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the total uterus tissues of the three groups of mice by bisulfite
sequencing (Fig. 2A-C). There were 15 CpG sites spanning —-272 to
+199 of the promoter and the 5'-UTR (exon 1) region of SF-1. The per-
centages of total methylated CpG sites in this region, in control, and
low and high-dose GEN, were 78.3%, 73.9%, and 54.4%, respectively,
indicating that GEN dose-dependently induced demethylation in
this region. Most CpG sites in the 5-UTR (exon1) were demethylated
by high-dose GEN. In particular, the methylation levels of 5 CpG sites
between +45 and +89 were significantly lower in high-dose GEN
than in control (Fisher’s exact test, P < 0.01). We further split the
endometrium to separate the luminal side (LU) from the basilar
myometrial side (MY), and both specimens were separately sub-
jected to bisulfite sequencing. This procedure was applied to the
samples from the GEN-treated groups but not to control samples
due to uterus atrophy. In low-dose GEN treated mice, the mean
methylation levels of LU and MY were 84.8% and 65.0%, respectively
(not shown). In high-dose GEN treated mice, the mean methylation
levels of LU and MY were 42.1% and 66.7%, respectively (Fig. 2D).
Thus, the demethylation induced by high-dose GEN occurred
predominantly in the LU, rather than in the MY.

3.2. Effect of genistein on primary endometrial cell culture

In order to study the SF-1 promoter methylation at the cellular
level, we employed an endometrial cell primary culture. Intact

— 272
|- 261

murine endometrium were divided into LU and MY portions, and
cells were separately isolated. Primary cell clones were established
by colony-formation, following the plating of a serially-titrated cell
suspension (see Section 2). Efficient isolated colony formation was
achieved with cells seeded at a density of 4,500-15,300 cells/cm?.
For LU and MY, the average frequencies of colony appearance were
7.5 per 10° cells and 15 per 10° cells, respectively. The growth
curves of representative clones derived from LU and MY are shown
in Fig. 3. Cell clones with highest and lowest proliferative activities
were obtained from LU and MY, separately. More highly prolifera-
tive cells were obtained from MY than from LU (Fig. 3A and C). We
selected 20 highly proliferative clones for further study (see Sec-
tion 2). Two rapid growing clones obtained from MY showed
self-renewal activity when secondarily seeded at a very low cell
density (10 cells/cm?) (not shown). To screen for primary cultured
cells that responded to GEN, we set up a high-resolution melting
(HRM) assay that identified region-specific methylation levels.
The region analyzed by HRM assay exclusively contained the 7
CpG sites between +19 and +89 bp that were most differentially
demethylated following oral administration of GEN (Fig. 2). Each
clone was treated with or without GEN for 1 week; cells treated
with a similar concentration of DMSO served as control. Among
the 20 clones that we screened, only one GEN-treated clone (No.
16) exhibited a significant shift in the melting curve compared to
control cells (Fig. 4A). This clone had the highest proliferation

by
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Fig. 3. Proliferation properties of isolated clones: one clone showed highly proliferative activity. Representative growth curves of clones harvested from intact murine
endometrium are shown. Formula indicates the slope of fitted growth curves. Clones were divided into two groups: high and low proliferative (see Section 2). A total of 20
highly proliferative clones were analyzed by HRM after in vitro GEN treatment. (A, B) Asterisks indicate representative growth curves of cell clones isolated from luminal side.
(A) Clones with higher proliferative activities, derived from luminal side. Six highly proliferative clones were obtained in total; 2 representatives are shown. (B) Clones with
lower proliferative activities, derived from luminal side. (C, D) Each circle indicates representative growth curves of cell clones isolated from myometrial side. (C) Clones with
higher proliferative activities, derived from the myometrial side. In total, 14 highly proliferative clones were obtained; 10 representatives are shown. The arrow indicates the
clone with the most rapid growth. (D) Clones with lower proliferative activities, derived from myometrial side.

activity (Fig. 3C, arrow). GEN treatment of the other clones did not
result in significant changes to the melting curve patterns (not
shown). We further confirmed the methylation status of clone
No. 16 by bisulfite sequencing. The percentages of CpG methyla-
tion in the SF-1-272 to +199 promoter regions for untreated and
GEN-treated cells were 85.0% and 65.8%, respectively (Fig. 4B).

4. Discussion

Growing evidence suggests that the manner in which nutrients
can either help maintain health, or conversely, promote disease
development may be mediated by epigenetic regulation [12,20].
However, relatively little is known about tissue-specific sensitivity
or how much plasticity exists in regards to the effect that a given

[20,21]. GEN, a non-nutrient dietary component of soy products,
exhibits mixed estrogen agonist and antagonist properties, and
multiple functions both in vivo and in vitro [7,22]. Several animal
studies have demonstrated that GEN acts as an epigenetic modula-
tor [20]. We focused on the effects of GEN on endometrium, be-
cause endometrium is not only hormone responsive, but also a
highly proliferative organ. Epigenetic alterations of proliferative
tissue or cells may then be expanded through tissue proliferation.
We used OVX rodents, which are a widely used model for studying
estrogen withdrawal and replacement [23], as well as for the
assessment of endocrine-disrupting chemicals in the environment
[4]. In our experiment, GEN induced proliferation of the endome-
trium and increased uterine weight (Fig. 1A) to extents similar to
those previously reported in OVX rats [4]. Our findings also sug-

environmental factor can exert on a certain epigenetic target 1 Ogested that GEN treatment induced marked demethylation of
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Fig. 4. Genistein induced demethylation of the SF-1 gene in the cell clone that showed the highest proliferative activity. (A) The GEN-mediated demethylation of CpGs (at the
positions of +19, 23, 45, 48, 55, 59, and 89) in the SF-1 gene in vitro in one out of 20 isolated clones (Fig. 3A and C). HRM analysis enabled to clear separation of the PCR product
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CpG sites in the SF-1 promoter (Fig. 2), and substantial increase in
SF-1 mRNA level (Fig. 1B). Expressions of genes downstream of
transcription factor SF-1 were also significantly enhanced
(Fig. 1C-F). However, it should be noted that the induced mRNA
levels were still very low (Fig. 1B-F), less than one copy per cell,
as determined by the Percellome method [16]. Our results are con-
sistent with those of a previous study reporting that a physiologi-
cal concentration of GEN increased Cyp19al enzymatic activity in
endometrial cells derived from a normal uterus, whereas GEN did
not affect Cyp19at activity in a cell-free assay [24]. It is unknown
whether GEN stimulated Cyp19al activity by epigenetic
modulation.
In the present study, we also identified primary cultured endo-
metrial cells that were competent for epigenetic regulation by
" GEN, which were present at a very low frequency. In our in vitro
study, GEN treatment did not enhance, but rather inhibited the
proliferation of colony-derived cells. Taken together, these findings
indicate that a minor population of endometrium cells can respond

activation of SF-1, followed by the induction of the SF-1 steroido-
genic cascade. This might lead to local steroidogenesis and en-
hanced endometrium proliferation in vivo in GEN-treated OVX
mice. Since demethylation of the SF-1 promoter was observed at
the whole tissue level (Fig. 2), and the induced expression of steroi-
dogenic genes occurred only to a subcellular amount (Fig. 1B-F),
the demethylation event in each cell may not be sufficient for
the SF-1 induction.

The demethylation in the endometrium that occurred after
1 week of treatment with high-dose GEN was more prominent in
the LU than in the MY. Following GEN treatment, the methylation
level in the MY was similar to that in the untreated endometrium
as a whole. After 7 days of GEN exposure, the endometrial cells in
the LU of OVX mice were composed of regenerated cells moving
from MY to LU; in light of this, our results indicate that the initial
epigenetic alteration might be expanded through proliferation of
regenerating cells. This is also consistent with our observation that
more endometrial cells derived from MY showed higher colony-

to GEN and that, in these cells, GEN induces demethylation anli©63 formation activity and rapid proliferation than did those derived
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from LU (Fig. 3). We thus speculate that there are GEN-sensitive
cells in the MY, which might contain endometrial stem cells [25].

Recently, human endometrial stem cells were identified; they
reside in endometrial stromal tissue and possess fibroblastic-shape
and self-renewal ability, thus forming large, densely packed,
homogenous colonies [17,18]. Some candidates for murine endo-
metrial progenitor cells have been suggested to reside in the lumi-
nal epithelial or area of adjacent to the myometrium [25]. The
rapidly growing endometrial cell that we obtained had a fibroblas-
tic-shape, formed large, relatively homogenous, densely packed
colonies, and showed self-renewal activity when seeded at a very
low cell density (data not shown). Although there are differences
between the species, we speculate that our rapid growing cell
clones may correspond to the human endometrial stromal progen-
itors cells [17].

Aberrant SF-1 expression with lack of promoter CpG methyla-
tion has been reported in ectopic endometriosis [14], and thus
endometriosis is now considered an epigenetic disease {26]. Endo-
metriosis is classically defined as the growth of endometrial tissue
at extrauterine sites; it has been suggested that each endometriotic
lesion originates from a single epigenetically deregulated endome-
trial progenitor cell [27]. Further studies are required to identify
cells which are competent for epigenetic changes following GEN
exposure, and to elucidate the relationships between these cells,
GEN, and endometriosis.

In conclusion, we demonstrated that GEN demethylates the
promoter region of the SF-1 gene. This is the first demonstration
of phytoestrogen participation in epigenetic alterations in adult
endometrial tissue. These findings are important from standpoints
of nutrition, public health, and disease prevention. Further study is
warranted to characterize the nature of the cells that respond to
GEN in the endometrium.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.bbrc.2011.07.104.
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PKA-dependent regulation of the histone lysine
demethylase complex PHF2—-ARID5B

Atsushi Baba!, Fumiaki Ohtake?, Yosuke Okuno®?, Kenichi Yokota', Maiko Okada"?, Yuuki Imai®*, Min Ni?,
Clifford A. Meyer*, Katsuhide Igarashi’, Jun Kanno’, Myles Brown® and Shigeaki Kato"**

Reversible histone methylation and demethylation are highly regulated processes that are crucial for chromatin reorganization and
regulation of gene transcription in response to extracellular conditions. However, the mechanisms that regulate histone-modifying
enzymes are largely unknown. Here, we characterized a protein kinase A (PKA)-dependent histone lysine demethylase complex,
PHF2-ARID5B. PHF2, a jmjC demethylase, is enzymatically inactive by itself, but becomes an active H3K9Me2 demethylase
through PKA-mediated phosphorylation. We found that phosphorylated PHF2 then associates with ARID5B, a DNA-binding
protein, and induce demethylation of methylated ARID5B. This modification leads to targeting of the PHF2-ARID5B complex to
its target promoters, where it removes the repressive H3K9Me2 mark. These findings suggest that the PHF2-ARID5B complex is a
signal-sensing modulator of histone methylation and gene transcription, in which phosphorylation of PHF2 enables subsequent
formation of a competent and specific histone demethylase complex.

Post-translational modifications of histone amino-terminal tails,
including reversible acetylation, methylation, phosphorylation and
ubiquitylation, modulate both chromatin structure and gene
regulation"?. Reversible histone methylation defines the state of
chromatin; repressive histone methylation marks such as H3K9Me2
inhibit gene transcription from nearby promoters, and removal of
these marks by histone lysine demethylases permit transcription. Thus,
enzymes such as jmjC (Jumonji C)-domain-containing histone lysine
demethylases seem to play pivotal roles in epigenetic control’'.
Though histone marks are altered in response to extracellular signals,
the underlying mechanism by which thisis achieved is largely unknown.

RESULTS

Identification of the PHF2-ARID5B histone H3K9Me2
demethylase complex

During biochemical identification of transcriptional co-regulators for

1L12 " we purified a number of direct interactants

nuclear receptors
for nuclear receptors. Among them, a co-activator complex for
FXR (farnesoid X receptor) from HepG2 cells was selected for
further analysis, because its abundance in the purified fractions was

significantly increased when the cells were pretreated with forskolin

(FSK), a protein kinase A (PKA) activator (Supplementary Fig.

Sla). Matrix-assisted laser desorption/ionization—time of flight mass

spectrometry analysis of the purified complex'"'? identified three
subunits: plant homeodomain (PHD) finger two (PHF2; ref. 13),
AT-rich interactive domain 5B (ARID5B) isoform o and ARID5B
isoform f3 (ref. 14; Fig. 1a and Supplementary Fig. S1b—e). The complex
was still detectable after further column purification (Supplementary
Fig. S1f). ARID5B contains the ARID/Bright domain, which is seen
in subunits of chromatin-remodelling complexes and is considered to
be a sequence-specific/nonspecific DNA-attachment domain'4. PHF2
(ref. 13) contains PHD and jmjC domains*®. Unlike several other jmjC
histone demethylases®>>®?, PHF2 lacks the ARTD domain. PHF2 and
ARID5B genes are expressed in a broad range of tissues, including liver
(Supplementary Fig. S2c), and at protein levels as well in various cell
lines (Supplementary Fig. S2a,b,d). PHF2 physically interacted with
FXR and HNF40 (hepatocyte nuclear factor 40; Supplementary Fig.
S3a,b,d), but not with ERa. (oestrogen receptor alpha) or VDR (vitamin
D receptor; Supplementary Fig. S3c,d). PHF2 directly interacted with
ARID5B in vitro (Supplementary Fig. S3e-g).

The PHF2-ARID5B complex was purified from HepG2 cells
stably expressing Flag-PHF2. As jmjC-domain-containing proteins
catalyse lysine demethylation®?, we investigated the histone lysine
demethylation activity of the purified PHF2 complex”!'®. The
PHF2 complex exhibited lysine demethylase activity in vitro as
assessed by a formaldehyde release (Fig. 1b). Then we examined
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Figure 1 Identification of the PHF2-ARID5B histone H3K9Me2 demethylase
complex. (a) A schematic representation of domains of PHF2 and ARID5B.
(b—d) Histone H3K9Me2 demethylase activity of the purified PHF2 complex
in vitro. (b) Native histones were incubated with PHF2 complex, and

formaldehyde release was analysed by fluorescence detection. Shown is the
average + s.d. (n=23) of the relative activity. (c) The PHF2 complex was
incubated with purified native histones (left) or mononucleosomes (right) for
demethylation reaction, and each modification was determined by western
blotting as indicated. (d) Intensity of histone marks in the demethylation
assay of native histones by PHF2 (in ¢ and Supplementary Fig. S8a) was
quantified, and averages + s.d. of three independent experiments are shown.
The asterisk shows P < 0.05 in Student's t-test. () Recombinant PHF2

the site-specificity of lysine demethylation using native histones or
purified mononucleosomes as substrates. In vitro, the PHF2 complex
demethylated dimethylated Lys 9 on histone H3 (H3K9Me2), but
neither mono- nor trimethylated H3K9 (H3K9Mel, Me3) (Fig. 1c,d).
Methylated H3K4, K27, K36 and K79 and H4K20 seemed unlikely
PHEF2 substrates (Fig. 1c,d). Thus it is likely that PHF2 substrate
recognition is more specific than the closely related PHF subfamily
members such as PHF8 and KDM7/KIAA1718 (refs 15-17). This
demethylase activity was not detected in recombinant PHF2 protein
(Fig. le). PHF2 did not demethylate a methylated peptide (amino
acids 1-21 of H3) containing K9Me2 (Supplementary Fig. S4a).
Such substrate specificity is known for Lid2 (ref. 18) and yeast Lsd1
(ref. 19), and possibly due to requirement of other regions of H3.
Immunostaining analysis of 293F cells confirmed that PHF2 almost
entirely demethylated H3K9Me?2 in the presence of FSK, but had
only marginal effects on H3K27Me2 and the other tested methylated

protein is catalytically inactive. Recombinant PHF2 protein (lower panel)
was subjected to in vitro demethylation assay (upper panels). (f) 293F cells
were transfected with Flag-PHF2 expression vectors for 24 h and treated
with FSK for 6 h, then cells were fixed and immunostained with the indicated
antibodies. Note the decreased level of H3K9Me2 in the anti-Flag-positive
cells (arrowheads). Scale bars, 40 um. (g) 293F cells were transfected with
either the Flag-PHF24Im(C or the HA-PHF2M249A mutant, and immunostaining
was carried out as in f. Scale bars, 40um. (h) H3K9Me2 demethylation
activity of PHF2 in vivo. 293F cells transfected with the indicated expression
vectors or short interfering RNAs (siRNAs), and were treated with FSK for 6 h.
The soluble chromatin fraction was subjected to western blotting as indicated.
Uncropped images of blots are shown in Supplementary Fig. S9.

histones (Fig. 1f and Supplementary Fig. $4b). The conserved histidine
residue within the PHF2 jmjC domain was required for enzymatic
activity (Fig. 1g). In 293F cells, overexpression of PHF2 in the presence
of FSK decreased H3K9Me2, whereas knockdown of PHF2 did not
lead to global increase of this mark (Fig. 1h), raising the possibility that
other H3K9 demethylase(s) may compensate for PHE2 in these cells.

PHF2 is phosphorylated by PKA at a specific serine residue

In a co-immunoprecipitation assay, association of PHF2 and ARID5B
was inducible on FSK treatment of immortalized hepatocytes® both
in the absence (Fig. 2a) and presence (Supplementary Fig. S4c) of
a proteasomal inhibitor, MG132. Consistently, abundance of these
proteins was not clearly affected by FSK treatment (Supplementary Fig,
S4d). Therefore, we reasoned that phosphorylation of the factor(s) by
PKA was a trigger to induce association. Endogenous PHF2, but not
ARIDS5B, was phosphorylated by FSK treatment of the cells (Fig. 2b,c).
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Figure 2 PKA-dependent complex assembly of PHF2-ARID5B. (a) As-
sembly of the endogenous PHF2-ARID5B complex. Hepatocytes were
treated with the indicated compounds for 2h and were subjected to
immunoprecipitation (IP) and immunoblotting (IB) with the indicated
antibodies. Specificity of antibodies was confirmed in Supplementary
Fig. S2a,b. (b,c) Phosphorylation of endogenous PHF2 by PKA.

Hepatocytes (b) or 293F cells (c) were treated with vehicle, FSK, or
FSK +H89 as indicated for 2 h, then lysates were immunoprecipitated
using either anti-phospho-serine/threonine or anti-PHF2 antibodies. The
eluates were subjected to western blotting as indicated. (d-f) 293F

FSK-dependent PHF2 phosphorylation was negated by the PKA
inhibitor H89, but not by a MAP kinase inhibitor (MAPKij; Fig. 2d).
Cyclohexamide (CHX) did not attenuate PHF2 phosphorylation,
indicating that this event does not mediate de novo protein synthesis
(Fig. 2e). Knockdown of PKAa/f/y, but not of extracellular signal-
regulated kinases ERK1/2, abrogated PHF2 phosphorylation (Fig. 2d,f
and Supplementary Fig. S5a). PKA phosphorylated recombinant
PHF2 in in vitro phosphorylation assays (Fig. 2g). Using recombinant
PHF2 deletion mutants, the carboxy-terminal region of PHF2 was
mapped to be phosphorylated by PKA (Supplementary Fig. S5b,d), and
bears four conserved, PKA consensus serine residues (Supplementary
Fig. S5¢). Replacement of all of four serine residues by alanines (4SA:
Ser 757/Ser 899/Ser 954/Ser 1056) fully abrogated PKA phosphorylation
of PHF2 (Fig. 2h). Further mapping revealed that Ser 1056 seemed to
be a major phosphorylation site (Fig. 2h).

PKA-dependent demethylase activity of PHF2-ARID5B complex

We then asked if the demethylase activity of PHF2 for H3K9Me2 was
also PKA dependent with proteins purified from 293F cells as well
as recombinant proteins. Purified PHF2 protein, phosphorylated by
PKA in vitro, exhibited H3K9Me2 demethylase activity (Fig. 3a—c).
Conversely, PHF2 phosphorylated by FSK treatment in cells exhibited

cells transfected with Flag-PHF2 and indicated siRNAs were treated
with the indicated inhibitors, and immunoprecipitated with anti-Flag
antibodies. Immunoprecipitates were subjected to immunoblotting with
an anti-phospho-PKA substrate antibody. (d, lower panel) Averages +
s.d. The other data sets are shown in Supplementary Fig. S8b,c. The
asterisks show P < 0.05 in Student’s t-test. (g) /n vitro kinase assay with
recombinant PHF2 and PKA proteins. (h) PHF2 is phosphorylated by PKA
at Ser 757/899/954/1056. In the 4SA mutants, Ser 757/899/954/1056
were replaced with alanines. Uncropped images of blots are shown in
Supplementary Fig. S9.

the demethylase activity, but in vitro dephosphorylation by BAP
(bacterial alkaline phosphatase) negated the demethylase activity
(Fig. 3b,c). ARID5B was dispensable for the enzymatic activity of PHF2
in vitro (Fig. 3b,c), because ARID5B was absent from the purified
PHF2 protein fraction used (Supplementary Fig. S5f). Similarly,
recombinant PHF2 was activated by PKA phosphorylation (Fig. 3d—f).
PHF2 phosphorylation mutants were not activated by PKA (Fig. 3g).
Consistent with the in vitro analyses, H3K9Me2 demethylation by
overexpression of PHF2-ARID5B in cells was significantly enhanced by
FSK treatment, but 4SA was not activated by FSK (Fig. 3h). Subnuclear
localization patterns of the PHF2** mutant did not look identical
to that of wild-type PHF2 (Fig. 3h), raising the possibility that PHF2
phosphorylation is indispensable for chromatin association. Together,
these findings suggest that PKA-mediated phosphorylation induces
the demethylase activity of PHF2, unlike the other characterized jmjC
demethylases exhibiting constitutive enzymatic activities both in vivo

and in vitro as recombinant proteins*°.

ARID5B directs PKA-dependent promoter targeting of PHF2

We examined how PKA-mediated activation of the PHF2-ARID5B
complex activated transcription at endogenous promoters. In im-
mortalized hepatocytes, glucagon—-PKA signalling regulates glucose
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Figure 3 PKA-dependent demethylase activity of the PHF2-ARID5B complex.
(a) The indicated proteins were purified to near homogeneity from 293F
cells. Purification of PHF2 mutants is shown in Supplementary Fig. S5e.
Note that purified PHF2 did not include ARID5B (Supplementary Fig. S5f).
(b,c) In vitro histone demethylation assay. Purified PHF2 protein or PHF2
mutants were incubated with either PKA or BAP as indicated, and in vitro
demethylation assays were carried out with/without purified ARID5B protein.
(c) The signal intensity of three independent experiments (performed as

in b and Supplementary Fig. S8d) was quantified. Data are averages =+ s.d.

homeostasis through induction of gluconeogenic enzymes, such as
Pepck and G6Pase (refs 20-23). Chromatin immunoprecipitation
(ChIP) analysis revealed glucagon-PKA-induced promoter binding of
PHF2-ARID5B at the promoters of Pepck and G6Pase (Fig. 4a). Sequen-
tial ChIP (Re-ChIP) suggested that the endogenous PHF2-ARID5B
complex associates with the Pepck promoter (Fig. 4b), without protein
synthesis (Fig. 4b and Supplementary Fig. Sé6a). H89 abrogated
glucagon-mediated recruitment of these factors (Supplementary Fig.
S6b). PHF2 and ARID5B were co-recruited to Pepck promoter on
similar time-courses (Supplementary Fig. S6c). Demethylation of
H3K9Me2 was induced by FSK, coupled with PHE2 recruitment
(Fig. 4a and Supplementary Fig. S6c). However, the H3K9Mel level
was not significantly altered by FSK treatment (Fig. 4a), suggesting that
newly produced H3K9Mel was sequentially demethylated by other
H3K9 demethylase(s). H3K9Me3 signal was low in both the presence
and absence of FSK (Fig. 4a), consistent with the notion that Pepck and
G6Pase gene promoters are converted to euchromatin in hepatocytes.
We further explored the mechanism for PKA-dependent promoter
recruitment of PHF2-ARID5B. Although ARID5B was dispensable
for PHF2 enzymatic activity in vitro (Fig. 3b), ARID5B was required
for promoter targeting of PHF2 and H3K9Me?2 demethylation in vivo
(Fig. 4c, lanes 9-12, 4d). Knockdown of PHF2 by RNA interference
attenuated FSK-induced recruitment of ARTD5B to the promoters
(Fig. 4c, lanes 34, 4d), indicating the signal-sensing role of PHF2
in directing the complex to target promoters. A specific PHE2
mutant (H249A), lacking a conserved histidine essential for its lysine
demethylation activity (Fig. 1g), was unable to anchor PHF2—-ARID5B
on the target gene promoter (Fig. 4c, lanes 7, 8). We reasoned that
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The asterisks show P < 0.05 in Student’s t-test. (d—f) Recombinant PHF2
protein purified to near homogeneity from Sf9 cells was phosphorylated by
PKA, and in vitro demethylation assay was carried out as in b,c. (f) Data
are averages + s.d. (n=3, Supplementary Fig. S8e). The asterisk shows

P <0.05 in Student’s t-test. (g) /n vitro histone demethylation assay as

in b with the indicated PHF2 mutants. (h) H3K9Me2 demethylation activity
of PHF2-ARID5B is FSK dependent in vivo. 293F cells transfected with
wild-type or PHF2** were treated with FSK for 6 h. Scale bars, 40 um.
Uncropped images of blots are shown in Supplementary Fig. S9.

H3K9Me2

a lysine demethylation event occurred before chromatin association.
Therefore, we determined whether ARID5B was a substrate for
the PHF2 demethylase. Exogenously expressed ARID5B was lysine-
methylated in hepatocytes in the absence of FSK (Fig. 5a, lane 2).
PHF2 induced demethylation of ARID5B in the presence of FSK
through the jmjC domain (Fig. 5a, lanes 3-4). ARID5B, but not
other ARID family proteins, harbours a lysine motif (Lys 336) in
the ARID domain that resembles the alignment around histone
H3K9 (Supplementary Fig. S6d). When Lys 336 of ARID5B was
replaced by alanine (K336A), the methylated form of ARID5B was no
longer detected (Fig. 5a, lane 5). An anti-ARID5B-K336Me2 antibody
was raised, and the specificity was confirmed by an enzyme-linked
Immunosorbent assay with methylated ARID5B (Supplementary Fig.
S6e) as well as with unmethylated K336A or K336R mutants (Fig. 5b).
We found that PHF2 promoted demethylation of ARID5B at Lys 336
(Fig. 5¢). Catalytically inactive PHF2H%4 increased the ARID5B
K336Me2 mark (Fig. 5¢), and endogenous ARID5B was demethylated
following FSK treatment (Fig. 5d). Moreover, purified PHF2 protein
demethylated ARID5B at Lys 336 in vitro (Fig. 5e). We then used
a DNA pulldown (ABCD) assay to determine if demethylation of
Lys 336-methylated ARID5B converted it to an active form on DNA
binding. Only when cells were treated with FSK, ARID5B-PHEF2
complex was recruited to synthetic oligonucleotides containing the
Pepck promoter sequences**** (Fig. 5f). FSK-dependent DNA binding
of PHF2-ARID5B was abolished in PHF2H2494 and ARID5BK33%A
mutants (Fig. 5f). Neither PHF2"**A nor ARID5BX*** supported
FSK-mediated promoter recruitment and subsequent H3K9Me2
demethylation (Fig, 4c).

168

NATURE CELL BIOLOGY VOLUME 13 | NUMBER 6 | JUNE 2011

671

© 2011 Macmillan Publishers Limited. All rights reserved.



ARTICLES

a Pepck promoter c Anti-PHE2
Anti-  Anti-_ Anti- Anti-  Anti- _ Anti- . 5 54
'9G  PHF2 ARID5B H3K9Me2 H3K4Me3 H3KIMe1 H3KIMe3 Anti-H3 g,
5 5 51 5 125 5 C -
a a | = a @ 3
£ £ 44 - £ 10 g
5 G 3l 15} | % 24
© o 37 T [} | T =
g g g 51 o
2 £ 2 T S | |
o S 4l & o 12345678 91011121314
[ [ {
& e | i - 1 Anti-ARID58
123456 789101112 1314 1516 1718 1920 3
G6Pase promoter £
X x " o
19G Anti-  Anti- Anti- Anti- Anti- Anti- : g
PHF2 ARIDSB H3K9Me2  H3K4Me3 H3KIMel H3KOMe3 Anti-H3 8
c
= = 51 512.5 4 8
o a | Q | 5}
£ £ 44 = £ 104 o
ks k] o T k) 1234567 891011121314
[} o 34 [} 4 3
= 27 > Anti-H3KSMe2
£ € 29 = 5 5 T .
o o | m = = 8 2 r
5 § 11 l ll G =
a i a _ a | 5]
123456 789101112 1314 1516 1718 1920 )
Gapdh promoter é
lgg  Ant-  Anti-  Anti Anti- Anti-  Anti- 8
PHF2 ARID5B H3KgMe2  H3K4Me3 H3K9Me1 H3KIMe3 Anti-H3
‘ 12345678 91011121314
P ] = 5 — 4
- 2 3 1257 Anti-H3
£ 4 £ 4- £ 104 b=
5 % . 5 g
o 3 o o 3+ - ) 4 o
g | i g | g °
€ 2+ E 21 - - E 54 S
O i @ i @ v
oy S 4l . © | b
@ | g o o [ z ] @ = i B *.j,, @ S
1283456 789101112 1314 1516 1718 1920 o ;
Qliicagon < 4= 2 @ = 2R oURE S il St = 12345678 91011121314
FOl~= = 4 =2 > dmus e =3 SRS g ks SiRNA Control  PHF2 ARIDSB
Rescue Wwild Wild
b Pepck promoter Pepck promoter vector  Vector  {ynd H249AVector fyng K336A
FSK — 4 — 4 — 4 — 4 = 4 — 4 =
A _ Anti-ARIDSB G Anti-  Anti- ot Sk s L
First ChiP: e Anti-H3 9% PHF2 ARIDSB Anti-H3
Second ChIP:  1gG  Anti-PHF2 e TR e ——
5 0259 T T 5125 5 1284 d 8 3 g ¢
[=% Q. | Q. Q { =
£ 020" £ 104 2 £ 104 S < 2 3
5 ‘ s \ 5 s T 2z z Tz
o 0.15- -] 1 ] ® - o = o o ®
[ D -— jo2} D { [} 0 m @
o] o | ] < | - = N o« 0 w0
T 0.10 € 59 = £t 57 E x4 Q Q
@ i @ ) @ o o T T
9 5051 2 2 o o 4
o Y o) o} o) L
a r o a o Anti- B
1234 56 78 9101112 1314 1516 PHF2
FSK — + — # — 4 — % FSK — + — + — + -+ Anti--
CHX = = =02 4 & = = CHX + + + + + + + 4+ Al

Figure 4 PKA-dependent promoter targeting of PHF2-ARID5B. (a) En-
dogenous PHF2-ARID5B complex is recruited to the promoter regions
of Pepck and G6Pase, but not to that of Gapdh, in a glucagon-PKA-
dependent manner. Hepatocytes were treated with the indicated
compounds for 4h, and ChIP assays were carried out using indicated
antibodies. Data are average + s.d. (n=3). (b) ChIP and Re-ChIP
assays. Hepatocytes were treated with the indicated compounds for
4 h, then sequentially immunoprecipitated with the indicated antibodies.

PHF2-ARID5B acts as a co-activator for HNF4a in liver

of fasted mice

The transcriptional effects mediated by PHF2—-ARID5B were assessed
by monitoring gene expression in hepatocytes. PKA-dependent
gene induction of Pepck and G6Pase was impaired (Fig. 6a)
following knockdown of PHF2 or ARID5B in hepatocytes (Fig. 4d).
The unphosphorylated PHF2 mutant (PHF2*4) was unable to

Data are average =+ s.d. (n=23). (c) Promoter targeting and H3K9Me2
demethylase activities of PHF2-ARID5B mutants in ChIP assays.
Hepatocytes were transfected with the indicated siRNAs for 24 h, then
with the indicated rescue vector for a further 12 h. Then, cells were
treated with FSK for 4h and ChIP assays were carried out. Data are
average + s.d. (n=3). (d) The knockdown efficiencies of siRNAs
in immortalized hepatocytes were determined using samples in c.
Uncropped images of blots are shown in Supplementary Fig. S9.

confer the FSK response (Fig.6a). As HNF4a is activated by
the glucagon-PKA signalling pathway and serves as the primary
transcriptional activator on Pepck and G6Pase promoters??%26-28,
we further characterized the transcriptional co-activation function
of PHF2—-ARID5B towards HNF4c. In a luciferase reporter assay in
the presence of FSK (refs 12,29), PHF2 acted as a co-activator for

HNF4a (Fig. 6b) as well as FXR (Supplementary Fig. S7) in 293F
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Figure 5 ARID5B directs PKA-dependent promoter targeting of PHF2.
(@) PHF2 induces demethylation of ARID5B. The methylation state of
ARID5B in 293F cells was examined using anti-ARID5B and anti-methyl-
lysine antibodies. Wild-type, but not K336A, ARID5B is a lysine-methylated
protein. (b) Confirmation of specificity of anti-ARID5B-K336Me2 antibody.
293F cells were transfected with the indicated ARID5B mutants and im-
munoprecipitated/blotted with the indicated antibodies. (c) Demethylation
of ARID5B is dependent on the catalytic activity of PHF2 in hepatocytes
as revealed by the specified anti-ARID5B-K336Me2 antibody. (d) Lys 336
methylation of endogenous ARID5B. 293F cells were treated with FSK
for 4h, then immunoprecipitation was carried out as indicated. (e) /n
vitro ARID5B demethylation assay. Flag-ARID5B purified from 293F cells

cells***. HNF4a was enriched with PHE2-ARIDSB on the promoter
of Pepck (Fig. 6¢c). Knockdown of HNF4a decreased recruitment
of PHF2-ARIDS5B to the promoters (Fig. 6¢) and loss of PKA-
dependent gene induction (Fig. 6d). Thus, HNF4a and FXR have
emerged as transcriptional activators co-activated by PHF2—-ARID5B
in glucagon-PKA-induced gene expression.

Finally, the physiological relevance of the proposed PHF2-ARID5B
promoter targeting was examined under fasting conditions where PKA
signal was activated by glucagon in intact animals. In fasted mice,
co-recruitment of PHF2 with ARID5B was detected in the promoter
regions of Pepck and G6Pase in liver (Fig. 6e) with the expected decrease
in H3K9Me2 modification (Fig. 6e).

DISCUSSION

Here, we have identified a PKA-dependent histone demethylase
complex that conferred signal-dependent activation of its responsive
genes. Assembly of the PHF2-ARID5B complex, its recruitment
to target promoters, and its H3H9Me2 demethylase activity were
dependent on PKA activity. Thus, the PHF2-ARID5B complex seems
to serve as a signal-sensing epigenetic determinant through removal of
a repressive histone methylation mark****! on the transcriptionally
responsive promoters. The molecular basis of signal sensing by the
PHF2-ARIDSB complex is attributable to PKA-phosphorylation-
dependent induction of PHF2 enzymatic activity and complex assembly
with the DNA-binding subunit (ARID5B). Unlike PHF2, several other

was incubated with purified PHF2 (Fig. 3a), and the demethylation was
detected by western blotting. The signal intensity of three independent
experiments (in the upper panel and in Supplementary Fig. S8f) was
quantified. Data are averages =+ s.d. (n=3). The asterisk shows P < 0.05
in Student’s t-test. (f) DNA pulldown assay. The demethylase activity of
PHF2 and the ARID domain of ARID5B are required for promoter DNA
binding of PHF2-ARID5B in 293F cells. Cell lysates were mixed with avidin
beads which were bound to biotin-conjugated oligonucleotides bearing the
indicated promoter sequence. The bound protein was detected by western
blotting. There were similar levels of expression of PHF2-ARID5B and
their derivatives (lower panels). Uncropped images of blots are shown in
Supplementary Fig. S9.

jmjC demethylases possess both jmjC and ARID domains within a
single molecule>>*°. Thus, segregation of these two key domains into
separate subunits may enable PHF2 enzymatic activity to be linked to
PKA signalling through assembly of the PHF2—ARID5B complex and
intracomplex communication. Similarly, other jmjC demethylases that
are inactive as single subunits may be functionally regulated through
post-translational modifications and assembly with their complex
partner components. The characterization of a signal-dependent
histone demethylase provides further understanding of the regulatory
mechanism for dynamic epigenetic modification in physiological
contexts such as energy metabolism and homeostasis. O

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturecellbiology

Note: Supplementary Information is available on the Nature Cell Biology website
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Figure 6 PHF2-ARID5B co-activates HNF4« in liver of fasted mice.

(a) PHF2-ARID5B complex is indispensable for PKA-dependent gene
induction of Pepck and G6Pase. Hepatocytes were transfected with the
indicated siRNAs for 24 h, then incubated with the indicated compounds for
24 h, and quantatitive PCR with reverse transcription (RT-PCR) was carried
out. Data are average + s.d. (n=23). (b) PHF2-ARID5B co-activates HNF4a
in the presence of FSK in luciferase assays. 293F cells were transfected
with the indicated plasmids in the presence or absence of FSK for 24 h. Data
are average + s.d. (n=23). (c,d) Immortalized hepatocytes were transfected

with HNF4a siRNA for 48 h, and ChIP assay (c) and quantitative RT-PCR for
gene expression (d) were carried out. Knockdown efficiency was determined
in the right panels of (c) and (d). Data are average + s.d. (n=23). (e) Livers
from either fasted or fed mice (n=3) were subjected to ChIP analyses using
either anti-PHF2, anti-ARID5B, anti-H3K9Me2 or control 1gG and anti-H3
antibodies. Fasting induces recruitment of PHF2-ARID5B and reduction

of the H3K9Me2 mark in Pepck and G6Pase promoters, but not Gapdh
promoter. Data shown are average + s.d. of three independent experiments.
Uncropped images of blots are shown in Supplementary Fig. S9.
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METHODS

METHODS

Plasmids. Full-length complementary DNAs of human PHF2, ARID5B (full length,
B isoform), HNE-4a. and FXR were inserted into pcDNA3 vectors (Invitrogen;
ref. 11). Deletion mutants of PHF2 (amino acids 1-229 fused to amino acids
367-1103 for PHF247C) and ARIDSB (amino acids 1-318 fused to amino acids
423-1188 for ARID5BAARD) were amplified by PCR and cloned into pcDNA3
or pGEX4T-1 (Amersham). Point mutants of PHF2 (S1056A point mutation, or
S797A, S899A, S$954A and S1056A for PHF2**) and PHF2 jmjC-domain point
mutants (H249A, Y321A and H338A) and ARID5B were generated by site-directed
mutagenesis. HNF4RE-tk-luciferase reporter plasmids were generated by insertion
of the promoter region of consensus HNF4RE into a pGL3 luciferase plasmid®.
FXRE-tk-luciferase reporter plasmids were generated by insertion of the promoter
region of human SHP (—572 to —3) containing FXRE into a pGL3 luciferase plasmid.
Other plasmids have been described previously' 1222,

Biochemical purification and separation of FXR- or PHF2-associated
complexes. The hepatic tumour-derived HepG2 cells were incubated for 4 h with
either FSK (1 M) and/or H89 (1 uM), and the nuclear extracts were prepared as
previously described. For purification of the FXR-associating complex, the nuclear
extracts were bound to glutathione S-transferase (GST)-FXR(D/E)-His (amino
acids 193-477) columns'»'>?3. The bound complexes were eluted with reduced
glutathione (15mM) in elution buffer. Glycerol density gradients were carried out
as previously described''2*. The complex fraction was further loaded onto a
diethylaminoethyl column (Whatman), and eluted with different concentrations
of NaCl (150 mM~-1M). The purified proteins were silver-stained, and identified
by matrix-assisted laser desorption/ionization—time of flight mass spectrometry
(Bruker)'"123, For purification of PHF2-associating complex, the nuclear extracts
were loaded onto M2 anti-Flag agarose gel (Sigma, A2220, 069K6018). After washing
with binding buffer, the bound proteins were eluted by incubation with 1.0 ml of the
Flag peptide ([EYKEEEK],, 0.2 mgml™") (Sigma).

In vitro and in vivo lysine demethylation assay. The in vitro histone
demethylation assays were carried out as previously described”'®.

For preparation of demethylases from mammalian cells, 293F cells were
transfected with Flag-PHF2 plasmid using Lipofectamine 2000 (Invitrogen). After
36h, the cells were lysed with TNE (20 mM Tris at pH 7.8, 150 mM NaCl, 0.5 mM
EDTA, 1% NP40). For phosphorylation of PHF2 in vivo, cells were treated with
ESK (107 M) 2h before harvest, and NaF/Na,VOs; added to TNE. Cell lysates
were subjected to immunoprecipitation using anti-Flag antibody-conjugated beads
(Sigma, A2220, 069K6018). Beads were washed three times with high-salt TNE
(20 mM Tris at pH 7.8, 450 mM NaCl, 0.5mM EDTA, 1% NP40), and then three
tintes with EDTA-free TNE. For phosphorylation of PHF2 in vitro, beads were mixed
with 20 il PKA buffer (0.1 pg PKA (Upstate), 20 mM Tris at pH 7.5, 10 mM MgCl,,
100 uM ATP and incubated for 1h at 37 °C. Then, beads were washed three times
with demethylase stock buffer (20 mM Tris at pH 7.5, 150 mM KCl, 10% glycerol).
The prepared PHF2 protein was used immediately for the demethylation reaction.
Alternatively, the purified proteins were eluted with Flag elution buffer (200 mgml™*
Flag peptide, 20 mM Tris at pH 7.5, 450 mM KCl, 10% glycerol).

For preparation of recombinant proteins, recombinant Flag-PHF2 was purified
using Bac-to-Bac baculovirus expression systems (Invitrogen) according to the
manufacturer’s instructions. The purified Flag-PHF2 complex was prepared as
described in the section on biochemical purification.

For demethylase reaction, 2 g of PHF2 protein or 0.2ug of PHF2 complex
was mixed with substrates (calf thymus histone (101g) (Sigma, H9250), purified
mononucleosome (10pg), Flag~ARID5B protein purified from 293F cells (2pg)
or dimethyl H3 (Lys 9) peptide 1-21 (0.2pg) (Upstate 12-430)) in the
reaction buffer (final volume 20ul) (20mM Tris-HCl at pH7.5, 150 mM
KCl, 50uM Fe(NH,),(SO4),~6H,0, 1 mM a-ketoglutarate, 1 mM ascorbate,
20 uM ZnCl,). The mixtures were incubated at 37 °C for 12 h, terminated by boiling
for 5min in SDS sample buffer’'?. The histone modification or methylation of
ARIDS5B was detected by specific antibodies (see the antibody section). The signal
intensity of western blots was quantified using Scion Image.

For histone demethylase assay detecting formaldehyde release, purified PHF2
complex (0.2 jig) was incubated with native histones (10 ug) for 30 min according
to the manufacturer’s protocol using DetectXTM (LUMINOS, K010-F1).

For in vivo histone demethylation assay, cells were first lysed in TNE, and the
pellet fraction was resuspended in TNE and sonicated for 20's (Tomy SEIKO) to
obtain the chromatin fraction®>'®?*.

Antibodies, immunoprecipitation and western blotting. Anti-PHF2 and
anti-ARID5B polyclonal antibodies were raised against PHF2 peptides (5'-
ERSVDVTDVTKQKDC-3, 5'-CKPKPVRDEYEYVSD-3', 5'-CAYKSDDSSDE-

GSLH-3") and ARID5B peptides (5'-CDTPQGRNSDHGEDE-3', 5'—CTDQGSNSEK—I 7
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VAEEA-3, 5-CEQTSKYPSRDMYRE-3'), respectively, by Operon Biotechnology.
Anti-ARID5B K336Me2 antibody was raised using the dimethylated peptide
(MKER(KMe2)TPIER: ARIDSB K336Me2), and purified over a peptide affinity
column (MBL). The antibodies that bound to the non-methylated peptide
(MKERKTPIER) were removed using an affinity column. The specificity of the
antibody toward K336Me2 over K336Me0, Mel and Me3 peptides was determined
in Supplementary Fig. S20 using enzyme-linked immunosorbent assays (MBL).

For immunoprecipitation, cells were treated with FSK (1uM) or glucagon
(200 M) for 2h and cells were lysed in TNE. Cell lysates were incubated with the
indicated antibodies listed in Supplementary Table SI. A full list of antibodies and
the dilutions used is given in Supplementary Table S1.

Cell culture, transfection and luciferase assays. Mouse immortalized hepato-
cytes, TLR2 cells, were obtained from RIKEN (cell no. RCB0750; ref. 35). The
immortalized hepatocytes were cultured at 33 °C in DMEM containing 2% fetal
bovine serum, 10 ugml~" transferrin, 1 pgml™" insulin and 10 ngml™" epidermal
growth factor, using collagen-coated dishes. Other cell lines are cultured in DMEM
supplemented with 10% fetal bovine serum. Cells were treated with glucagon
(200 nM), FSK (1 uM), H89 (1 pM), CHX (1 uM), GW4064 (1 M), dexametasone
(10nM) or 25-OH cholesterol (10 jig ml™!) either for 24 h (luciferase assays), for 6 h
(in vivo demethylation assays) or for 2h (immunoprecipitation).

For luciferase assays, cells at 40-50% confluence were transfected with the
indicated plasmids (0.25 pg reporter plasmids, 0.1 ug HNF4a, 0.1 g FXR, 0.05 g of
PHF2) using Lipofectamine reagent (Gibco BRL). Luciferase activity was determined
with the luciferase assay system (Promega) as previously described!123233,

ChIP experiments. ChIP assays were carried out essentially as previously
described!"1%%. Hepatocytes were treated with glucagon (200 nM), FSK (1 M)
and/or H89 (1uM) for 4h or as indicated. Then, cells were subjected to ChIP
experiment as described'. The precipitated DNA fragments were amplified by
quantitative PCR (gPCR; TAKARA). For gPCR with reverse transcription, the
specific primer sets were designed and provided by TAKARA. The primer sets are
shown in Supplementary Table S1.

Fasting responses in mice. All mice were maintained according to the protocol
approved by the Animal Care and Use Committee of the University of Tokyo.

For ChIP assays'!, eight-week-old C57BL/6 male mice were either deprived of
food or fed for 6h. Livers were isolated, minced and fixed in PBS containing 1%
formaldehyde at 4°C overnight. The cells were washed in PBS twice, then sonicated
in PBS containing 0.2 mM EDTA and 1% Triton X-100. The cell lysates were
subjected to ChIP assays as previously described'".

RNA isolation and qPCR. Messenger RNA was isolated as previously reported®.
For qPCR with reverse transcription, the specific primer sets were designed
and provided by TAKARA. The primer sequences are shown in Supple-
mentary Table S1, and the amount was normalized using glyceraldehyde-
3-phosphate dehydrogenase.

RNA interference experiments. The siRNAs as shown in Supplementary Table
S1, together with siCONTROL non-targeting siRNA no. 2 (catalogue no. D-001210-
02-20), were synthesized by and obtained from Dharmacon/Thermo, and were
transfected using Lipofectamine 2000 reagent (Invitrogen) as previously described'".
The two siRNAs used for each experiment, and the results of target sequence no. 1
(for PHF2, ARID5B and HNF4a) are shown.

Immunostaining. Immunostaining was carried out essentially as previously
described®. 293F cells were transfected with PHF2 or its derivatives, and 12 h after
the transfection the cells were treated with ESK for 6 h, then fixed and subjected to
immunostaining®. Antibodies used are described in the antibody section.

In vitro and in vivo kinase assays. Recombinant GST-PHF2 deletion mutants
expressed in Escherichia coli (1pg), or Flag-PHF2 and its derivatives (1 pg)
immunoprecipitated from 293F cells using anti-Flag antibody and eluted by Flag
peptide, were incubated with PKA (Upstate; 2ng) in reaction buffer (20 mM
Tris-HCl at pH 7.5, 10 mM MgCl, y =P ATP) in the presence or absence of PKA
inhibitor (10 uM H89) for 15 min at 30°C.

For detection of phosphorylated proteins in cells, hepatocytes were treated with
the indicated ligands for 2 h, then subjected to phospho-protein purification using
a PhosphoProtein Purification Kit (QIAGEN; ref. 12). Alternatively, cell lysates
éere immunoprecipitated using anti-PHF2 or anti-Flag as indicated, then western
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blotted using anti-phospho-PKA-substrate antibody (Cell Signaling Technology,
100G7E, 9624S). For statistical analysis, the signal intensity of western blots
was quantified using Scion Image, and the average =+ s.d. of four independent
experiments was shown with Student’s ¢-test.

DNA precipitation assays. DNA precipitation assays were carried out essentially
as described®?”. Human PckI promoter (—312 ~ 23) was amplified by PCR using
biotinylated primers. Then, the biotinylated DNA was annealed and bound to avidin
beads (Invitrogen). 293F cells were transfected with Flag-ARID5B, HA-PHF2 and
their derivatives, and incubated with/without FSK for 2 h. Cell lysates were incubated
with the DNA-bound avidin beads for 30 min in TNE buffer. The samples were
subjected to western blotting®?7,
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Figure S1 Purification of PHF2/ARID5B complex. a, Purification of a signal-
dependent GST-FXR-associated proteins from HepG2 cells. Nuclear extracts
from FSK-treated HepG2 cells were loaded on GST-FXR-bound glutathione
sepharose beads. The bound proteins were analyzed by silver staining. b,
The scheme for the purification of nuclear receptor-associating complexes.
The experimental details were supplied in the supplemental methods. c,
Purification of a GST-FXR-associated complex from HepG2 cells. Nuclear

extracts from FSK-treated HepG2 cells were loaded on GST-FXR-bound
glutathione sepharose beads. The eluted complexes were separated by glycerol
density gradients as indicated. d, e, The isolated complexes were silver
stained, and each protein was identified by MALDI-TOF/MS and fingerprinting.
f, PHF2 and ARID5B form a complex with GST-FXR. The purified GST-FXR-
associating complex in (c) was further separated by DEAE column with different
NaCl concentrations. The elutants were subjected to Western blotting.
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Figure S2 The expression profiles of PHF2 and ARID5B. a, b, Specificity of PHF2 and ARID5B were determined by semi-quantitative PCR using
confirmation of the newly raised antibodies. Normal 293F cell lysates or cDNAs from human tissues (Clontech, human cDNA panel, #636742 and
lysates transfected with the indicated expression vectors were subjected to #636743). d, Protein expression of PHF2 and ARID5B in various human
Western blotting. This confirmed that these anti-PHF2 (a) and anti-ARID5B cell lines. Total cell lysates were prepared from the indicated human cell
(b) antibodies detect endogenous proteins with high specificity. ¢, The lines. Equal amounts of proteins were subjected to Western blotting with the
mRNA expression profiles of human PHF2 and ARID5B. The mRNA levels indicated antibodies.
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antibody. e-g, GST pull-down assay with 35S-labeled PHF2 and GST-ARID5B
mutants. GST-ARID5B mutants, described in (g), were incubated with /n
vitro-translated PHF2. Bound proteins were detected by autoradiography.

Figure S3 Direct association of PHF2/ARID5B with HNF4a and FXR. a-d, GST
pull-down assay with recombinant PHF2 protein and GST-tagged FXR(DE),
HNF4a, ERa (DEF), or VDR. Bound protein was detected with anti-PHF2
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Figure S4 Demethylation activity of PHF2. a, Demethylase assay with H3
peptide. Purified PHF2 protein or mock immunoprecipitants incubated
with PKA as in Fig. 3b was subjected to the demethylase assay with 0.2
ng of biotin-conjugated dimethyl histone H3 (Lys9) peptide (residues
1-21) (Upstate, 12-430). Demethylation was determined using MALDI-
TOF/MS. Detailed methods were supplied as supplementary methods. b,
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Immunostaining of 293F cells was performed as described in Fig. 1f. c,
Hepatocytes were treated with FSK (10°® M) and MG132 (10> M) for two
hrs. Total cell lysates were subjected to immunoprecipitation as indicated. d,
FSK treatment did not alter protein expression levels of PHF2, ARID5B, or
HNF-40. Hepatocytes were treated with FSK (106 M) or MG132 (10° M) as
indicated for 6 hrs. Cell lysates were subjected to Western blotting.
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Figure S5 PKA phosphorylates PHF2 in vitro and in vivo. a, As controls vitro. In vitro kinase assay as indicated. e, 293F cells were transfected
for Fig. 2d, expression levels of the indicated genes were quantified with FLAG-PHF2 or its mutant, and PHF2 was purified to of near
by qPCR. Data shows average +/-S.D. (n=3). b, The schematic homogeneity using anti-FLAG affinity column. Purified proteins were
representation of deletion mutants of PHF2 used. ¢, The schematic subjected to silver staining as indicated. f, Purified protein in Fig. 3a
representation of phosphorylation sites within PHF2 determined in were subjected to Western blotting. Note that purified PHF2 did not
Figure 2. d, PHF2 is phosphorylated by PKA at C-terminal region in include ARID5B.
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Figure S6 Promoter recruitment of PHF2/ARID5B. a, Protein turn-over of
PHF2 as revealed by cycloheximide treatment. b, Recruitment of PHF2

and ARID5B to the Pepck promoter was abolished by a PKA inhibitor, H89.
Hepatocytes were treated with glucagon and/or H89 (1 uM) for four hrs, then
ChIP assay was performed using the indicated antibodies. ¢,, Co-recruitment
of PHF2/ARID5B and demethylation of H3K9Me2 in Pepck promoter over
similar time courses. Hepatocytes were treated with FSK for the indicated
time, then a ChIP assay was performed as indicated. d, The schematic

representation of amino acid sequences of ARID5B and other ARID family
proteins. The sequence of histone H3K9 is also represented. e, Specificity
of anti-ARID5B K336Me2 antibody. A rabbit polyclonal antibody against di-
methylated Lys336 of ARID5B (anti-ARID5B K336Me2) was raised by using
the di-methylated peptide [ARID5B K336Me2; MKER(Kme2)TPIER], and
purified over a peptide-affinity column. The specificity of antibody toward
K336Me2 peptide over non-methylated, mono-methylated, or tri-methylated
peptides was determined by ELISA assays.
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