthcare, Chalfont St Giles, UK) was used
with a custom-made micro-imaging coil. Each
specimen was pre-treated with 0.5 mm gadopentate
dimeglumine (Gd-DTPA?; Magnevist®; Schering,
Berlin, Germany) in 0.9% normal saline overnight
at 4°C with continuous stirring. The next day the
samples were removed from refrigeration, and post-
contrast MRI was performed at room temperature.
R1 was defined as the reciprocal of the T'1 value. The
R1 measurement was performed using a fast-spin
echo inversion-recovery (FSE-IR) sequence (2400
ms repetition time, 18 ms echo time, six inversion
times of 50-2000 ms, 30X 30 mm field of view,
1.0-mm section thickness, 512 X512 matrix). The
difference between the pre-Gd-enhanced R1 value
and the post-Gd enhanced R1 value (AR1) indicated
the glycosaminoglycan (GAG) concentration (14).
Color-coded AR1-calculated heat maps of the car-
tilage were generated using MATLAB (Mathworks,
Natick, MA, USA) with a mono-exponential curve
fit. Blue represents a high content of GAG, and red
a low content. For R1 measurements, the region of
interest (ROI) for repaired tissue was defined as the
area where both sides were connected between native

and repaired cartilage; the bottom was the interface
between bone and repaired cartilage, and the top
was the superficial surface of the repaired cartilage.
The ROI for native cartilage was drawn over the full-
thickness weight-bearing areas of the femoral con-
dyle at both sides of the repair site, about 3 mm from
the lateral edge of the repair site (14,15).

Staustical analyses

To assess differences, Wilcoxon rank-sum tests were
used except for MRI analysis. For MRI analysis,
the paired z-test was used. A value of P<<0.05 was
considered significant.

Results
Characteristics of porcine synovial cells as MSCs

The initial cell-plating density to produce the opti-
mal colony number was determined to be 5 X 103
cells/60-cm? dish (Figure 1A). Three cell lineages
derived from three different pigs maintained their
proliferation potential over 20 passages (Figure
1B). Colony-forming cells derived from porcine
synovium displayed a trilineage potential, differ-
entiating into chondrocytes and adipocytes, and
osteocytes, when cultured in their respective dif-
ferentiation media (Figure 1C). In witro chondro-
genesis assays demonstrated that cartilage pellets
of colony-forming cells derived from synovium
were the heaviest among those derived from the
other mesenchymal tissues (Figure 1D). These
results indicated that colony-forming cells derived
from porcine synovium had similar characteristics
to those of MSCs, and the highest chondrogenic
potential compared with cells derived from the
other tissues examined.

Local adherent technique for transplantation of MSCs

After expanding for 14 days (Figure 2A), colony-
forming cells derived from synovium of the transgenic
GFP pig expressed GFP (Figure 2B). A drop of MSC
suspension through a needle (Figure 2Ci) could be
detected with the GFP arthroscopy system (Figure
2Cii). After placement of the MSC suspension for 10
min, the bottom of the cartilage defect looked foggy
(Figure 2Ciii) and GFP MSCs were still detected in
the cartilage defect (Figure 2Civ), even though the
irrigation fluid was flushed from the tip of the arthro-
scope (see the supplementary movies). Dil-labeled
MSCs were also traced (Figure 2D, E) and remained
in the cartilage defect at 7 days (Figure 2F), but they
could not be found at 1 and 3 months.



