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suggests that this miRNA primarily achieves its antipro-
liferative effect through downregulation of proliferation-
related genes, including ERBB2, a member of the EGF
receptor family of receptor tyrosine kinases, which
regulate a key initiator of phosphoinositide-3 kinase
(PI3K)-AKT and RAS/RAF/mitogen-activated protein
kinase signaling (28). miR-1254-5p is shown to be a
superior biomarker to previously reported gastric cancer
biomarkers such as DACHI and PDCDG (ref. 22; Sup-
plementary Table S1). However, because of the differ-
ences in patient backgrounds such as clinical stage
and the presence or absence of chemotherapy, further
investigation is required for adequate use of these
biomarkers.

We confirmed miR-125a-ERBB2 interaction in the
human gastric cancer cell line NUGC4. MiR-125a-5p sig-
nificantly repressed ERBB2 expression and the phosphor-
ylation of its downstream molecule, AKT (Fig. 3B). In
addition, ERBB2 expression was shown to be inversely
correlated with expression of miR-125a-5p both in vitro
and in clinical samples. Overexpression of Pre-miR-125a
also led to the inhibition of previously reported miR-125a-
5p targets, such as apoptosis-related gene BAKI (26) and
tumor suppressor gene p53 (ref. 27; Supplementary
Fig. $3). However, the inhibition of these tumor suppressor
genes was modest compared with that of ERBB2, suggesting
ERBB2 is a crucial target of miR-125a-5p, at least in the
gastric cancer cell line NUGC4.

It is noteworthy that the growth inhibitory effect of miR-
1254-5p was enhanced when combined with trastuzumab
(Fig. 4A and B). This could be partly due to the fact that
miR-125a-5p and trastuzumab share the same target,
ERBB2. miR-125a-5p and trastuzumab silence the ERBB2
pathway through 2 different mechanisms. miR-125a-5p
suppresses the molecule at the posttranscriptional level
before protein synthesis, whereas trastuzumab is a mono-
clonal antibody targeted against completed ERBB2 protein.
In other words, miR-125a-5p blocks the synthesis of the
oncoprotein at an earlier phase than does trastuzumab.
These considerations suggest that miR-1254-5p mimic and
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ABSTRACT

Background. We sought to identify genes associated with
the progression and metastasis of esophageal squamous-
cell cancer by comparing the expression profiles of normal,
primary cancer, and metastatic cancer cells isolated with
laser microdissection.

Methods. Oligo microarray analysis identified several
lymph node-specific, metastasis-related genes. STC2
(stanniocalcin 2), which was overexpressed in esophageal
cancer cases, was chosen for further characterization.
Quantitative reverse transcriptase-polymerase chain reac-
tion and immunohistochemistry were used to explore the
clinicopathologic significance of STC2 expression status in
70 cases. Additionally, the functional role of STC2 in
esophageal cancer was studied by the attenuation of STC2
in an esophageal cancer cell line.

Results. Laser microdissection and oligo microarray
analysis identified 63 candidate genes. Among them, STC2
showed higher expression in cancer tissue than in corre-
sponding normal tissue (P < 0.001). STCZ2 expression was
significantly correlated with lymph node metastasis, lym-
phatic invasion, and distant metastasis (P = 0.005, 0.007,
and 0.038, respectively). Patients whose tumors had high
STC2 expression had a worse 5-year survival rate than
patients whose tumors had a low STC2 expression level
(P = 0.016). STC2 transfected cells had a significantly
higher proliferation rate than control cells (P < 0.001).

© Society of Surgical Oncology 2010
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Additionally, STC?2 transfected cells were more invasive in
vitro (P < 0.001) than control cells. These findings were
validated by means of RNA interference assays.
Conclusions. We identified lymph node-specific, metasta-
sis-related genes in esophageal cancer cells. One of these,
STC2, may be associated with lymph node metastasis,
making it a potential prognostic marker for esophageal
cancer patients.

Esophageal squamous-cell cancer (ESC) is one of the
most intractable gastrointestinal tract cancers.'”” Finding a
cure for this malignancy rests on the identification of
genetic and molecular markers of malignancy potential,
which could serve as specific treatment targets. However,
the regulation of complex processes over multiple events
precludes the identification of practical markers for carci-
nogenesis, tumor progression, and metastasis.

Numerous genes modulate the signaling cascades that
accelerate these processes. Tumor behavior is also affected
by the multiple cell types in primary tumors that consist of
interstitial tissues, macrophages, and lymphocytes in addi-
tion to cancer cells. Therefore, the goal of this study was to
use laser micro-dissection (LMD) to focus on gene expres-
sion profiles of cancer cells. Use of this technological
innovation has revealed the activity of genes with previously
unknown functions in gastric,™* colon® and breast cancers.®

In this study, in microarray gene expression profiles of
cancer-specific genes involved in cancer progression,
stanniocalcin 2 (STC2), a homologue of a glycoprotein
hormone originally found to regulate calcium/phosphate
homeostasis in bony fish, was abundantly expressed in
esophageal cancers with lymph nodes metastasis.” STC2
was subsequently classified as a possible prognostic
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marker, and its effects on cell proliferation and invasive-
ness were validated in vitro via transfection of STC into an
esophageal cancer cell line.

A precise predictive marker for lymph node metastasis
would allow small pieces of primary tumors to be used in
determining the necessity of radical lymph node dissection
through the thoracotomy. STC2 was reported to be asso-
ciated with breast cancer, ovarian cancer, renal-cell
carcinoma, prostate cancer, and neuroblastoma.?'* How-
ever, the expression of STC2 and biological behavior in
ESC has not been evaluated. This study unveiled an
intriguing role for STC2 in the progression and malignancy
of esophageal cancer.

MATERIALS AND METHODS
Tissue Sampling

All clinical samples obtained in Kagoshima University
Hospital were sent to our institute. Microarray samples of
tumor and noncancerous adjacent tissues were collected
from five male patients with esophageal cancer who
underwent esophagectomy with lymph node dissection at
Kagoshima University Hospital, Japan. Average age was
64.6 (range 49-76) years. There were two cases of well-
differentiated ESC, two moderately differentiated ESC,
and one poorly differentiated ESC. All cases were positive
for lymph node metastases, no distant metastasis was
present. All patients provided informed consent in accor-
dance with the institutional guidelines of the hospitals at
Kyushu University and Kagoshima University. We used
the tumor, node, metastasis system classification developed
by the International Union Against Cancer.'’

Collection of Target Cells by LMD from Frozen
Sections

Frozen section slides were fixed in 70% ethanol for 30
seconds and stained with hematoxylin and eosin before dehy-
dration (5 seconds each in 70%, 95%, and 100% ethanol). After
air drying, the sections were laser microdissected with a LMD
system (Leica Microsystems, Wezlar, Germany) (Fig. 1a).
Target cells were excised, at least 100 cells per section, and
bound to the transfer film. Fifteen sections were collected from
every sample; thus, approximately 10,000 to 15,000 cells were
collected from each sample for total RNA extraction.

RNA Extraction and Oligonucleotide Microarray
Analysis

RNA extraction was performed as described previ-
ously.'®'” The commercially available Human Whole

Genome Oligo Microarray Kit (Agilent Technologies, Palo
Alto, CA), which contains more than 41,000 features,
including 36,866 characterized human genes, was used for
microarray analysis (http://www.chem.agilent.com/scripts/
generic.asp?lpage=5175&indcol=Y &prodcol=Y). The micro-
array study followed the MIAME guidelines issued by the
Microarray Gene Expression Data group.'® Differences in the
expression profiles between the primary esophageal cancer
cells (T) and the normal squamous cells (N), and between the
primary esophageal cancer cells (T) and metastatic cancer cells
from lymph nodes (M) were evaluated by comparing the
average intensities. To reduce the false discovery rate, the
Benjamini and Hochberg adjustment for multiple hypothesis
comparisons was used.'®

Esophageal Cancer Cell Lines

The human esophageal cancer cell lines KYSE70 and
TE13 were obtained from the Cell Resource Center for
Biomedical Research Institute of Development, Aging and
Cancer (Tohoku University, Sendai, Japan). They were
maintained in RPMI 1640 medium containing 10% fetal
bovine serum and antibiotics at 37°C in a 5% humidified
CO;, atmosphere.

Real-Time Quantitative Reverse Transcription-
Polymerase Chain Reaction

Real-time quantitative reverse transcriptase-polymerase
chain reaction (RT-PCR) was performed on an additional
70 surgical esophageal cancer specimens with paired nor-
mal samples that were not used in the microarray analysis.
Total RNA was extracted from each bulk sample, and
cDNA was synthesized from total RNA as described pre-
viously.”® The following primers were used to amplify the
STC2 gene: sense primer, 5'-TCAAAGACGCCTTGAAA
TGTAA-3'; antisense primer, 5-CAGTTCTGCTCACAC
TGAACCT-3'. The glyceraldehyde-3-phosphate dehydro-
genase (GAPDH: sense primer, 5'-TTGGTATCGTGGA
AGGACTCA-3'; antisense primer, 5-TGTCATCATATT
TGGCAGGTT-3') gene was used as an internal control.
Real-time monitoring of PCR reactions was performed
with the Light-Cycler System (Roche Applied Science,
Indianapolis, IN) and SYBR green I dye (Roche). Details
for each reaction are described elsewhere.?! Each assay
was performed in triplicate.

Immunohistochemistry

STC2 expression was localized on formalin-fixed, par-
affin-embedded surgical specimens from esophageal cancer
patients by the avidin-biotin—peroxidase method (LSAB2
Kit; Dako, Kyoto, Japan).” All sections were counterstained
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FIG. 1 a A schema of the laser microdissection (LMD), T7 linear
amplification, and oligonucleotide microarray. Primary esophageal
squamous-cell cancer (ESC) cells, metastatic cancer cells, and normal
squamous cells were obtained by LMD. After the extraction of total
RNA, T7-based amplification was performed, followed by oligonu-
cleotide microarray analysis. b Hierarchical clustering analysis using
22438 differentially expressed genes between primary ESC cells (T)

with hematoxylin. A primary mouse monoclonal antibody
against STC2 (STC2; Abnova, Taiwan) was used at a
dilution of 1:500.

Stable Transfection of STC2 Into Esophageal Cancer
Cell Line

Human STC2 cDNA was generated by RT-PCR and
subcloned into the pcDNA3.1/Hygro expression vector
(Invitrogen, Carlsbad, CA) according to the manufacturer’s
protocol. Sequencing confirmed accurate reading frame
insertion. Transfection into an esophageal cancer cell line
(KYSE70) lacking expression of the STC2 protein was
performed with Lipofectamine2000 (Invitrogen), as
described previously.?> Stable transfectants expressing
abundant STC2 protein were selected by G418 (Invitrogen)

Gene
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and normal squamous cells (N) (P < 0.05). The cancer cells (T and
M) and normal squamous cells were classifiable, whereas the
expression patterns of T and M were indistinguishable. ¢ Sixty-three
genes extracted from the 1119 genes were upregulated by primary
ESC cells (T) compared with normal squamous cells (N), and 2965
genes were upregulated by metastatic cancer cells from lymph nodes
(M) compared with primary ESC cells (T)

treatment and used for subsequent experiments. A mock-
transfected clone was used as the control.

STC2 RNA Interference

STC2-specific siRNA (Stealth siRNA duplex oligori-
bonucleotides) and negative control RNAi (Stealth
Negative Control siRNA duplex oligoribonucleotides)
were purchased from Invitrogen. Logarithmically growing
cells (TE13) were seeded at either 1.0 x 10° or 2.0 x 10°
cells per well in a final volume of 2 mL or 100 pL in 6- or
96-well flat-bottom microplates, respectively. The cells
were cultured overnight for adherence. RNAi Oligomer
was diluted with Opti-MEN I Reduced Serum Medium
(Invitrogen) and incubated for 5 minutes at room temper-
ature. The diluted RNAIi oligomer was mixed with diluted
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Lipofectamine RNAi MAX (Invitrogen). The RNAi-
Lipofectamine RNAi MAX complexes were added to each
well at a final concentration of 30 pmol/mL. The cells were
incubated for 5 hours, followed by replacement of the
media. The assays were performed after a 48-hour
incubation.

Western Blot Analysis

Western blot analysis was used to confirm the expres-
sion of STC2 in KYSE70 cells transfected with STC2 or the
mock vector, and TE13 cells transfected with either STC2-
specific RNAI or negative control RNAi. Total protein was
extracted from samples with Pro-Prep protein extraction
solution (iNtRON Biotechnology, Korea).

In Vitro Proliferation Assays

Proliferation was determined with a MTT (3-(4,5-
dimethylthiazol-2-y1)-2,5-diphenyltetrazolium  bromide)
assay (Roche). Logarithmically growing cells were seeded
at 5.0 x 10? cells/well in flat-bottomed 96-well microtiter
plate in a final volume of 100 pL culture medium per
well and incubated in a humidified atmosphere (37°C and
5% CO,). MTT labeling reagent (10 pL at a final con-
centration of 0.5 mg/mL) was then added to each well.
The microtiter plate was incubated for 4 hours in a
humidified atmosphere, after which solubilization solution
(100 pL) was added to each well. The plate was then
incubated overnight in a humidified atmosphere. Once
complete solubilization of the purple formazan crystals
was confirmed, the absorbance of the samples was mea-
sured with a microplate reader (model 550; Bio-Rad
Laboratories, Hercules, CA) at a wavelength of 570 nm
corrected to 655 nm. Each independent experiment was
performed in triplicate.

In Vitro Invasion Assay

In vitro invasion assays were performed with the BD
Biocort Tumor Invasion System (Becton Dickinson, San
Jose, CA). Cells (5.0 x 10* cells/well) were placed in the
upper chamber, and the lower chamber was filled with 750
pL of RPMI 1640 with 10% fetal bovine serum as a che-
moattractant. After 72 hours of incubation at 37°C, the
membranes were labeled with Calcein AM solution. The
invasive cells that had migrated through the membrane to
the lower surface were read in a fluorescence plate reader at
excitation/emission wavelengths of 485/530 nm with a
multilabel plate counter (Victor3; PerkinElmer, Waltham,
MA).

Statistical Analysis

The statistical analysis of group differences was per-
formed by the y” test, the Student’s 7-test, and the repeated
ANOVA test. Overall survival curves were plotted
according to the Kaplan-Meier method, with the Wilcoxon
test applied for comparisons. P < 0.05 was considered
statistically significant. Variables with a value of P < 0.05
by univariate analysis were used in subsequent multivariate
analyses based on Cox’s proportional hazard model. All
statistical analyses were performed by JMP for Windows,
version 5.0.1 (SAS Institute, Cary, NC).

RESULTS

Comparison of Expression Profiles Between Primary
ESC Cells and Normal Squamous Cells

A two-dimensional hierarchical clustering analysis
showed that cancer cells (T and M) and normal squamous
cells (N) could be well classified were highly distinguish-
able, whereas the expression patterns between primary
ESC cells (T) and metastatic cancer cells in the lymph
nodes (M) were indistinguishable. Interestingly, for each
case the gene expression pattern of the primary ESC cells
(T) and the metastatic cancer cells from the lymph nodes of
the same patient (M) was distinguishable from that of
normal squamous cells (N) (Fig. Ib). Four of the five
samples from the microdissected normal sections and all
five samples from the microdissected primary and meta-
static cancers were determined to be of sufficient quality to
proceed with analysis.

Once background correction and normalization were
complete, unwanted genes were filtered out. Genes with
intensities near the level of background noise (10,825 of
41,134) were removed first (as described in “Materials and
Methods™). Second, the 28,061 genes with fold changes
between 0.5 and 2.0, and those determined not significant
by the ANOVA test with the Benjamini and Hochberg
adjustment for individual comparison were removed. Of
the remaining 2248 genes, 1119 were upregulated and 1129
were downregulated in primary esophageal cancer cells
compared with normal squamous cells (Fig. 1c).

Comparison of Expression Profiles Between Primary
Cancer Cells and Metastatic Cancer Cells from Lymph
Nodes (M)

The gene expression profiles of primary ESC cells and
metastatic cancer cells in the lymph nodes (M) were so
similar that statistically significant genes could not be
identified. Therefore, only the fold change method was
used; 25,209 genes with fold changes between 0.77 and 1.5
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TABLE 1 Overexpressed genes

correlated with lymph node Gene symbol

GenBank accession no.

Description

metastasis Cell adhesion

SPP] NM_000582

TACSTDI NM_002354

CDHBI11 NM_018931
PKD2 NM_000297
BHLHB2 NM_030762
ICAM1 NM_000201
Cell cycle

KNTCI NM_014708
INHBA NM_002192
RBM22 NM_018047
TERF] NM_017489
KIF11 NM_004523
KNTC2 NM_006101
Cell differntination
CDKSRAP2 NM_018249
Cell division

SmMC2 NM_006444
Cell growth/proliferation
PTPRJ BC019824
PMP22 NM_000304
PRAME NM_206956
Cell-cell signaling

STC2 NM_003714
MDK NM_001012334
Inflammatory

PLA2G7 NM_005084
Metabolism

SDF4 NM_016176
BCATI NM_005504
APOCI NM_001645
APOE NM_000041
MTHFD2 NM_006636
SULF1 NM_015170
DHRSS NM_016245
SMYD3 NM_022743
Modification

SMYD3 NM_022743
Nerve development

PPTI NM_000310
LUM NM_002345
Protein folding

PDIAS NM_006810
HSP90AA] NM_005348
Proteolysis

FAP NM_004460
MMPI2 CR603756
CTSL NM_001912
RNA processing

SR140 BC006474

Secreted phosphoprotein 1 (osteopontin)
Tumor-associated calcium signal transducer 1
Protocadherin beta 11

Polycystic kidney disease 2 (autosomal dominant)
Basic helix-loop-helix domain containing, class B,3

Intercellular adhesion molecule 1 (CD54), human rhinovirus
receptor

Kinetochore-associated 1

Inhibin, beta A (activin A, activin AB alpha polypeptide)
RNA binding motif protein 22

Telomeric repeat binding factor (NIMA interacting) 1
Kinesin family member 11

Kinetochore associated 2

CDKS regulatory subunit associated protein 2
SMC?2 structural maintenance of chromosomes 2-like 1 (yeast)

Protein tyrosine phosphatase, receptor type, J
Peripheral myelin protein 22
Preferentially expressed antigen in melanoma

Stanniocalcin 2
Midkine (neurite growth-promoting factor 2)

Phospholipase A2, group VII (platelet-activating factor acetylhydrolase)

Stromal cell derived factor 4

Branched chain aminotransferase 1

Apolipoprotein C-1

Apolipoprotein E

Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2
Sulfatase 1

Dehydrogenase/reductase (SDR family) member 8

SET and MYND domain containing 3

SET and MYND domain containing 3

Palmitoyl-protein thioesterase 1 (ceroid-lipofuscinosis,
neuronal 1, infantile)

Lumican

Protein disulfide isomerase family A, member §
Heat-shock 90-kDa protein 1, alpha

Fibroblast activation protein, alpha
Matrix metallopeptidase 12 (macrophage elastase)

Cathepsin L

U2-associated SR140 protein
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TABLE 1 continued Gene symbol

GenBank accession no.

Description

Signal transduction

CXCR1 NM_020311
GPRI61 NM_153832
TPMI NM_000366
MS4A4A NM_024021
LILRB3 NM_006864
LSGI NM_018385
Transcription
OSR2 NM_053001
PSIP] NM_033222
TBX3 NM_016569
NFE2LI ALS833530
ZBTB26 AB046792
SOX4 AW946823
SMAD] NM_005900
HEY] NM_012258
RELB NM_006509
Transport
VIM NM_003380
CEP290 NM_025114
MAPKSIP3 NM_033392
Tumor supressor
BCL7A NM_020993
Unknown
TMEM39A NM_018266
VPSI13C NM_017684
FAMI111A NM_022074
BES537483
SCCPDH NM_016002
PTDSSI NM_014754
IGF2BP2 NM_006548
HSPBAPI NM_024610
WDR66 NM 144668WD

Chemokine orphan receptor 1

G protein-coupled receptor 161

Tropomyosin 1 (alpha)

Membrane-spanning 4-domains, subfamily A, member 4

Leukocyte immunoglobulin-like receptor, subfamily B
(with TM and ITIM domains), member 3

Large subunit GTPase 1 homolog (S. cerevisiae)

Odd-skipped related 2 (Drosophila)

PC4 and SFRS1 interacting protein 1

T-box 3 (ulnar mammary syndrome)

Nuclear factor (erythroid-derived 2)-like 1

Zinc finger and BTB domain containing 26

SRY (sex determining region Y)-box 4

SMAD, mothers against DPP homolog 1 (Drosophila)
Telomeric repeat binding factor (NIMA-interacting) 1
V-rel reticuloendotheliosis viral oncogene homolog B

Vimentin
Centrosome protein cep290

Mitogen-activated protein kinase 8 interacting protein 3
B-cell CLL/lymphoma 7A

Transmembrane protein 39A

Vacuolar protein sorting 13C (yeast)

FLJ22794 protein

Full-length insert cDNA YH99G08, CDNA clone IMAGE:5276760
Saccharopine dehydrogenase (putative)

Phosphatidylserine synthase 1

IGF-II mRNA-binding protein 2

HSPB (heat-shock 27-kDa) associated protein 1

Repeat domain 66

were excluded. Of the remaining 5100 genes, 2965 were
upregulated and 2135 genes were downregulated in meta-
static cancer cells from the lymph nodes (M) compared
with primary ESC cells (Fig. 1c).

Candidate Lymph Node-Specific, Metastasis-Related
Genes

We extracted 63 genes that overlapped the 1119 genes
that were upregulated in primary ESC cells (T) and the
2965 genes upregulated by metastatic cancer cells in the
lymph nodes (Fig. 1c; Table 1). Moreover, we selected and
analyzed one of the 63 genes, STC2, as it was correlated
with clinicopathological variables in ESC.

Identification of STC2-Associated Genes that Influence
the Progression of Esophageal Cancer

To comprehend the definitive function of STC2 in the
progression of esophageal cancer, we performed oligo
microarray analysis to find genes with a significant asso-
ciation with STC2 expression (Table 2). Two probes were
located in the coding region of STC2 (A_23_P110686 and
A_23_P416395; Affimetrix, Tokyo, Japan). Among 11
upregulated genes commonly correlated with two inde-
pendent probes in STC2, six probes in the solute carrier
family 7 (cationic amino acid transporter, y- system)
member 11 (SLC7A11) were significantly associated with
two different probes. Notch 3 exhibited the highest P value
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TABLE 2 Correlated gene probes associated with two independent coding regions in stanniocalcin 2 by oligo microarray analysis
Probes Symbol  Description GenBank accession no. Cytoband UniGene  Correlation P
no. coefficient
2 NOTCH3 Notch homolog 3 (Drosophila) AW138903 19p13.2-p13.1 Hs.8546  0.57218 3.44E—-07*
6 SLC7A11 Solute carrier family 7, (cationic amino ~ NM_014331 4q28-q32 Hs.390594 0.556619  8.27E—07*
acid
transporter, y+ system) member 11
2 MAFG V-maf musculoaponeurotic fibrosarcoma NM_002359 17q25.3 Hs.252229 0.555186  8.94E—07*
oncogene homolog G
2 G6PD Glucose-6-phosphate dehydrogenase NM_000402 Xq28 Hs.461047 0.552849  1.02E—06*
TUFTI  Tuftelin 1 AF086205 1921 Hs.489922 0.552382  1.04E—06*
3 PHLDB2 Pleckstrin homology-like domain, family NM_145753 3q13.2 Hs.477114 0.548711 1.27E—06*
B, member 2
2 RIT1 Ras-like without CAAX 1 NM_006912 1q22 Hs.491234 0.535188  2.58E—06*
4 NAVI Neuron navigator | NM_020443 1932.3 Hs.585374 0.527096 3.88E—-06*
2 SLC7A5  Solute carrier family 7 (cationic amino NM_003486 16g24.3 Hs.513797 0.513554 7.51E-06%*
acid transporter, y+ system), member 5
2 LASS4 LAG]1 homolog, ceramide synthase 4 NM_024552 19p13.2 Hs.515111 0.51289 7.75E—-06*
2 OLFMI  Olfactomedin 1 NM_014279 9q34.3 Hs.522484 0.511413  8.32E—06*
2 WDR78 WD repeat domain 78 NM_024763 1p31.3 Hs.49421  —0.578575 2.37E-07*
2 ACSM3  Acyl-CoA synthetase medium-chain NM_202000 16p13.11 Hs. 706754 —0.53411 2.72E—06*
family member 3
2 LZTFLI  Leucine zipper transcription factor-like 1 NM_020347 3p21.3 Hs.30824 —0.518329 5.97E—06*
2 TBCID1 TBCI (tre-2/USP6, BUB2, cdcl6) NM_015173 4pl4d Hs.176503 —0.504146 1.17E—05*
domain family, member 1
2 CI0o0rf79 Chromosome 10 open reading frame 79 NM_025145 10g25.1 Hs.288927 —0.503045 1.23E—05*
SESN1 Sestrin 1 NM_014454 6qg21 Hs.591336 —0.502422 1.27E—05*
NEKI]1 ~ NIMA (never in mitosis gene a)-related NM_145910 3g22.1 Hs.657336 —0.501333 1.33E-05%
kinase 11
3 WDRI19 WD repeat domain 19 NM_025132 4pl4 Hs.438482 —0.500027 1.41E—05%*

Correlation coefficient and P-value indicate a representative data among multiple probes with eithe of two STC2 probes

*P<.05

and correlation coefficient (0.57, P = 3.44 x ]0"7), while
the WD repeat domain 78 was inversely associated with
STC2 gene expression (—0.579, P = 2.37 x 1077).

Clinical Significance of STC2 Expression in ESC:
Expression of STC2 mRNA in Surgical Specimens

Of 70 clinical samples, 62 (88.5%) showed a higher
expression level of STC2 mRNA in cancerous tissues than
in noncancerous tissues by real-time quantitative RT-PCR.
The expression level of STC2 mRNA in tumor tissues,
0.589 4= 0.759 (mean =+ SD), was significantly higher than
the 0.211 % 0.444 in the corresponding normal tissues (P <
0.0001, Fig. 2a). To investigate protein expression of
STC2, immunohistochemical staining was performed 10
cases of the high STC2 mRNA expression group. STCZ is
expressed in the cytoplasm and nuclei of cancer cells;
however, it is not found in normal esophageal epithelium
(Fig. 2b). Immunohistochemical analysis localized STC2
expression specifically in cancer cells.

Clinicopathologic Significance of STC-2 mRNA
Expression in ESC

The median expression levels of STC2 mRNA in tumor
tissues and normal tissues were 0.356 and 0.085, respec-
tively. Patients with values less than the median expression
level of 0.356 in tumor tissues were assigned to the low-
expression group (n = 35). Those with values of >0.356
were assigned to the high-expression group (n = 35).
Table 3 shows the clinicopathologic and STC2 mRNA
expression data in the tumor specimens from the 70 ESC
patients. The incidence of lymph node metastasis was
significantly higher (P = 0.005) in the high-expression
group (28 of 35, 74.2%) than in the low-expression group
(17 of 35, 48.6%). The incidence of lymphatic invasion
was significantly higher (P = 0.007) in the high-expression
group (28 of 35, 80.0%) than in the low-expression group
(23 of 35, 65.7%). Moreover, the incidence of distant
metastasis (category M of the tumor, node, metastasis
system classification) was significantly higher (P = 0.038)
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FIG. 2 a STC2 (stanniocalcin 2) a
mRNA expression in cancer and STC2 mRNA

noncancerous tissues from Expression

esophageal squamous-cell cancer . e e
(ESC) patients as assessed by p < 0.0001
quantitative real-time polymerase 0211 + 0.589 +
chain reaction (n = 70). 0.444 0.759
Horizontal lines indicate the 5 T .
mean value of each group

(N, noncancerous tissue;

T, cancerous tissue).

b Immunohistochemistry with 4

STC2 antibody on ESC patient
samples. a Noncancerous tissue
(original magnification, x40).
b Cancerous tissue, mRNA
high-expression group (original
magnification, x40). ¢ Kaplan—
Meier disease-free survival 2

curves for ESC patients according .
to the level of STC2 mRNA :
expression. The survival rate for '
patients in the high-expression 1
group was significantly higher

than that for patients in the
low-expression group (P < 0.05)

VIR W
1

T

(n=70) (n=70)

in the high-expression group (3 of 35, 98.6%) than in the
low-expression group (0 of 31, 0.0%).

Relationship Between STC-2 mRNA Expression and
Prognosis

The 5-year cause-specific survival rates in patients with
high STC2 mRNA levels and those with low STC2 mRNA
levels were 44.7 and 38.6%, respectively (Fig. 2c). The
survival difference between these two groups was statisti-
cally significant (Wilcoxon, P = 0.016). Univariate
analysis showed that the following factors were signifi-
cantly related to postoperative survival: depth of invasion
and lymph node metastasis, lymphatic invasion, and STC2
expression (P < 0.05). Multivariate regression analysis
indicated that depth of invasion and lymph node metastasis
were independent prognostic factors, but STC2 expression
was not an independent prognostic factor (Table 4).

In Vitro Proliferation and Invasion Assays

To estimate whether high STC2 expression affected cell
growth rates, the STC2 gene was transfected into the
esophageal cancer cell line KYSE70 (Fig. 3a), and a
proliferation assay was performed. As shown in Fig. 3b,
there was a significant difference in the growth rate
between STC2-transfected cells and mock-transfected cells

C
Survival
Rate

1.0

03 — STC2 mRNA low expréssion (n=235)
02 STCZ’mRNA high expression (n = 35)
»»»»»» -Wileoxon-p <-0:05%-

0 10 20 30 40 50 60
Month after Operation

(P < 0.001). In a clinicopathologic study, the incidence of
lymphatic invasion and lymph node metastasis was sig-
nificantly higher in the high-expression group than in the
low-expression group. An in vitro Matrigel invasion assay
confirmed these findings (Fig. 3¢). The STC2-transfected
cells exhibited significantly more invasive potential than
the mock-transfected cells (P < 0.001), suggesting that
high expression of STC2 enhances tumor invasiveness and
metastatic potential.

Effect of STC2 Gene Silencing

TE13 cells normally express STC2 at a high level.
Suppression of STC2 mRNA was confirmed by quantitative
RT-PCR (Fig. 3d). Protein expression was suppressed by
STC2-specific RNAI as confirmed by Western blot analyses
(Fig. 3e), with subsequent reduction in the proliferation
rate of TE13 cells (P < 0.001) (Fig. 3f).

DISCUSSION

Among genes specifically overexpressed in cancer cells,
63 were previously associated with cancer progression.
With respect to esophageal cancer, this study found over-
expression of SPPI, TAXTDI, ICAMI, HSP90, and
MMPI2 in addition to the STC2 gene. SPPI, BCATI,
APOE, LUM, and VIM have been associated with
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TABLE 3 Relationship between STC2 expression and clinicopath-
ologic findings

TABLE 4 Univariate and multivariate analyses of clinicopatholog-
ical factors affecting overall survival rate

Characteristic Total STC2 expression
(n=70) -
High Low P
expression  expression
n=235 n =35
(50.0%) (50.0%)
Age (g) (mean + 66.5 + 7.05 64.5 & 10.98 NS
SD)
Sex
Male 64 32 (91.4) 32 (91.4) 1.000
Female 6 3 (8.6) 3(8.6)
Histology
Well 19 10 (31.2) 9 (25.7) 0.937
Moderate 38 19 (54.3) 19 (54.3)
Poor 13 6 (14.5) 7 (20.0)
pT
pT1, T2 32 14 (40.0) 18 (51.4) 0.336
pT3, T4 38 21 (60.0) 17 (48.6)
pN
pNO 25 7 (20.0) 18 (51.4) 0.005*
pN1 45 28 (74.2) 17 (48.6)
rM
pMO 67 32 (91.4) 35 (100.0) 0.038*
pMli 3 3 (8.6) 0 (0.0)
Lymphatic invasion
Negative 20 5(14.3) 15 (42.9) 0.007*
Positive 50 30 (85.7) 20 (57.1)
Venous invasion
Negative 19 7 (20.0) 12 (34.3) 0.177
Positive 51 28 (80.0) 23 (65.7)
Stage
I, IA 35 13 (37.2) 20 (57.1) 0.093
B, 111, IV 35 22 (62.9) 15 (42.9)

Bold values indicate * P < .05

metastasis not only in esophageal cancer, but also in other
solid malignancies.” > In comparison to other genes,
STC?2 expression showed the most intimate correlation with
clinicopathologic variables, such as lymphatic invasion,
Iymph node metastasis, and distant metastasis among those
molecules in the esophageal cancer cases under study (data
not shown). Therefore, we focused on STC2 for further
analysis, including functional studies, not only as a clinical
prognostic marker of esophageal cancer, but also as a key
molecule of esophageal cancer progression by the experi-
ment of transfection of STC2 and inhibition of STC2 in
vitro.

As for the mechanism of esophageal cancer cells related
with STC2 gene, we considered the function of STC2 in
normal mammalian tissues. It is reported that members of

Variable n  S-year Univariate ~ Multivariate analysis
survival  analysis, P - -
rate (%) Relative risk P
(95% CI)
Sex
Male 64 447 0.115 - -
Female 6 375
Tumor depth
pT1, 2 32 682 0.035* 1.676 0.043*
pT3, 4 38 243 (0.756-3.616)
Lymph node metastasis
Negative 25 72.6 0.026* 2.023 0.004*
Positive 45 279 (0.856-3.076)
Lymphatic invasion
Negative 20 85.7 0.012* - -
Positive 50  29.1
Venous invasion
Negative 19 57.1 0.119 - -
Positive 51  39.3
STC2 expression
Low 35 447 0.016* 1.115 0.229
High 35 386 (0.658-2.020)

95% CI 95% confidence interval
Bold values indicate * P £ .05

the STC family, STCI] and STC2, regulate calcium and
phosphate homeostasis.”* Therefore, we examined the
correlation between STC2 and calcium metabolism-related
molecules leading to malignancies.” ™ However, expres-
sion profile in the current study did not indicate any
significant correlation between STC2 and those molecules.
Therefore, the effect of STC2 on the progression of
esophageal cancer cell should be mediated through a
function of other mechanisms apart from calcium
metabolites.

Several additional studies have disclosed that STC2
inhibits apoptosis by promoting the transcription of c-Myc
and of hypoxia-induced factor (HIF)-1."** Hypoxia-
induced STC2 expression was found to be HIF-1 depen-
dent, and STC2 is a HIF-1 target gene that promotes cell
proliferation in hypoxia.** There was no significant asso-
ciation between STC2 and c-Myc or HIF-1 in the
microarray analysis in the current study. Further studies are
required to elucidate how STC2 is involved in the pro-
gression of esophageal cancer cells.

In the current study, high STC2 expression is correlated
with poor prognosis, predominantly via lymph node
metastases, and the forced expression of STC2 and the
knockdown of the STC2 gene demonstrated that STC2
was associated with ESC cellular proliferation and
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a mock STC2 d
Transfectant STC2 mRNA expression
(normalized GAPDH)
STC2 1.00E-02
9.00E-03
8.00E-03
Beta-actin 7.00E-03
6.00E-03
b 5.00E-03
Proliferation 4.00E-03
Rate
9 wm— STC2 transfectant 3'0(??"0?
g Mock- HT T 2.00E-03
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FIG. 3 a STC2 (stanniocalcin 2) expression in STC2-transfected
KYSET70 cells and mock-transfected KYSE70 cells. STC2 expression
was measured by Western blot analysis. b Proliferation of STC2-
transfected cells and mock-transfected cells. STC2-transfected cells
demonstrated increased proliferation compared to mock-transfected
cells (P < 0.001). ¢ The invasive potential of STC2 transfected cells
and mock-transfected cells. The STC2-transfected cells were more
invasive than the mock-transfected cells (P < 0.001). d, e STC2

invasiveness in vitro. The reason why ESC with high
STC2 expression shows aggressive behavior remains
unclear; however, solid tumor progression is usually
associated with hypoxia. There may be signals that cor-
responded with lymph node metastases in the signals that
STC2 stimulate.

Oh 24h 48h 72h

expression suppressed by STC2 specific-siRNA in TE13 cells. At 48
hours after siRNA addition, STC2 expression was measured by
quantitative real-time polymerase chain reaction (A) and Western blot
analysis (B). f Effect of STC2 suppression on TE13 cells proliferation
as assessed by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide) assay. STC2-suppressed cells were less
proliferative than contro] cells (P < 0.01)

In conclusion, this microarray study identified lymph
node-specific, metastasis-related genes in esophageal can-
cer cells. Expression of one of the extracted genes, STC2,
correlated with lymph node metastasis, lymphatic invasion,
and poor prognosis. These findings suggest that STC2 plays
an important role in the behavior of esophageal cancer
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cells. STC2 expression may also be a predictor of survival
in esophageal cancer patients. Further studies are needed to
determine whether STC2 represents a novel prognostic
marker for esophageal cancer, a means of identifying
patients who would benefit from postoperative adjuvant
therapy, or a potential target for molecular therapy.
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ABSTRACT

Purpose. Although recent studies show that leucine-rich
repeat-containing G-protein-coupled receptor 5 (Lgr5)*"®
cells targeted by Wnt drive self-renewal in the skin and
gastrointestinal organs, the clinicopathological significance
of Lgr5™° cancer stem cells (CSCs) of the colon remains
to be elucidated.

Experimental Design. We studied the Wnt-targeted Lgr5
pathway in colorectal cancer (CRC). The expression of
LGRS, c¢-MYC, p2ICIPI/WAFI/CDKNIA, glutaminase
(GLS), and miRs-23a and -23b (that target LGRS and GLS)
was evaluated by quantitative real-time reverse-transcrip-
tion polymerase chain reaction (RT-PCR). The Lgr5
protein was evaluated by immunohistochemistry. The
clinical relevance of gene expression in terms of patient
survival was also evaluated.

Results. Overexpression of LGR5 was significantly asso-
ciated with expression of ¢-MYC, p2ICIPI/WAFI/
CDKNIA, and GLS (p < 0.0001), and inversely associated
with miR-23a/b (p < 0.05). Immunochistochemical analysis
indicated that Lgr5 may be embedded in benign adenomas,
localized at the tumor-host interface, and detectable over a
broad area in established tumors. High level of LGRS
expression was associated with poor prognosis for CRC
cancer patients (disease-free survival; p < 0.05).
Conclusions. This study supports a significant role for
LGRS in the CSC hypothesis in CRC: (1) Lgr5**° CSCs,
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presumably derived from normal stem cells in colonic
crypts, proliferate, and the gene is overexpressed during
CRC development; (2) LGRS expression is associated with
activation of Wnt pathway, including oncogenic ¢-MYC
and high energy production via glutaminolysis; (3) LGRS
expression may be a poor prognostic factor for CRC
patients. Further study of LGRS should contribute to the
development of CSC-based cancer therapeutics.

Human colorectal cancer (CRC) is one of the most
extensively investigated tumor types.! Generally, stepwise
accumulation of genetic and epigenetic alterations in
oncogenes and tumor suppressor genes is considered the
driving force behind malignancies. Recent models explain
selected aspects of the complex process of CRC progression
based on the hypothesis that many cancers are organized
into hierarchies sustained by cancer stem cells (CSCs) at
their apex.” This hypothesis has generated excitement in
many quarters of the clinical cancer research community.”
CSCs mimic normal adult stem cells by demonstrating
resistance to toxic injuries and chemoradiation therapy, and
they may be responsible for tumor relapse following
apparently beneficial treatments as well as for invasion and
metastasis.” In CRC, several cell-surface markers have been
reported to detect CSCs, including CD24, CD29, CD44,
CD133, CD166, the epithelial cell adhesion molecule (Ep-
CAM), also known as epithelial-specific antigen (ESA), and
the leucine-rich repeat-containing G-protein-coupled
receptor 5 (Lgr5), also known as Gpr49 (Table 1).*°

Previous studies on CSC incidence in primary CRC
indicated the marked prognostic influence of CD133, but
not vascular endothelial or epidermal growth factor
receptor, on metastasis and its positive association with
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5'-TGCAGAGGGTCATGTTGAAG-3', antisense primer
5'-CATCCATGGGAGTGTTATTCC-3'; and VIM (NM_
003380.3) sense primer 5-AAAGTGTGGCTGCCAAGA
AC-3, antisense primer 5-AGCCTCAGAGAGGTCA
GCAA-3'. To confirm RNA quality, the glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) gene served as inter-
nal control. The sequences of the GAPDH primers were as
follows: sense primer 5-TTGGTATCGTGGAAGGAC
TCA-3’, antisense primer 5-TGTCATCATATTTGGCA
GGTT-3'. The amplification protocol included initial
denaturation at 95°C for 10 min, followed by 45 cycles of
95°C for 10 s and of 60°C for 30 s. PCR was performed in
a LightCycler 480 system (Roche Applied Science) using
the LightCycler 480 Probes Master kit (Roche Applied
Science). All concentrations were calculated relative to the
concentration of cDNA from Human Universal Reference
total RNA (Clontech). The concentration of LGRS was then
divided by the concentration of the endogenous reference
(GAPDH) to obtain normalized expression values. For
miR-23a/b and miR-200c qRT-PCR, cDNA was synthe-
sized from total RNA using TagMan MicroRNA miR-23a/
b and miR-200c specific primers (Applied Biosystems,
Foster City, CA, USA) and a TagMan MicroRNA Reverse
Transcription kit (Applied Biosystems). qRT-PCR was
performed in the LightCycler 480 system using the
LightCycler 480 Probes Master kit. The following tem-
perature profile was used: initial denaturation at 95°C for
10 min, followed by 45 cycles of 95°C for 10 s and of
60°C for 30 s. Expression levels of target miRNAs were
normalized to that of a small nuclear RNA RNUG6B
(Applied Biosystems) transcript.

Immunohistochemistry

Immunohistochemical analyses of Lgr5 were performed
using surgical specimens from selected patients with CRC
at Osaka University. The avidin—biotin—peroxidase method
(Vectastain Elite ABC reagent kit; Vector) was used on
formalin-fixed, paraffin-embedded tissues. After deparaff-
inization and blocking, the antigen—antibody reaction was
carried out overnight at 4°C. The Vectastain Elite ABC
reagent kit was used to detect the signal of the Lgr5 anti-
gen-antibody reaction. Rabbit polyclonal antibody against
the human Lgr5 loop 2 domain (Abgent, San Diego, CA,
USA) was used at 1:20 and against the human Lgr5 cyto-
plasmic domain (MBL International, Nagoya, Japan) at
1:50 dilution.

Statistical Analysis
Statistical analyses were performed using JMP 8.0.1 (SAS

Institute) for Windows. Possible differences between groups
were analyzed using Student’s r-test, x> test, or Wilcoxon

test. The association between expression levels of gene
messenger RNA (mRNA) and miR family was analyzed
using the Pearson correlation coefficient. Survival curves
were obtained by the Kaplan—-Meier method; comparison
between curves was completed by log-rank test. Probability
level of 0.05 was chosen to indicate statistical significance.

RESULTS
LGRS was Preferentially Overexpressed in CRC

We performed RT-PCR analysis using paired primary
and adjacent noncancerous CRC regions. Clinicopatho-
logical evaluation showed statistically significant
differences between groups with high and low LGRS
expression (classified as having expression levels higher or
lower than the median value, respectively). Significant
between-group differences were observed in lymph node
metastasis (Student’s t-test, p = 0.034), liver metastasis
(p = 0.0245), and age (p = 0.039). One hundred eighty
paired primary tumor samples were studied using quanti-
tative real-time RT-PCR. The data showed that the mean
expression value of LGRS mRNA in tumor tissues was
significantly higher than that for corresponding paired
normal tissues (p < 0.0001; Student’s t-test; Fig. 1a).

Overexpression of LGRS Is Associated with the
Oncogene c-MYC in CRC

The Wnt-targeted Lgr5 gene has recently been identified
as a novel stem cell marker in the intestinal epithelium and
in hair follicles.'*'” Recent studies have indicated that Wnt
signaling is influenced by the single-nucleotide polymor-
phism rs6983267, which maps to 824, and serves as an
enhancer of ¢-MYC expression through binding of T-cell
factor-4 (Tcf4). 16 We studied the correlation between LGRS
expression and ¢-MYC mRNAs. Data from quantitative
real-time RT-PCR of 89 paired primary tumor samples
indicated that LGRS expression in patients with high c-MYC
expression was higher than that in patients with low c-MYC
expression (p < 0.0001; Fig. 1b). The expression of LGR5
mRNAs was also associated with ¢-MYC mRNAs
(R = 0.744; Fig. 1c), suggesting the clinical relevance of
LGR5 and ¢-MYC transcription in co-overexpression
downstream of the common pathway of Tcf4 targets.'’

Overexpression of LGRS and c-MYC Genes
Reciprocally Associated with Differentiation Mediator
p21CIPI/WAFI/CDKNIA

Disruption of oncogenic f-catenin/Tcf4 activity induces
rapid G1 arrest and intestinal differentiation via
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FIG. 1 Overexpression of
LGRS was associated with

increased expression of the ?GR.‘S mRNA
oncogene ¢-MYC and of expression

. normalized
p2ICIPI/WAF1/CDKNIA in 89 to GAPDH
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transcriptional activation of a cyclin-dependent kinase
inhibitor encoding the p2ICIPI/WAF1/CDKNIA gene."”
We hypothesized that the involvement of this switch
mechanism in cancer development (i.e., expression of the
p2ICIP1/WAF1/CDKNIA gene) is deregulated under the
co-activation of the LGR5 and c-MYC genes in CRC, but it
is not related to terminal differentiation, which is charac-
teristic of cancer cells. In the present study, LGRS
expression in patients with overexpression of p2ICIP1/
WAFI/CDKNIA was higher than in patients with
low p2ICIPI/WAFI/CDKNIA expression (p < 0.0001;
Fig. 1d); the expression of LGRS mRNAs was associated
with that of the p2ICIPI/WAFI/CDKNIA mRNAs
(R = 0.628; Fig. le). Similarly, quantitative real-time RT-
PCR indicated that ¢-MYC expression in patients with
overexpression of p2ICIPI/WAFI/CDKNIA was also
higher than that in patients with low p2ICIP1/WAFI1/
CDKNIA expression (p < 0.0001; Fig. 1f); the expression
of ¢-MYC mRNAs was associated with that of the
p21CIPI/WAF1/CDKNIA mRNAs (R = 0.546; Fig. 1g).

normalized to GAPDH

The present study demonstrated that the Wnt targets, genes
LGRS and ¢-MYC, are co-activated in CRC and are asso-
ciated with reciprocal activation of p2ICIP1/WAFI1/
CDKNIA, suggesting that Wnt oncogenic signals may
antagonize a cyclin-dependent kinase inhibitor, inducing
cell cycle arrest and differentiation in CRC.

In Situ Expression Pattern of the Lgr5 Protein in
Adenomas and Carcinomas

Progression of malignant tumors in CRC, namely from
adenoma to early carcinoma in situ, to established carci-
noma, and finally to dissemination of tumor cells (a
prerequisite for metastasis), is correlated with loss of epi-
thelial differentiation and acquisition of a migratory
phenotype.'® However, Lgr5™° normal stem cells are
speculated to be localized in the basal crypt area of the
normal colon mucosa.'” Lgr5*"® CSCs may be embedded
in benign adenomas, localized at the tumor-host interface,
and detectable over a broad area in established tumors. To
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test this, immunohistochemical staining with anti-Lgr5
antibody against the extracellular loop 2 domain was per-
formed. The antibody was detected in active crypt base
columnar (CBC) cells (representing intestinal stem cells at
the crypt bottom), and the stain was detected in the
upstream neck region of the crypts (Fig. 2a). Similar
results were obtained using another anti-Lgr5 antibody that
was developed against the intracellular region (Fig. 2b). In
the current study, we used the former antibody and then
studied Lgr5 staining in adenomas. The results showed that
Lgr5 expression was detected in peripheral crypt-like
regions in which the CSCs were supposed to be located
(Fig. 2d from Fig. 2c) but not in the central area of the
polyps (Fig. 2e from Fig. 2c).'® We then studied Lgr5
expression in carcinomas in situ, showing that Lgr5*™"®
cells were distributed in the crypt-like area at the tumor—
host interface (Fig. 21 from Fig. 2g) and to a lesser extent
in the lumen (Fig. 2h from Fig. 2g). Lgr5 expression was

FIG. 2 Sequential detection of
Lgr51Y cells in normal mucosa,
adenoma, carcinoma in situ, and
advanced carcinoma by
immunohistochemical staining. a,

b Lgr5 staining in normal colonic
mucosa. a, detected by antibody against
the extracellular loop 2 domain of Lgr5;
b, detected by antibody against the
cytoplasmic region of Lgr5. c—e Lgr5
staining in an adenomatous polyp of the
colon. Positive stain was detected in the
peripheral region of each polyp lobe
(d) but not in the central region of the
polyp (e), suggesting a degree of central
differentiation and peripheral
localization of Lgr5+* CSCs.

f Schematic representation of C.
Lgr5*Ye cells were localized to the
peripheral region (shaded). g-i Lgr5
staining in carcinoma in situ. Positive
stain was detected in the tumor—host
interface regions in the carcinoma

(i) but not at the surface (h). '

ubiquitous in established adenocarcinomas (Fig. 2j from
Fig. 2i; Fig. 2k, a negative case). Considering the recent
proposal concerning migratory CSCs (a variant distinct
from stationary CSCs) and their ability to play a critical
role in invasion and metastasis through mobilization to the
invasive front, both CSC types may express the Lgr5
protein, suggesting that its expression may be relevant to
the biological behavior of CSCs.

miR-23 Inversely Associated with LGRS and GLS
Expression

Recently, it was reported that c-Myc transcriptionally
represses miR-23a/b, resulting in greater expression of
their target protein, mitochondrial glutaminase (Gls)
(Fig. 3g)."> miRs are short ~22-nucleotide RNA sequen-
ces that bind to complementary sequences of multiple
target mRNAs, usually resulting in their silencing mainly at

j Schematic representation of g.
Lgr5*e cells located at the tumor—host
interface region (shaded). k, 1 Lgr5
staining in advanced carcinoma.
Positive staining was ubiquitous. m A
CRC case with absence of Lgr5
expression as the control

1
b
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FIG. 3 Inverse correlation
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translation level as well as by involvement of posttran-
scriptional regulation.”® miRs target ~60% of all genes,
and several miRs are associated with some types of can-
cer.”’*> The candidate approach to nucleotide sequence
analysis using a web-based search program for identifying
predicted miR targets for LGRS in mammals (http://www.
targetscan.org/) enabled identification of miR-23a/b
(Fig. 3g). Quantitative real-time RT-PCR of 48 samples
indicated that LGRS expression in patients with high miR-
23a levels was lower than that among patients with low
miR-23a levels (p < 0.01; Fig. 3a). LGRS expression in
patients with high miR-23b levels was lower than that
among patients with low miR-23b levels (p < 0.05;
Fig. 3b), indicating an inverse correlation between
expression of LGRS and miR-23a/b. The expression anal-
ysis indicated that GLS expression in patients with high
miR-23a levels was lower than that among patients with
low miR-23a levels (p < 0.01; Fig. 3c); however, this
difference was not significant for miR-23b levels
(p = 0.223; Fig. 3d). LGRS expression was associated with
GLS expression (Fig. 3e, ).

High LGR5 Expression Associated with Poor Disease-
Free Survival

Kaplan—-Meier estimation of overall survival of all
patients in the present study indicated no significant asso-
ciation with expression of LGRS (Fig. 4a). We next
hypothesized that the remaining Lgr5*"® cells in unre-
sected lesions affected the prognosis of patients; therefore,
we selected cases in which patients received radical sur-
gery. The overall survival of this series of patients
indicated a tendency toward poor prognosis in those with
high LGRS levels (Fig. 4b). On the other hand, the disease-
free survival of the above selected cases (as shown in
Fig. 4b) indicated that high LGRS expression was signifi-
cantly associated with poor prognosis (Fig. 4c; log-rank
p < 0.05). The association of other factors, such as
p2ICIPI/WAFI/CDKNIA, GLS, and miR-23a/b, with
patient survival was not significant (p > 0.05; data not
shown). The present study suggests that the expression
level of LGRS is a prognostic factor of the natural course of
CRC.
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FIG. 4 Survival curves for LGRS5-positive and LGRS5-negative
subjects. a Overall survival for all 180 subjects (two groups, those
with high and low expression of LGRS). No significant between-
group difference was detected. b Overall survival for subjects who
underwent radical tumor resection (two groups, those with high and

miR-200c Inversely Associated with LGRS and VIM
Expression

Recently, it was reported that epithelial-mesenchymal
transition (EMT) is closely related with migration and
metastasis of cancer cells.'® EMT is also induced by Wnt
signaling in CRCs.?* Activation of Wnt/S-catenin pathway
might trigger EMT and acquisition of mesenchymal mol-
ecules such as VIM.** miR-200c was reported as an
inducer of epithelial differentiation and inversely related to
EMT.*® Quantitative real-time RT-PCR of 48 samples
indicated that LGRS expression in patients with high VIM
levels was higher than that among patients with low VIM
levels (R = 0.543, p < 0.0001; Fig. 5¢), indicating a cor-
relation between expression of LGR5 and VIM. LGRS
expression in patients with high miR-200c levels was lower
than that among patients with low miR-200c levels (R =
—0.175, p = 0.0042; Fig. 5d), indicating an inverse cor-
relation between expression of LGR5 and miR-200c.

DISCUSSION

Although the exact time point at which the concept of
CSCs (i.e., the concept that malignant tumors arise from a
small population of multipotent cells harboring the ability
to self-renew) is a matter of debate, Furth and Kahn had
reported in 1937 that a single cell could give rise to leu-
kemia in mice.”® Thereafter, the development of flow
cytometry enabled identification of a small population
harboring tumor-initiating activity, and a line of experi-
mental data was provided in 1997 showing that human
acute leukemia can be organized as a hierarchy that orig-
inates from a primitive hematopoietic cell. 2278 Because

Years after operation

Years after operation

low expression of LGRS). No significant between-group difference
was detected. ¢ Disease-free survival of subjects who underwent
radical tumor resection (two groups, those with high and low
expression of LGRS). A significant between-group difference was
observed (p < 0.05)

the characterization of rare CSCs in leukemia shows
intrinsic drug efflux capacity, molecular markers for
detection of CSCs have been reported in solid tumors of the
head, neck, gastrointestinal system, colon, breast, and
brain.?”?*¢ These relatively small populations of CSCs
are potentially important because they may play a role in
resistance to chemotherapy and radiation therapy and
appear to be responsible for cancer recurrence after treat-
ment, even when most of the cancer cells appear to have
been destroyed.”’

The present findings suggest the significance of Lgr.
CSCs. The Lgr5 protein, an orphan seven-transmembrane-
domain receptor similar to the thyroid-stimulating hor-
mone, follicle-stimulating hormone, and luteinizing
hormone receptors, was identified as a Wnt/Tcf4 target
gene expressed in CRC.'*% Lgr5 marks rapidly cycling
stem cells in the small intestine and colon as well as hair
follicles."*'> The control of self-renewal in intestinal
crypts and hair follicles shares many regulatory charac-
teristics, including a prominent role of the Wnt cascade.”
The present data indicate that the Wnt targets, LGRS and c-
MYC, are overexpressed in CRC, demonstrating an onco-
stimulating function of this pathway in CRC development
and the possibility that Lgr5 is a surface marker of CSCs.

The LgrS protein was markedly expressed in the
peripheral regions of adenomas and at the invasive front
(the tumor-host interface); it was also detectable over a
broad area in established tumors. This distribution of
Lgr5*t® cells suggests that accumulation of genome
mutation affects the location and polarity of Lgr5™"° stem
cells, during tumor establishment in the adenoma—carci-
noma sequence (Fig. 5b). The fact that the distribution of
Lgr5 protein is not restricted to the apical surface suggests
that hypertranslation or abnormal form of the Lgr5 protein

5+vc
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