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Nanomaterials are being utilized for many kinds of indus-
trial products, and the assessment of genotoxicity and
safety of nanomaterials is therefore of concern. In the
present study, we examined the genotoxic effects of fulle-
rene (Cgo) and kaolin using in vitro and in vivo genotoxicity
systems. Both nanomaterials significantly induced
micronuclei and enhanced frequency of sister chromatid
exchange (SCE) in cultured mammalian cells. When ICR
mice were intratracheally instilled with these nanomateri-
als, DNA damage of the lungs increased significantly that
of the vehicle control. Formation of DNA adducts in the
lungs of mice exposed to nanomaterials were also ana-
lyzed by stable isotope dilution LC-MS/MS. 8-Oxodeox-
yguanosine and other lipid peroxide related adducts were
increased by 2- to 5-fold in the nanomaterial-exposed
mice. Moreover, multiple (four consecutive doses of 0.2
mg per animal per week) instillations of Cg, or kaolin, in-
creased gpt mutant frequencies in the lungs of gpt delta
transgenic mice. As the result of mutation spectrum analy-
sis, G:C to C:G transversions were commonly increased in
the lungs of mice exposed to both nanomaterials. In addi-
tion, G:C to A:T was increased in kaolin-exposed mice. In
immunohistochemical analysis, many regions of the lungs
that stained positively for nitrotyrosine (NT) were ob-
served in mice exposed to nanomaterials. From these ob-
servations, it is suggested that oxidative stress and inflam-
matory responses are probably involved in the genotoxici-
ty induced by Cgp and kaolin.

Key words: nanomaterials, genotoxicity, fullerene (Cgp),
kaolin, DNA adducts

Introduction

Recently, nanomaterials are being utilized for cosmet-
ics and industrial products, and applications in medicine
are under consideration. The assessment of genotoxicity

© The Japanese Environmental Mutagen Society

and safety of nanomaterials is therefore of concern.
One reason behind this is the asbestos crisis (1). Some
nanomaterials are not only nano-sized particles, but
also asbestos shape-like fibers, and the carcinogenic
potential of such nanomaterials has attracted much at-
tention over the years. Moreover, it is thought that
nano-sized particles can be taken up in cells and cause
intracellular damage (2,3). With this background, we
here investigated induction of in vitro and in vivo geno-
toxicity using fullerene (Ceo) and kaolin as examples. To
clarify the mechanisms of mutations due to these
nanomaterials, we analyzed the formation of DNA ad-
ducts in the lungs of mice after exposure. Here, we brie-
fly summarize our data and also discuss mechanisms of
genotoxicity induced by nanomaterials.

Size Distribution in Suspensions of
Nanomaterials

The size distribution of nanomaterials used in the
present study was analyzed by dynamic light scattering
(DLS) as described previously (4). The most abundant
sizes were at 234.1+48.9 and 856.5+119.2 nm for Cg
and 357.6£199.4 nm for kaolin, respectively.

In Vitro Genotoxicity Test

Micronucleus test: The micronucleus genotox-
icity/clastogenicity test is widely used for assessment of
environmental substances and medicinal chemicals.
Here, we investigated the micronucleus inducing activity
of Cg and kaolin using human lung carcinoma A549
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Fig. 1. Effects of anti-oxidative agents on the micronucleus inducing
activity of nanoparticles. Values represent the means of three experi-
ments £ SD. Asterisks (¥, ** for p<0.05 and p<0.01, respectively) in-
dicate significant differences from cells without NAC in the Student’s
t-test. Concentrations of nanoparticles in ug/cm? are given in paren-
theses.

cells (4). Six-hours treatment with 200 ug/mL kaolin
caused growth inhibition of 60% whereas, Cg at the
same concentration was without effect. Cg and kaolin
particles both increased the number of micronucleated
cells. The background frequency of micronucleated cells
was 0.7% to 1.0%, and this rose to 10% and 5% with
200 ug/mL of Cq and kaolin, respectively, the increase
being statistically significant in both cases. To inves-
tigate the effects of an anti-oxidative agent on the
micronucleus induction, we conducted tests with or
without N-acetyl cysteine (NAC) using Chinese hamster
ovary CHO-AAS cells. As shown in Fig. 1, the fre-
quency of micronucleated cells was decreased sig-
nificantly in the presence of NAC. With 20 ug/mL of
C¢ and kaolin for 6 h without NAC the results were
3.8% and 8%, respectively, but in the presence of 10
mM NAC these decreased to 1.7% and 2.3%. From this
observation, oxidative stress might be involved in the
genotoxicity induced by nanoparticles. Furthermore, it
is known that photoexcited Cg produces reactive
oxygen species (5) and in the present experiments, the
cells and Cg were not shielded from visible light com-
pletely. Therefore, reactive oxygen species might con-
tribute to micronucleus-induction in Cg-treated cells.
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Fig. 2. Sister chromatid exchange (SCE) in CHO AAS cells follow-
ing treatment with C60 or kaolin for 1h. The values represent the
means of three experiments % SD. Asterisks (**) indicate a significant
difference (p<0.01) from control (treatment with 0.005% (v/v)
Tween-80) cells in the Student’s t-test.

On the other hand, biologically relevant features of kao-
lin are unclear and further studies will be required to
elucidate genotoxic mechanisms.

Sister chromatid exchange (SCE) test: SCE is
also used for mutagenic testing of many products.
While the mechanisms responsible for SCE are not com-
pletely understood, they involve breakage of both DNA
strands, followed by exchange of whole DNA duplexes.
This occurs during the S phase and is efficiently induced
by mutagens that form DNA adducts or that interfere
with DNA replication. To investigate SCE inducing ac-
tivity of nanoparticles, we examined CHO-AAS cells
following 1h treatment with Cg and kaolin (Fig. 2).
The SCE frequencies in cells treated with 2.0 ug/mL of
Ce and kaolin were approximately 11 and 7 times higher
than the control level, respectively (P<0.01 at 0.1
ug/mL or higher concentrations). Cg demonstrated
stronger genotoxic/clastogenic potency than kaolin.
Cozzi et al. earlier reported that H,O,-treatment pro-
duced reactive oxygen species and induced SCE in CHO
cells, and antioxidants, such as ascorbic acid and f-
carotene, reduced the frequency (6). In the present
study, the results of the micronucleus test indicated in-
volvement of reactive oxygen species so that they might
contribute to SCE induction as well.

In Vivo Genotoxicity Test
Comet assay: The comet assay is known as a stan-
dard simple and sensitive technique for evaluation of
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Fig. 3 DNA damage measured by comet assay in lungs of C57BL/6J
mice intratracheally instilled with particles, with or without FPG
treatment. Male mice were treated at a dose of 0.2 mg of particles per
animal, and sacrificed 3 h after particle administration. The values
represent the means of data for five animals+SE. An asterisk (*)
denotes p < 0.01 from that of control (+FPG) and a sharp (¥) denotes
p<0.01 from that of control (-FPG) in a Dunnett’s test after one-way
ANOVA of Tail Moment.

DNA damage. The types of damage usually detected are
single and double strand breaks. The pH (usually be-
tween neutral and alkaline pH) of the lysis condition can
be adjusted depending upon the type of damage. Under
alkaline conditions, AP sites and others where excision
repair takes place are detected as DNA damage. We
here evaluated DNA damage induced by particles using
the comet assay under alkaline conditions. The values
for DNA tail moment in the lungs with single-particle
treatment at 0.2 mg/body for 3 h were measured, and
DNA damage was significantly increased, around 2-
fold, as compared with the vehicle control, and its inten-
sity was Cg > kaolin. When we examined the effects of
oxidation of purines, DNA damage was analyzed by
formamidopyrimidin-glycosilase (FPG)-modified comet
assay. DNA damage induced by kaolin was not
changed, whereas DNA damage caused by Cg was
elevated up to 1.7 fold compared with the vehicle con-
trol (Fig. 3). In addition, Jacobsen ef al. also reported
that Cg significantly increased the level of FPG sensitive
sites/oxidized purines determined by the comet assay
using the E1-Mutatrade markMouse lung epithelial cell
line (7). From these findings, it seems that oxidative
damage would be partly involved in the induction of
DNA damage by Cg, although other changes responsi-
ble for DNA damage might be induced by kaolin.
Oxidative and lipid peroxide related DNA adduct
formation: DNA adducts, formed by reactions with
exogenous or endogenous agents, are known to induce
gene mutations. Reactive oxygen species (ROS) are one
type of endogenous agent that can produce oxidative
DNA adducts such as 8-0x0-2’-deoxyguanosine (8-ox-
0dG), a widely recognized and utilized biomarker of ox-
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idative stress, and a major mutagenic lesion producing
predominately G to T transversion mutations (8). In ad-
dition, ROS generate lipid hydroperoxides to yield hep-
tanon-etheno (He)-adducts, such as HedG, HedA and
HedC via 4-oxo-2-nonenal (4-ONE) (9). These adducts
can lead to mutations, if not repaired. We examined
whether these oxidative and lipid peroxide related DNA
adducts were induced in the lungs of mice by in-
tratracheally instilled nanomaterials. 8-OxodG and
three kinds of He-adducts were analyzed in the lungs of
ICR mice 3, 24, 72 and 168 h after intratracheal instilla-
tion of 0.2 mg/body of Cg or kaolin, and quantified by
the stable isotope dilution LC-MS/MS method de-
scribed by Chou ef al. (10). Compared with a vehicle
control, DNA adduct levels were increased by about 2-
to 5-fold in the lungs of mice 24 h after injection of
nanoparticles (Fig. 4). The increases were time depend-
ent until 72 h then gradually decreased within 168 h of
injection (data not shown). Related to this, oxidative
DNA damage was induced by intratracheal instillation
of Cg or kaolin in the comet assay with FPG treatment,
as described above. In addition, Folkmann et al. report-
ed that oral gavage of Cg increased the levels of 8-o0x-
0odG in the liver and the lungs of F344 rats (11).
Moreover, Tsurudome et al. described increased 8-0x-
odG levels induced by intratracheally instilled diesel ex-
haust particles in the lungs of F344 rats, and 8-oxogua-
nine DNA glycosylase 1 (OGG1) mRNA was also over-
expressed (12). The decreased DNA adducts in the
present study at 168 h may have been a result of a repair
enzyme such as OGGl1. This is the first observation that
He-lipid peroxide related DNA adducts are increased by
nanoparticles. Such adducts could clearly contribute to
nanomaterial-induced DNA damage and mutation. Our
findings suggest involvement of ROS generation,
although differences between Cgy and kaolin still require
clarification.

gpt Mutations in the lungs of gpt transgenic mice:
Transgenic gpt delta mice are a useful model system for
detecting both point mutations and large deletions (< 10
kb) (13). AEGI10 transgenes carrying gpt (detection of
point mutations) and red, gam (detection of deletion)
genes have been integrated into mouse chromosome 17,
and point mutations and deletions observed in any tis-
sues can be detected as 6-thioguanine (6-TG) resistant
colonies and Spi~ plaques, respectively. To examine in
vivo mutagenicity of nanoparticles, gpt delta transgenic
mice were exposed to Ce and kaolin at four different
doses by intratracheal instillation, and gpt mutations
were analyzed. The background gpf mutant frequency
(MF) in lungs was 10.3+0.53%107%. MFs were sig-
nificantly increased by 2 to 3-fold to 30.75+3.32x 10~
(p=0.019) for Cg and 19.30+4.82%107¢ (p=0.002)
for kaolin (4).

Moreover, we examined the mutational characteris-
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Fig. 4. Oxidative and lipid peroxide related DNA adduct formation in the lungs of ICR mice induced by nanoparticle exposure. DNA was ex-
tracted from lungs of mice 24 h after intratracheal instillation of 0.2 mg/body of C60 or kaolin, and digested enzymatically. Control animals were
exposed to saline containing 0.05% Tween80. The 8-0x0dG and 3 kinds of He-adducts were quantified by the stable isotope dilution LC-MS/MS

method described by Chou et a/. (10).
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Fig. 5.

tics induced by particles by PCR and DNA sequencing
analysis of 6-TG resistant mutants. Classes of mutations
found in the gpt gene are shown in Fig. 5. Interestingly,
G:C to C:G transversions were increased in common
with both particle treatments. Since these mutations
were commonly increased regardless of the constituents

Classification of gpf mutations from the lungs of control and nanoparticle treated mice.

(i.e., Cq is graphite and kaolin is aluminum silicate), the
mechanisms might be the same. It has been reported
that various oxidative stresses caused by sunlight, UV
radiation, hydrogen peroxide and peroxy radicals fre-
quently induce G:C to C:G transversions in various in
vitro assay systems (14-17). Moreover, a variety of ox-
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idative lesion products of guanine other than 8-oxodG,
including imidazolone (Iz), oxazolone (Oz), spiroi-
minodihydantoin (Sp) and guanidinohydantoin (Gh),
have been reported (18-24). Three such molecules, Oz,
Sp and Gh are now thought to be key causes G to C
transversions with translesion synthesis systems (22-25).
Therefore, it is suggested that G:C to C:G transversions
induced by C4 and kaolin could involve Oz, Sp and Gh
formation. In addition, G:C to A:T transitions were
also significantly increased by instillation of kaolin but
not Cg. In general, G to A (or C to T) transitions have
commonly been observed in spontaneous and
chemically-induced mutants, and deamination of gua-
nine or 5-methylcytosine might be involved. Burney et
al. reported that nitric oxide induces DNA damage. NO’
can form N,0;, and direct by this agent can lead to
DNA deamination via diazonium ion formation (26).
Moreover, nitric oxide is produced by activated macro-
phages in inflamed organs. In fact, test substance-
phagocytized macrophages and granulomas were fre-
quently observed in the lungs of mice (4).

Immunohistochemical Analysis of Inflammation
Factors

In order to confirm enhancement of nitric oxide
production by Cg and kaolin, we examined immuno-
histochemical staining of an inflammation factor,
nitrotyrosine (NT), in the lungs of gpt delta mice treated

with these nanoparticles using the same procedure
reported previously (27) with minor modification. As
shown in Fig. 6, the pattern of NT staining correspond-
ed to the areas of inflammation within lung parenchy-
ma. In the case of Cg exposure, many regions of the
lungs stained positively (data not shown), and intense
NT staining was localized in test substance-phagocy-
tized macrophages and granulomas. Similarly, staining
with NT antibodies was observed in macrophages and
alveolar epithelial cells in the lungs of mice exposed to
kaolin, although to a lesser extent as compared with Cg.

Conclusion

Our results clearly demonstrated that both in vitro
and in vivo genotoxicity are induced by Cg and kaolin.
However, the mechanisms have yet to be fully clarified,
and oxidative stress might be at least partly involved.
There are a number of ways in which reactive oxygen
species (ROS) could be generated: i) nanoparticles might
trigger ROS production by iron-catalysed Fenton reac-
tions; ii) nanoparticles could accumulate in cells due to
phagocytosis, then enhance the production of ROS by
NADPH oxidase (28,29). Recently, innate immune acti-
vation through Nalp3 inflammasomes has been suggest-
ed to play an important role in pulmonary fibrotic dis-
orders of silicosis and asbestosis (30,31). It has been
reported that proinflammatory cytokines, such as inter-
leukin 14 are key molecules for pneumoconiosis. At

Fig. 6.

Immunohistochemical localization of nitrotyrosine (NT). Since Cg, is brown in color, we used an SG substrate kit (Vector Laboratories,

USA) for peroxidase, with positive cells stained dark blue-gray. A: alveolar region in a control mouse, with no significant staining for NT. B: al-
veolar region in a mouse exposed to Cq,, with positive macrophages phagocytizing test substance and epithelial cells. The brown colored material is
Cgo- C: alveolar region in a mouse exposed to kaolin. Note intense staining for NT in the granulomatous region.

18



present, no data are available for activation of the
Nalp3 inflammasome pathway by Ce and kaolin.
However, it is likely that both nanoparticles can activate
in the same way as asbestos and silica, because oxidative
stress was increased in the lungs of treated mice. Further
studies of the mechanisms of genotoxicity are needed.
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The carcinogenicity of the low amounts of genotoxic carcinogens
present in food is of pressing concern. The purpose of the present
study was to determine the carcinogenicity of low doses of the die-
tary genotoxic carcinogen 2-amino-3-methylimidazol4,5-flquino-
line (IQ) and to investigate mechanisms by which 1Q exerts its
carcinogenic effects. A total of 1595 male F344 rats were divided
into seven groups and administered with IQ at doses of 0, 0.001,
0.01, 0.1, 1, 10 and 100 p.p.m. in the diet for 16 weeks. We found
that IQ doses of 1 p.p.m. and below did not induce preneoplastic
lesions in either the liver or the colon, while I1Q doses of 10 and
100 p.p.m. induced preneoplastic lesions in both of these organs.
These results demonstrate the presence of no-effect levels of 1Q for
both liver and colon carcinogenicity in rats. The finding that
p21°P/WAF \was significantly induced in the liver at doses well
below those required for IQ mediated carcinogenic effects suggests
that induction of p21“P/WAF is one of the mechanisms responsible
for the observed no-effect of low doses of 1Q. Furthermore, 1Q
administration caused significant induction of CYP1A2 at doses of
0.01-10 p.p.m., but administration of 100 p.p.m. iQ induced
CYP1A1 rather than CYP1A2. This result indicates the importance of
dosage when interpreting data on the carcinogenicity and meta-

bolic activation of 1Q. Overall, our results suggest the existence of

no-effect levels for the carcinogenicity of this genotoxic com-
pound. (Cancer Sci 2011; 102: 88-94)

E xposure to environmental carcinogens is one of the most
significant causes of human cancers. Determination of the
dose-response relationship between carcinogen exposure and
induction of cancer is one of the most important areas of chemi-
cal risk assessment. Of particularly high priority is the cancer
risk assessment of dietary carcinogens.

Heterocyclic amines (HCA) are well known dietary genotoxic
carcinogens derived from cooked protein-rich foods such as
meat and fish,""® and the carcinogenicities of 2-amino-3,8-
dimethylimidazo[4,5-flquinoxaline (MelQx), 2-amino-1-methyl-
6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methyl-
imidazo[4,5-flquinoline (IQ) have been widely investigated in
various animal models. MelQx induces cancers of the liver,
zymbal gland, skin and clitoral gland in rats,” and caners of the
liver and lung, and lymphoma and leukemia in mice.® PhIP
induces colon cancers and mammary gland cancers in rats,®
and lymphomas in mice.”” IQ induces cancers of the liver,
colon, mammary and zymbal glands in rats, caners of the liver,
lung and forestomach in mice, and cancer of the liver in non-
human primates.®'? MeIQx and PhIP are classified as category
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2B compounds (possibly carcinogenic to humans) and IQ is
classified as a category 2A compound (probably carcinogenic
to humans) by the International Agency for Research on
Cancer.* Therefore, although the concentrations of HCA in
food are low, they constitute a potential hazard, and there is con-
cern regarding the carcinogenic effects of low doses of these
HCA.

Based on the view that even minute doses of a genotoxic car-
cinogen has the potential to produce irreversible deleterious
genetic changes in the DNA of a target organ cell and the argu-
ment that if sufficient numbers of test animals are used the
carcinogenic effect of a minute dose can be demonstrated, it
is generally assumed that genotoxic carcinogens exert a non-
threshold carcinogenic effect. However, the carcinogenicities of
most genotoxic carcinogens are determined by experimental ani-
mal carcinogenicity studies using doses that are generally orders
of magnitude higher than actual human exposure levels and the
dose-response curves obtained are then extrapolated to zero
using a non-threshold mathematical model. This approach,
however, is being challenged as advancements in the under-
standing of the molecular mechanisms of carcinogenesis are
being made and experimental evidence showing that genotoxic
carcinogens do not exert mutagenic and carcinogenic effects at
low doses accumulates. >

Previously, we demonstrated the existence of no-effect levels
of MelIQx for both hepatocarcinogenicity and in vivo mutagenic-
ity in various carcinogenesis models in different rat
strains."7?%? It has also been shown that low doses of PhIP
do not exert either initiation or promotion activities in colon car-
cinogenesis in the rat.?*** However, little is known about the
carcinogenic potential of low doses of IQ.

In addition, little is known about the mechanisms underlying
the carcinogenicities of lower doses of HCA, but incorporation
of mechanistic information is critical for quantitative cancer risk
assessment. The purpose of the present study is to determine the
relationship between administration of low doses of IQ and
induction of preneoplastic lesions in the liver and colon in rats,
and to investigate carcinogenic mechanisms of action of various
doses of IQ by evaluating DNA-adduct formation, oxidative
DNA damage and expression levels of genes involved in meta-
bolic activation of IQ, cell proliferation and DNA damage repair
in the liver.

8To whom correspondence should be addressed.
E-mail: s-fukushima@jisha.or.jp
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Materials and Methods

Chemical and diets. IQ was purchased from Nard Institute
Ltd (Osaka, Japan) with a purity of 99.9%. Basal diets (pow-
dered MF; Oriental Yeast Co., Tokyo, Japan) and the diets con-
taining IQ were prepared once a month by Oriental Yeast Co.

Animals. A total of 1595 male F344 rats were supplied by
Charles River Japan, Inc. (Hino, Shiga, Japan) and were used at
21 days of age. Animals were housed in polycarbonate cages
(five per cage) in experimental animal rooms with a targeted
temperature of 22 + 3°C, relative humidity of 55 + 5% and
a 12-h light/dark cycle. Diet and tap water were available
ad libitum throughout the study.

Experimental design. The animal experiment protocols were
approved by the Institutional Animal Care and Use Committee
of Osaka City University Medical School. Rats were random-
ized into seven groups, 245 rats in each of groups 1-6 and 125
rats in group 7. Since the levels of IQ in cooked foods are lower
than those of MelQx and PhIP,"P IQ dosage and treatment
duration in this study were the same-as the previous low dose
carcinogenicity studies with MeIQx and PhIP."®** Animals
were fed diets containing IQ as follows: 0 (group 1, control),
0.001 (group 2), 0.01 (group 3), 0.1 (group 4), 1 (group 5), 10
(group 6) and 100 p.p.m. (group 7) for 16 weeks. Fresh diet was
supplied to the animals twice weekly. Bodyweights, food con-
sumption and water intake were measured weekly.

Five rats in each group were killed at week 4 under ether
anesthesia. At death, livers were snap frozen in liquid nitrogen
and stored at —80°C for examination of IQ-DNA adducts and 8-
hydroxy-2’-deoxyguanosine (8-OHdG) formation in the DNA.
The remaining rats were killed at the end of week 16 under ether
anesthesia for examination of the development of glutathione S-
transferase placental form (GST-P) positive foci, which is a
well-established preneoplastic lesion in the rat liver,*>*% and
aberrant crypt foci (ACF), which is a surrogate marker for
preneoplastic lesions in the rat colon.®**"?® At death, livers
were excised, weighed and then three slices each from the left
lateral, medial and right lateral lobes were cut and placed in
10% phosphate-buffered formalin. The remaining liver tissues
were snap frozen in liquid nitrogen and stored at —80°C for
mRNA expression analysis. Following fixation, liver tissues
were embedded in paraffin and processed for histopathological
examination.

Examination of GST-P positive foci in the liver. Anti-rat GST-
P polyclonal antibody (Medical and Biological Laboratories
Co., Ltd, Nagoya, Japan) at a dilution of 1:1000 was used for
immunohistochemical staining of GST-P. The GST-P-positive
hepatocellular foci composed of two or more cells were counted
under a light microscope.”'®?%?2 Total areas of livers were
measured using a color image processor IPAP (Sumica Technos,
Osaka, Japan) and the number of GST-P-positive foci per square
centimeter of liver tissue was calculated.

IQ-DNA adduct and 8-OHdG formation in livers. IQ-DNA
adducts were measured by the >?P-postlabeling method as
described previously.®*29 " Levels of 8-OHdG formation in
liver DNA were determined by high-performance liquid
chromatograghy with electrochemical detection as previously
described.*!

TagMan real-time quantitative PCR. The mRNA expression
levels of genes involved in IQ metabolism (CYP1A1, CYP1A2
and CYP1B1), DNA damage repair (8-oxoguanine DNA glycos-
ylase [Oggl], growth arrest and DNA damage-inducible protein
45 [GADDA45], AP endonuclease-1 [APE-1], MSH2 and MSH3)
and cell cycle regulation (p53 and p21<P"WAF! anq proliferating
cell nuclear antigen [PCNA]) were evaluated in the livers
by Tag;lMan real-time quantitative PCR as described previ-
ously.®" Sequence-specific primers and probes (Tagman Gene
Expression Assay) were purchased from Applied Biosystems,
Inc., Carlsbad, CA, USA. Beta-2-microglobulin (B2M) was used
as an internal control.

Examination of ACF in colon. Formation of ACF was exam-
ined as described previously.®* Although ACF consisting of
four or more crypts are considered to be better predictors of
colon tumor outcome in rats, to ensure that all doses of IQ
that have the potential to induce colon carcinogenesis were
accounted for, doses of IQ that caused an increase of any size
of ACF were considered to have the potential to induce colon
carcinogenesis in the present study.®

Statistical analysis. All mean values are reported as
mean + SD. Statistical analyses were performed using the Stat-
light program (Yukms Co., Ltd, Tokyo, Japan). Homogeneity of
variance was tested by the Bartlett test. Differences in mean val-
ues between the control and IQ-treated groups were evaluated
by the 2-tailed Dunnett test when variance was homogeneous
and the 2-tailed Steel test when variance was heteroge-
neous.?**" P values <0.05 were considered significant.

Results

General observation. All animals survived to the end of study
without any apparent abnormal pathological features. The final
average body and liver weights and IQ intake are summarized in
Table 1. The final bodyweight of the 100 p.p.m. group was sig-
nificantly lower than that of the 0 p.p.m. group. Absolute and
relative liver weights were significantly decreased in the 0.1 and
1 pp.m. groups and were significantly increased in the
100 p.p.m. group compared with the O p.p.m. group. There were
no significant differences in either food or water consumption
among groups (data not shown). The intake of IQ was propor-
tional to the administered doses (Table 1). No tumors were
found in any organs including the liver and colon in any of the
groups.

Induction of GST-P-positive foci in the livers. No histopatho-
logical changes were observed in any of the IQ-treated groups.

Table 1. Body and organ weights, and 1Q intake
Liver Average 1Q intake

Group 1Q (p.p.m.) No. rats Bodyweight (9) Absolute Relative Daily intake Total

weight (g) weight (%) (mg/kg b.w.) (mg/kg b.w.)
1 0 240 33123 93+ 1.7 28+04 0
2 0.001 240 332+ 17 9.1+1.4 2804 0.0001 0.008
3 0.01 240 331+ 19 9.0+ 1.5 28+ 0.4 0.0007 0.08
4 0.1 240 331+ 22 8.5 + 1.2* 2.6 £ 0.3* 0.008 0.9
5 1 240 331+ 17 8.5 £ 1.2* 2.6 + 0.3* 0.08 8.7
6 10 240 330 = 18 9.0+ 1.3 27x04 0.76 85.1
7 100 120 319 = 19* 10.0 = 1.6* 3.2 + 0.4% 7.83 877.5

*Significantly different from group 1. 1Q, 2-amino-3-methylimidazo[4,5-flquinoline.
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The number and size of GST-P-positive foci in rat livers at week
16 is summarized in Table 2. The total numbers of GST-P-posi-
tive foci per unit area in the livers in the groups administered
0.001-1 p.p.m. IQ did not differ from the control value
(0 p.p.m. group), and no significant increases were observed in
any size range of GST-P-positive foci in these groups. Signifi-
cant increases in the total numbers of GST-P-positive foci per
unit area in the liver were observed in the 10 and 100 p.p.m.
groups compared with the control. The numbers of GST-P-posi-
tive foci composed of 24 cells and 5-10 cells in the 10 p.p.m.
group and GST-P-positive foci of all sizes in the 100 p.p.m.
group were significantly increased.

Formation of IQ-DNA adduct and 8-OHdG in liver DNA.
Representative autoradiograms of IQ-DNA adducts in livers are
shown in Figure 1. The levels of IQ-DNA adducts in the livers
of the 0 and 0.001 p.p.m. IQ-treated groups were under the
detectable limit at week 4 (Table 3). IQ-DNA adducts were
detectable in the livers of rats administered 0.01 p.p.m. IQ, and
adduct formation increased in a dose-dependent manner in
groups administered higher doses of IQ. No significant differ-
ences in 8-OHAG levels were observed in the liver DNA
between any of the groups administered IQ and the control
group (Table 3).

Gene expression changes in the liver. Relative mRNA
expression of IQ metabolizing genes CYP1A land CYP1A2,
cell cycle genes PCNA and p21 P/WAEL 153 and DNA repair
genes APE-1 and GADDA4S5 in the livers at week 16 is shown
in Figure 2. CYP1A1l was significantly increased in the livers
of rats treated with 100 p.p.m. IQ, but not in the lower doses
of IQ. CYP1A2, on the other hand, was significantly increased
in the 0.01-10 p.p.m. groups, but no significant change was
observed in the 100 p.p.m. group. There was no significant dif-
ference in the CYP1B1 expression level among groups (data
not shown).

A significant increase in PCNA was observed in the
100 p.p.m. group, but not in the groups administered lower
doses of IQ, while the negative cell cycle regulator p21P/WAF!
was significantly induced in the 0.01 p.p.m. group and maxi-
mal Cy induced in the 100 p.p.m. group. The expression level of

ip/WAFL i the 100 p.p.m. group was significantly higher
than in the 10 p.p.m. and lower dose groups. There were no sig-
nificant changes in p53 expression levels in the IQ-treated
groups.

APE-1 was significantly induced in the 10 and 100 p.p.m.
groups and GADD45 was significantly induced in the
100 p.p.m. group. IQ had no effect on the expression of Ogg-1,
MSH2 or MSH3 (data not shown).

Induction of ACF in the colon. The number and size of ACF
in rat colons at week 16 is summarized in Table 4. In the
10 p.p.m. group, the number of ACF composed of one crypt was
significantly increased compared with the control. In the
100 p.p.m. group, significant increases were observed in the

numbers of all sizes of ACF. In contrast, in the groups adminis-
tered 0.001-1 p.p.m. IQ, neither the number of any size ACF
nor the total number of ACF differed from the control.

Discussion

Dose-response relationships for genotoxic carcinogens have
been a topic of intense scientific and public debate. High doses
of the genotoxic dietary carcmogen IQ have been demonstrated
to induce liver and colon cancers in rats (300 p.p.m. in diet)®
and hver cancers in nonhuman primates (10 mg/kg b.w./
day)."? However, as the concentratlons of IQ in food are
generally extremely low,"'" there is uncertainty regarding the
carcinogenicity of the doses of IQ to which humans are exposed.
The present study shows that IQ at doses of 1 p.p.m.
(0.08 mg/kg body weight [b.w.]/day) and lower did not induce
either GST-P-positive foci in the liver or ACF in the colon. Only
in the groups administered higher doses of IQ, 10 p.p.m.
(0.76 mg/kg b.w./day) and 100 p.p.m. (7.83 mg/kg b.w./day),
were increases in GST-P-positive foci and ACF observed.

GST-P-positive foci and ACF are well-established preneo-
plastic lesions of the liver and colon, respectively, in rats. These
lesions have been accepted as useful end-point markers in the
assessment of carcinogenic effects of environmentally relevant
concentrations of carcmo;zens as they can extend the range of
observable effect levels.?*?® Therefore, the results of the pres-
ent study suggest the presence of no-effect levels of IQ for both
liver and colon carcinogenicity in rats and indicate that the
dose-response relationship for carcinogenicity of low dose IQ is
nonlinear.

Several threshold mechanisms for genotoxic carcinogens have
been suggested, including induction of detoxification processes,
cell cycle delay, DNA repair, apoptosis and the suppression
of neoglastlcally transformed cells by the immune sys-
tem ) However, little in vivo evidence is available. To
explore mechanisms underlying the carcinogenicity of low doses
of IQ, we examined the relative mRNA expression of a panel of
genes involved in cell proliferation, cell cycle regulation, DNA
repair and IQ metabolic activation. We found that the cell prolif-
eration marker PCNA was signiﬁcantly increased only at a dose
of 100 p.p.m., a dose that is carcinogenic. The cell cycle nega-
tive regulator p21©P"WAF! on the other hand, was significantly
induced at a dose of 0.01 p p-m., a dose well below that which
induced the formation of preneogvlastlc lesions. Furthermore, the
finding that the levels of p21 Cip/ in the groups administered
10 p.p.m. and less were much lower than that of the group
administered 100 p.p.m. implies that hepatocytes have adequate
capaci /\(Vto cope with the type of damage that is repaired by the
p21CiP/ VAR pathway when exposed to low doses of 1Q, but that
the repair caglacny of these hepatocytes, even in the presence of
hlgh p21°#/ expression, can be overwhelmed when the cell
is subjected to very high doses of IQ. It is reasonable to suggest

Table 2. Development of GST-P-positive foci in the livers of rats administered 1Q for 16 weeks

Size of GST-P positive foci

Group 1Q (p.p-m.) No. rats
2-4 5-10 11-20 221 Total
1 0 240 0.09 + 0.25 S 0.03 0.1 0.02 + 0.11 0.00 + 0.02 0.15 + 0.31
2 0.001 240 0.10 + 0.24 0.04 + 0.15 0.01 £ 0.07 0 0.16 + 0.31
3 0.01 240 0.15 = 0.47 0.07 + 0.41 0.02 + 0.22 0.02 + 0.03 0.26 = 1.30
4 0.1 240 0.10 + 0.28 0.04 + 0.15 0.01 x 0.07 0.01 £ 0.08 0.15 + 0.35
5 1 240 0.10 = 0.25 0.04 £ 0.16 0.01 + 0.06 0 0.14 + 0.33
6 10 240 0.51 = 0.65 0.19 = 0.36* 0.02 + 0.10 0.01 £ 0.11 0.74 x 0.88*
7 100 120 26.23 + 18.24* 23.81 + 16.23* 19.25 + 11.70* 18.74 + 11.81* 88.03 = 50.41*

*Significantly different from group 1. GST-P, glutathione S-transferase placental form positive foci; 1Q, 2-amino-3-methylimidazo[4,5-flquinoline.

920

doi: 10.1111/.1349-7006.2010.01761.x
© 2010 Japanese Cancer Association



Fig. 1. Autoradiograms of 2-amino-3-methylimidazo-
[4,5-flquinoline (IQ)-DNA adducts the livers of 0 (a),
0.001 (b) and 100 (c) p.p.m. IQ-treated groups at
week 4. Arrowheads indicate 1Q-DNA adduct. The
imaging plates were exposed for 3 h (a) and 24 h
(b and ).

Table 3. 1Q-DNA adduct and 8-OHdG formation in liver DNA
Adduct level 8-OHdG

Group 1Q (p.p.m.) No. rats =10~ ntd) x10-5 dG)
1 0 5 UDL 0.23 £ 0.07
2 0.001 5 UbL 0.25 + 0.05
3 0.01 5 0.045 = 0.02 0.24 + 0.07
4 0.1 5 0.1 = 0.004 0.32 £ 0.10
5 1 5 1.7 + 0.07 0.24 + 0.08
6 10 5 12.7 £ 0.07 0.22 + 0.07
7 100 5 107.0 = 0.07 0.23 + 0.08

1Q, 2-amino-3-methylimidazo[4,5-flquinoline; ntd, nucleotide; 8-OHdG:
8-hydroxy-2’-deoxyguanosine; UDL, under the detectable limit.

that suppression of cell cycle progression by p21©iP/WAFI

followed by DNA repair is at least one of the mechanisms
responsible for the observed no-effect of low doses of 1Q in rats
in the present model.

It is known that the vast majority of DNA damage is repaired
by base excision repair (BER), nucleotide excision repair (NER)
and mismatch repair (MMR).®? APE-1 plays an essential role
in the BER repair process by cleaving the phosphodiester back-
bone. The activities of two different heterodimeric com-
plexes, MSH2-MSH3 and MSH2-MSHS6, belonging to the
MMR system are mainlz responsible for the post-replicative
repair of mismatches.®® We found that IQ significantly
increased the expression levels of APE-1 but not MSH2 and
MSH3 at doses of 10 and 100 p.p.m. in the liver. It has also been
reported that IQ has no effect on expression of ERCC1, which is
a key molecule in the NER process.®” These findings suggest
that BER rather than MMR or NER responds to IQ-induced
DNA damage.

GADDA4S5 is involved in a variety of growth regulatory mech-
anisms, including DNA repair, growth arrest and apoptosis.®® It
is induced by genotoxic and certain other cell stresses by p53-
dependent and independent pathways.®**® GADDA45 expres-
sion was significantly induced in the 100 p.p.m. group. The fact
that significant induction of APE-1 and GADD45 was observed
only at the highest doses of 10 and/or 100 p.p.m. indicate the
IQ-induced DNA damage response is dose-dependent. More-
over, the fact that in the groups with low doses expression of
APE-1 and GADD45 were not affected and that there was a sig-
nificant but moderate induction of p21<*"VAF! jmply that nor-
mal physiological levels of these genes are sufficient to repair
the DNA damage caused by low doses of IQ. However, the
expression levels of these genes are all increased by higher car-
cinogenic doses of IQ. A reasonable explanation of the no-effect
of low doses of IQ and the carcinogenicity of high doses of IQ
is that carcinogenicity is the consequence of a disruption in the
balance between DNA damage and repair and between abnor-
mal cell proliferation and apoptosis or cell cycle regulation.

Our results show that p5S3 gene expression is not induced by
administration of 1Q. Furthermore, p53-deficient mice do not
show higher susceptibility to IQ-induced liver carcinogenesis

Wei et al.

than wild type mice.“” These results suggest that p53 does not
have a significant impact on the carcinogenicity of 1Q.

DNA adduct formation by metabolic activation of IQ is
believed to play an important role in the carcinogenicity of
1Q.“? Formation of IQ-DNA adducts in the liver showed a lin-
ear dose-dependency and proved to be one of the most sensitive
end-points for the detection of exposure to 1Q. Adduct formation
was detectable in groups administered far lower doses of IQ
compared with detection of other end-points such as cell prolif-
eration and preneoplastic lesion induction. That IQ-DNA adduct
formation was not detected in the 0.001 p.p.m. group was most
likely due to the detection limit of the assay. It should be noted
that DNA adduct is a premutagenic lesion and not necessarily
correlated to the frequencies of mutation and cancer induced by
genotoxic compounds. For example, it is known that IQ forms
DNA adducts in the kidneys and stomach of both rats and mon-
keys, but does not induce tumors in these organs.“**** Qur pres-
ent findings of a linear dose-response of IQ-DNA adduct
formation and a nonlinear carcinogenic dose-response to IQ
administration support the idea that IQ-DNA adducts do not
necessarily lead to mutation and formation of cancerous lesions.
Our results are also in line with previous results on HCA
including MeIQx""'84% and PhIP.*¥ These results can be
explained, at least in part, by the actions of gene products such
as p219P" VARl GADD45 and APE-1 and the other repair genes
for DNA damage. Moreover, in the case of MelQx, it has been
suggested that formation of DNA adducts alone might not be
sufficient to produce cancers and that the MelQx-induced
genetic alterations in the liver are enhanced by liver regenera-
tion induced by high doses of MelQx itself."’ Therefore, while
IQ-DNA adduct formation is important in IQ carcinogenicity,
high levels of adduct formation are likely required and other fac-
tors such as cell proliferation can affect the balance between
DNA damage and repair and lead to fixation of DNA mutations
into the cell’s genome.

It has been demonstrated in vitro that IQ is more efficiently
metabolized and activated by CYP1A2 than by CYP1Al or
CYP1B1.49 However, limited in vivo data are available. In a
study by McPherson e al.“”, no significant induction in mRNA
expression level or activity of either CYP1A1 or CYP1A2 were
reported in the livers of rats receiving 300 p.p.m. IQ in the diet
for 52 weeks, but these enzymes were significantly increased
after daily administration of 20 mg/kg b.w. IQ by oral gavage
for 3 days; in the average adult rat, a dose of 300 p.p.m. IQ in
the diet is approximately equivalent to administration of
20 mg/kg b.w. IQ by oral gavage. The results of the present
study revealed that IQ significantly induced CYP1A2 expression
at doses from 0.01 to 10 p.p.m., but CYP1A2 was not induced
in the 100 p.p.m. group. The lack of effect of 100 p.p.m. IQ on
CYP1A2 expression is consistent with the results in rats receiv-
ing 300 p.p.m. IQ in the diet for 52 weeks.“” Significant
increases in CYP1A1 expression in the 100 p.p.m. group pro-
vide an alternative mechanism that can compensate for
decreased CYP1A2 activity. However, as noted above, in appar-
ent contrast to our results, in the study by McPherson et al.,’
administration of 300 p.p.m. IQ over the course of 52 weeks did
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Tabie 4. Development of ACF in the colons of rats administered 1Q for 16 weeks
Size of ACF

Group 1Q (p.p.m.) No. rats

1 2 3 24 Total
1 0 240 0.08 + 0.28 0.12 £ 0.32 0.06 £ 0.25 0.08 + 0.29 0.33 + 0.64
2 0.001 240 0.12 £ 0.36 0.08 + 0.29 0.10 £ 0.32 0.09 + 0.30 0.39 + 0.69
3 0.01 240 0.15 + 0.41 0.15 + 0.42 0.06 + 0.24 0.06 + 0.24 0.43 + 0.77
4 0.1 240 0.11 £ 0.33 0.11 £ 0.35 0.06 £ 0.25 0.08 + 0.27 0.36 = 0.63
5 1 240 0.15 = 0.45 0.10 = 0.30 0.10 + 0.33 0.05 = 0.23 0.41 + 0.80
6 10 240 0.19 + 0.48* 0.16 + 0.41 0.07 £ 0.25 0.09 + 0.40 0.50 + 0.86
7 100 120 1.48 + 1.46* 1.29 + 1.51* 0.70 + 0.93* 0.72 + 1.01* 4.19 + 3.34%

*Significantly different from group 1. ACF, aberrant crypt foci; IQ, 2-amino-3-methylimidazol4,5-flquinoline.

not induce CYP1A1l. Therefore, it is reasonable to postulate that
the dose-relationship between IQ and induction of CYP1ALl is
not a simple dose-response. CYPIB1 does not appear to be
involved in the metabolism of IQ at doses up to 100 p.p.m. in
rats. The findings described above demonstrate the importance
of taking into account dosage, duration and route of exposure in
interpretation of the data on metabolic activation of 1Q. Further
studies on the dose-response relationships between chronic 1Q
exposure and the protein expression levels and activities of
detoxifying enzymes, especially at doses relevant to human
exposure, would provide further insight into the role of meta-
bolic activation in IQ carcinogenicity.

Oxidative DNA damage does not appear to play a role in IQ-
induced carcinogenesis. In the present study, no significant
changes in 8-OHdG levels or Oggl expression levels in the liv-
ers of IQ-treated rats were observed. Our results are consistent
with the recent findings in 1Q-treated Big Blue rats that oxida-
tive stress was not responsible for the initiation of IQ-induced
carcinogenesis in the liver and colon.®” In this respect, 1Q is
different from MelQx, in which oxidative DNA damage plays
an important role in liver carcinogenesis.

In summary, the present study provides the first experimental
data on the carcinogenicity of low doses of IQ in both the liver
and colon of the test animal and compares the effect of IQ at the
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cellular level with its carcinogenic effect. Our findings support
the idea that there is a practical threshold that should be consid-
ered when evaluating the risk of genotoxic carcinogens. To this
end, further accumulation of data, especially mechanistic data,
should be promoted to facilitate not only an understanding of
the carcinogenic effects of low doses of genotoxic carcinogens
but also to establish an accurate means of quantitative risk
assessment.
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Importance of Researches on Chronic Effects by Manufactured Nanomaterials
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Manufactured nanomaterials are the most important substances for the nanotechnology. The nanomaterials pos-
sess different physico-chemical properties from bulk materials. The new properties may lead to biologically beneficial
effects and/or adverse effects. However, there are no standardized evaluation methods at present. Some domestic
research projects and international OECD programs are ongoing, in order to share the health impact information of
nanomaterails or to standardize the evaluation methods. From 2005, our institutes have been conducting the research on
the establishment of health risk assessment methodology of manufactured nanomaterials. In the course of the research
project, we revealed that the nanomaterials were competent to cause chronic effects, by analyzing the intraperitoneal ad-
ministration studies and carcinogenic promotion studies. These studies suggested that even aggregated nanomaterials
were crumbled into nano-sized particles inside the body during the long-term, and the particles were transferred to other
organs. Also investigations of the toxicokinetic properties of nanomaterials after exposure are important to predict the
chronically targeted tissues. The long lasting particles/fibers in the particular tissues may cause chronic adverse effects.
Therefore, focusing on the toxicological characterization of chronic effects was considered to be most appropriate ap-

proach for establishing the risk assessment methods of nanomaterials.

Key words——chronic toxicity; multi-wall carbon nanotube (MWCNT); fullerene
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Fig. 3. The Suggestive Evidences for Systemic Toxicites by Nanomaterials



