3.4 Quality of interactions of key protein sets

STRING, HIPPIE and MINT assign quality scores to each
interaction and this is used to assess the confidence level of an
analysis; HIPPIE and MINT calculate the confidence score based
on accumulated experimental evidence of protein interactions
(M.S. et al., submitted)(Ceol, et al., 2010). This stringent approach
leads to scores below 0.5 for more than 75% of the interactions
reported in these databases (Figure 3A). STRING calculates its
confidence score based on the likelihood that two proteins have a
functional association that is as specific as the association between
an average pair of proteins present in the same KEGG pathway
(Kanehisa, et al., 2010; Szklarczyk, et al., 2011). In addition,
higher scores are assigned to associations supported by several
sources of evidence. Consequently, intensively-studied interactions
are more likely to be supported by higher confidence scores.
Indeed, we find that more than 80% of the STRING interactions
have scores above the acceptable cut-off of 400 (defined by the
authors in the program web-site).

Next, we asked whether heavily studied proteins are
correspondingly covered by good quality interactions in the PPI
databases. To address this question, we selected the 10% most
popular human genes/proteins from the literature (that is, 2921
genes/proteins), and ranked them by popularity based on the
number of PubMed entries mentioning these genes (Supplementary
Table 2); of those, 2,790 were present in HIPPIE, 2,460 in
STRING and 1,653 in MINT database.

We performed pair-wise comparisons of the confidence levels
of the interactions shared between databases, and that involve the
10% most intensively studied proteins (Figure 3B; Supplementary
Table 3). We observed a lack of agreement between the scores
calculated in the databases, i.e. several interactions reported as
high confidence in one database are reported as low confidence
interactions in the other. In the comparison between STRING and
HIPPIE, ~70% of the interactions involving the 10% most studied
proteins have a high confidence score in STRING but low
confidence score in HIPPIE. On the other hand, we observed that
14% of shared interactions had a score above cut-off in both
databases. An example is the interaction between TPS53 and
HMGB1 (Jayaraman, et al., 1998), with a score of 0.83 in HIPPIE
and 932 in STRING.

As mentioned before, STRING and HIPPIE are derived
databases, thus several interactions shared between them were
originally reported in MINT. However, each database assign
different scores to those interactions, resulting in no
correspondence between the scores of different databases.
Therefore, to search for tendencies or biases of each scoring
scheme, we considered interactions involving at least one popular
protein and with conflicting scores between the databases. With
these interactions, we created four groups with distinct
characteristics (Table 2) and evaluated a sample of 100 interactions
(25 from each group), by manually searching experimental
evidence supporting these interactions in the scientific literature
(Supplementary Table 4).

We observed that a protein association had high confidence
score only in STRING (and low scores in the other two databases),
the experimental evidence supporting an association could not be
readily identified, reflecting that the scoring scheme used by
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Fig. 3. (A) Three databases assign quality scores for protein interactions
(HIPPIE, MINT) or functional associations (STRING). MINT and HIPPIE
have a stringent quality score based on cumulative evidence from multiple
sources and therefore the majority of its interactions are below 0.5.
STRING on the other hand assigns a high score for proteins that are
reported in pathway databases (Szklarczyk, et al., 2011). (B) Confidence
scores of interactions that involve intensively studied proteins. We
observed that in general there is no agreement between the database scores,
with the exception that among the 31,229 interactions shared between
STRING and HIPPIE, 4,539 have high confidence score in both databases.
In addition, in both comparisens involving STRING, no proteins had low
confidence score in MINT or HIPPIE and high confidence score in
STRING.

STRING - assigning a high score to proteins belonging to the same
pathway - may be difficult to validate. In contrast, when either
MINT or HIPPIE assigned high scores to an interaction, the
supporting evidence could be confirmed in one or more
publications; although HIPPIE has a very strict scoring scheme:
occasionally more than one publication reported an interaction but
it still received a low score. Lastly, as part of the iMEX curation
guidelines (Orchard, et al., 2007), the scoring scheme used by
MINT was very accurate: interactions with scores greater than 0.5
could be readily confirmed by manuscripts often containing the
identity of both interacting partners in its title and specifically
investigating that interaction.

Table 2. Groups of interactions

High-Score' Low-Score’ Interactions®
STRING HIPPIE 22,177
STRING HIPPIE and MINT 2,225
STRING and HIPPIE MINT 448
STRING and MINT HIPPIE 353

'High-scores considered for STRING, MINT and HIPPIE were values greater than 400, 0.5 and
0.5. *Low-scores for STRING, MINT and HIPPIE were values lower than or equal to 400, 0.5

and 0.5. *All interactions included at least one popular protein.

Summarizing, we observed that although there are differences
in the calculations of the quality score, interactions that are highly
trustable are those that supported by different experimental
systems (especially low-throughput methods), and are manually
curated from literature. Ideally, interaction studies should be

-379-



carried out in different experimental systems to overcome
technique-specific bias (Braun, et al., 2009; Chen, et al., 2010; von
Mering, et al., 2002).

3.5 Subnetworks based on organ- and cell type-specific
expression data

Protein-protein interaction databases are used to address a wide
range of questions that span different organisms, cell types,
developmental stages, and/or phases of the cell cycle. To date, no
public PPI database takes these issues into account, with the
exception of the HPRD team, which in the long-term may also
incorporate tissue-specific expression information. Some private
companies, e.g. Ingenuity, provide tissue specific network
construction, but as they limit the size of the PPI networks to be on
the order of hundreds of nodes, these are not the most suitable
tools for whole network studies. Here, we assessed how the
incorporation of organ- and cell-type-specific expression data
influence network analysis.

Using a gene expression dataset of 84 human organs and cell
types (Su, et al., 2004; Wu, et al., 2009), we first selected all genes
with moderate to high expression levels in each cell type (see
Methods). Next, we evaluated the coverage of each database for
the proteins expressed from these genes. STRING and HIPPIE
cover about 60% of the organ/cell type-specific proteins, whereas
the coverage reaches about 40-50% in the other databases
(Supplementary Figure 4). It is also interesting to note that all
databases have a relatively even coverage of all organs and cell
types, although the number of genes expressed varies significantly
between the different organs/cell types (Supplementary Figure 5).
For example, ten times more genes are expressed in liver and heart
as compared to the ovary; yet, the percent coverage in the PPI
databases is comparable for these three organs.

To create organ/cell type-specific PPl networks, we then
identified in the PPI database interactions for which both partners
are expressed in the same organ/cell type (while eliminating
interactions between proteins that are expressed in different
organs/cell types). Each organ/cell type subnetwork was then built
from the resulting dataset and we included 570 housekeeping
proteins that are believed to be expressed in all tissues (Eisenberg
and Levanon, 2003). As expected, the resulting organ/cell type-
specific subnetworks possess significantly fewer interactions than
the original PPl databases (between 1-25%) (Supplementary
Figure 6). In addition, these subnetworks are considerably more
fragmented than the parent networks, resulting in several smaller
connected components (Supplementary Figure 7). We observed
significant differences between the numbers of interactions for
organ/cell type-specific subnetworks, which strongly correlated
with the number of genes expressed in the respective organ/cell
type (Supplementary Figure 8). For example, more than 6,000
different genes are expressed in BDCA dendritic cells, resulting in
a subnetworks that retained 20% of the interactions found in the
respective parental PPI databases. By contrast, fewer than 700
genes are expressed in ovary or skin, which reduced the specific
subnetworks to just 0.4% of interactions reported in the parental
networks (Supplementary Figure 6).

To assess the potential value of organ/cell type-specific
subnetworks, we analyzed the interaction of cellular proteins with
two medically relevant human viruses, hepatitis C virus (HCV) and

human immunodeficiency virus (HIV). First, we obtained a list of
481 human proteins that interact with HCV proteins (de Chassey,
et al., 2008) and compared these to the HIPPIE subnetwork created
for liver. The HIPPIE database was chosen because it contains a
relatively large number of interactions and covers most of the other
databases; we focused on the liver subnetwork because of the
relevance of this organ in HCV infection (Patrick, 1999).

From the original list of 481 HCV interactors, 98 proteins were
present in the liver-specific subnetwork and they interacted with
394 different host proteins (Supplementary Table 5). Comparing
the pathway membership of these 492 proteins (interactors and
neighbors) with proteins specifically expressed in the liver as a
background set, we observed appreciable enrichment in
complement and coagulation cascades (p-value: 0.04), apoptosis
(p-value: 2.94e-4), Chemokine signaling pathway (p-value:
0.0009) and focal adhesion (p-value: 1.03e-7). By contrast, when
we used the complete HIPPIE database, 372 of 481 HCV
interactors mapped to the database and were involved in 8,489
interactions with 3,317 different proteins. Using the same analysis
that we used for the subnetwork analysis, the HCV interactors and
their neighbors fell into many different categories, and no specific
pathways or Gene Ontology categories, were significantly
enriched, making it very difficult to identify critical pathways for
the HCV pathogenesis. Hence, organ/cell type-specific
subnetworks may aid in the identification of nodes that are critical
in specific biological processes.

As a second example of subnetwork analysis, we studied the
interaction of HIV with host cells. From the HIV-1 Human Protein
Database (Ptak, et al., 2008), we obtained a dataset of 1,432 host
proteins that interact with viral proteins. Next, we created
subnetworks containing housekeeping genes and genes expressed
in BDCA dendritic cells (DC), CD14+ monocytes, and CD4+ T-
cells (all datasets were derived from the HIPPIE database). These
datasets were chosen since these cell types play critical roles in
HIV infections (Dragic, et al., 1996; McDonald, et al., 2003; Zhu,
et al., 2002).

From the original list of 1,432 cellular proteins that interact
with HIV proteins, 72 were exclusively found in the DC
subnetwork and had 55 neighbors not present in the other two
subnetworks. According to the pathway databases, these proteins
are present in the systemic lupus erythematosus pathway (p-value:
0.001) and in the B-cell receptor signaling pathway (p-value: 0.01).
By contrast, 65 cellular HIV interactors were restricted to the
CD14+ monocyte subnetwork (interacting with 31 exclusive
neighbors), and showed an enrichment for the apoptosis pathway
(p-value: 0.08), Focal Adhesion (p-value: 0.007) and Fc gamma R-
mediated phagocytosis (p-value: 0.04). Finally, 58 cellular HIV
interactors (and 39 neighbors) were only detected in the CD4+ T-
cell subnetwork, with an enrichment for T-cell receptor signaling
(p-value: 6.8e-5) and primary immunodeficiency pathway (p-
value: 0.05). These analyses demonstrate cell-type-specific
interactions between HIV and cellular proteins that may be critical
for the infection process. The complete list of cell-specific HIV
interactors and neighbors is available in Supplementary Table 6 .

4 DISCUSSION
In this study, we compared six- widely used public PPI databases
for their basic characteristics, their neighborhood features, and
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their overlap with the other databases analyzed. In addition, we
demonstrated that predictions could be significantly improved by
the analysis of cell/tissue specific subnetworks, and by obtaining
additional experimental verification for the interaction partners of
the most intensively studied genes from literature.

The six databases compared here have different levels of
coverage, in regard to both the number of proteins and the number
of protein-protein interactions. Nonetheless, they assign similar
topological positions to particular proteins within the network;
hence, proteins with few or many interaction partners in one
database are likely to have few or many interaction partners in the
other databases analyzed. However, the identity of these
interaction partners may differ between the databases, resulting in
great uncertainty in model building. These differences reflect the
differences in the algorithms, portion of literature curated by the
different groups (Turinsky, et al., 2010), and the experimental
techniques used to build the databases.

Many protein-protein interaction datasets are generated by
expressing the two proteins of interest in one cell (for example, in
the yeast two-hybrid system). In such in vitro assays, proteins may
be co-expressed and interact, but in reality their expression may be
dependent on cell type, different experimental stages, and/or
during different phases of the cell cycle/organism development. As
a result, the currently available PPl databases are believed to
contain a significant percentage of false-positive entries (Deane, et
al., 2002). To address this weakness, PPl databases could be
combined with the increasing number of transcriptomics or
proteomics datasets that assess the expression of genes or proteins
in a specific organ, cell type, developmental or cell cycle stage. We
here provide two examples that demonstrate the potential of this
approach.

In one example, we show that the host cellular interaction
partners of HCV proteins are not enriched for particular gene
ontology categories or pathways in an analysis based on the entire
HIPPIE database; in contrast, three KEGG pathways (apoptosis,
focal adhesion, complement and coagulation cascades) are highly
enriched when the HIPPIE database was analyzed in combination
with a liver-specific gene expression dataset. Regulation of
apoptosis may play a critical role in HCV infection to establish
chronic or persistent infections (Bantel and Schulze-Osthoff,
2003). Activation of the complement and coagulation pathways
has been described for HCV infections (Ueda, et al., 1993), and it
was verified that hepatic inflammation can be reduced by
administering CDS55, a regulator of the complement pathway
(Chang, et al., 2009). However, the significance of proteins
involved in focal adhesion for HCV infections is currently not
known, which may be addressed in further investigations. This
example demonstrates how the generation of subnetworks may
help in the prioritization of pathways for future studies.

In the second example, we show that each cell type subnetwork
has exclusive proteins that interact with HIV. Among the exclusive
proteins from each cell type are some representing critical
processes studied and validated experimentally. Apoptosis induced
by HIV proteins was reported to be a critical aspect of its
pathogenicity (Castedo, et al., 2002; Rasola, et al., 2001; Zheng, et
al., 2007). Cases of patients with concomitant systemic lupus
erythematosus and HIV have been reported (Calza, et al., 2003;

Gould and Tikly, 2004) and the interplay between autoimmune
diseases and retroviruses is an active topic of research (Balada, et
al,, 2010). In addition, it was observed the association between
HIV-infection and the down regulation of Fc-gammaR-mediated
phagocytosis in HIV infected macrophages (Kedzierska, et al.,
2002).

Some studies have generated subnetworks to address medical
questions. In one example, subnetworks from normal and cancer
cells have been established to identify protein-protein interactions
that are characteristic of cancer development and could be targeted
to ‘rewire’ these cells (Quayle, et al., 2007). In the context of a
metabolic study, the creation of tissue-specific subnetworks helped
to elucidate post-transcriptional regulation of genes from 10
different tissues that are involved in metabolic diseases (Shlomi, et
al., 2008). Collectively, these and our own analyses demonstrate
that cell/tissue specific subnetworks can be used to increment the
biological relevance of PPI datasets.

Our analysis also revealed that current databases possess many
interactions that are characterized by low confidence scores, a
finding that is of particular concern for intensively studied proteins.
While it is not feasible to verify all predicted interactions with
different techniques, we suggest here focusing PPI evaluation
efforts on the verification of low-confidence interactions of
selected proteins widely used in research models but lacking high-
confidence interactions. Towards this goal, we created a priority
list of interactions that include highly investigated proteins such as
TP53 (described earlier), MAPKI1 (mitogen-activated protein
kinase 1), BCL2 (B-cell CLL/lymphoma 2), or TNF (tumor
necrosis factor F), among many others. Additional experimental
data confirming or revealing new interactions of these ‘key
players’ with their predicted cellular interaction partners will push
PPI databases a step closer to becoming a reliable, daily-use tool
for researchers, in the same way sequence analysis and protein
structure databases already are.
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Software for systems biology:
from tools to integrated platforms

and the concept of an integrated platform.

Systems biology emerged in the mid-1990s with the
aim of achieving a system-level understanding of living
organisms and applying this knowledge in various fields,
including medicine and biotechnology'~. Early applica-
tions included modelling cell cycle dynamics®”, such as
a computational model that explained the effects of over
120 knockout mutations on cell cycle dynamics in yeast’.
Significant progress has also been made in the analysis of
signalling pathways — for example, in understanding the
dynamics of mitogen-activated protein kinase (MAPK)
signalling® — and in cancer drug discovery applications,
in which a reagent that was developed using model-
based computational analysis is now in clinical trials>'°.

System-level studies are often built on molecular and
genetic findings and ‘omics’ studies, such as genomics,
proteomics, and metabolomics. The main challenges
in systems biology are the complexity of the systems,
the vast quantities of data and the scattered pieces of
knowledge; these all have to be integrated; therefore,
systematic, computational tools are crucially important
in systems biology. Software platforms have transformed
industries — such as aviation, entertainment and elec-
tronics — by drastically improving productivity and
by offering new capabilities'. Biological sciences are
no different. In particular, the success of systems biol-
ogy, and its application in areas such as systems drug
design, requires sophisticated data handling, model-
ling, integrated computational analysis and knowledge
integration. For example, the creation of computational
models enables us to predict the behaviours of bio-
logical systems, thereby helping us to understand the

Samik Ghosh* Yukiko Matsuoka**, Yoshiyuki AsaiS, Kun-Yi Hsin$ and Hiroaki Kitano*s!

Abstract | Understanding complex biological systems requires extensive support from
software tools. Such tools are needed at each step of a systems biology computational
workflow, which typically consists of data handling, network inference, deep curation,
dynamical simulation and model analysis. In addition, there are now efforts to develop
integrated software platforms, so that tools that are used at different stages of the
workflow and by different researchers can easily be used together. This Review describes
the types of software tools that are required at different stages of systems biology research
and the current options that are available for systems biology researchers. We also discuss
the challenges and prospects for modelling the effects of genetic changes on physiology

underlying molecular mechanisms and to predict the
impact of perturbations, such as drug treatments, on
these biological systems.

Software tools and resources for systems biology need
to be tailored to their intended applications in order to
achieve the objectives of novel biological discoveries,
drug design and answers to life-science research ques-
tions. A typical workflow for computational analysis is
a cyclical process involving data acquisition, modelling
and analysis. Prediction and explanation capabilities are
associated with this cycle, and the integration and shar-
ing of knowledge help to sustain these capabilities (FIG. 1).

Here we describe the principles of each stage in this
workflow and some examples of current tools. Links to
the tools and resources mentioned in this Review are
provided in Supplementary information S (table), along
with information about their type and access policy.
TABLE 1 provides a matrix to help users choose appropri-
ate tools and resources. We provide a perspective on the
current challenges facing systems biology software tools,
and we describe our view that integrated software plat-
forms will help to address future research problems in
biology and medicine.

Data management

The proper acquisition and handling of data is crucially
important for both the generation and verification of
hypotheses. The rapid development of high-throughput
experimental techniques is transforming life-science
research into ‘big datd’ science'?, and although numerous
data-management systems exist'>'S, the heterogeneity of
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< Figure 1| Workflow of computational tasks in systems biology. Aresearch cycle
showing the computational modelling and analyses that are involved in the workflow.
a| The workflow starts from the ‘problem definition’ of the research project (shown in
the green box). One stream of the workflow starts with experimental design, followed
by the execution of experiments, data management and network inference. A parallel
stream of the workflow consists of deep curation, parameter optimization, dynamical
model analysis and modelverification using experimental data. Outputs are shown in
red boxes. Discrepancies between simulation results from the computational model
and experimental data indicates that some of the underlying hypotheses need to be
modified; the simulation should then be tested again when these new hypotheses
are incorporated into the model. Transformation of a network that is inferred from
large-scale data into a precise, mechanism-based modelis an important step. However,
this step is not yet fully achievable in practice, as indicated by the dotted arrow inthe
figure.b| An example biological application of the workflow from part a; in this case,
research aiming to understand mechanisms of drug resistance in breast cancer. After
the definition of the problem, time-series, multiple perturbation experiments would be
designed, followed by data annotation, data analysis and network inference. Results
from the data analysis would be used to define the scope of deep curation. However, in
some cases, a molecular interaction map would be created before the experiment is
designed, so that the experiments could be designed based on existing knowledge.
When moving from the molecular interaction map to dynamical simulation, often only
a part of the deep-curation-based molecular interaction map would be used for
dynamical modelling, by which possible hypotheses for drug resistance mechanisms
could be generated. Thisis an iterative process involving both ‘dry’ and ‘wet’ research.
EGFR, epidermal growth factor receptor; mTOR, mammalian target of rapamycin;
SILAC, stable isotope labelling with amino acids in cell culture.

formats, identifiers and data schema pose serious chal-
lenges. In this context, data-management systems need
standardized formats for data exchange, globally unique
identifiers for data mapping'’ and common interfaces
that allow the integration of disparate software tools in
a computational workflow.

Data-management standards. The development of data
representation and communication standards for sys-
tems biology and bioinformatics has become a distinct
field of work'®. Standards for data management have
focused on three core aspects: minimum information,
file formats and ontologies.

Minimum information is a checklist of required
supporting information for data sets from different
experiments. Examples include: Minimum Information
About a Microarray Experiment (MIAME)", Minimum
Information About a Proteomic Experiment (MIAPE)?**
and the Minimum Information for Biological and
Biomedical Investigation (MIBBI) project®. An impor-
tant element of these standardization efforts is the incor-
poration of metadata (that is, data about data), which has
led to the definition of standards such as the International
Organization for Standardization metadata registry
(ISO-MDR) standard and the Dublin Core Metadata
Initiative (DCMI) standard. Standards for file formats
define how the minimum information should be stored.
These formats are generally Extensible Markup Language
(XML)-based, which facilitates automatic processing by
computers. Organizations that have defined standards
include the Microarray Gene Expression Data (MGED)
Society, the Proteomics Standards Initiative (PSI) and the
Metabolomics Standards Initiative (MSI).

Ontologies define the relationships and hierar-
chy between different terms and allow the unique,
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semantic annotation of data. Various specialized ontol-
ogies for biology are in development; for example, the
Gene Ontology (GO) and the Systems Biology Ontology
(SBO) (see Supplementary Information S1 (table) for a
comprehensive list of biomedical ontologies).

Data-management and data-analysis tools. Current
data-management systems can be broadly classified
as spreadsheet-based or Web-based, or as laboratory
information management systems (LIMS). Spreadsheet
programs have historically been the most popular mode
of data storage and communication in the life-science
community, owing mainly to the ease of use and sharing;
for example, template-based spreadsheets like MAGE-
TAB (a spreadsheet-based, MIAME-supportive format
for microarray data) and the Investigation-Study-Assay
(ISA)-TAB formats. However, their integration with
analysis tools and computational workflows requires
custom-built interfaces that are not supported on all
software platforms. In addition, a standardized practice
for filling the spreadsheet is required.

More recently, online wiki-based document and
project management has become a popular mode of
exchange for different laboratories, and these formats
now provide security and privacy options for data pro-
tection. Other alternatives are custom-built information
systems for laboratory data storage and management,
such as electronic lab notebooks (ELN). These are rou-
tinely deployed in large research laboratories. While
providing various features and functionalities, they are
usually associated with steep learning curves for users,
which, together with the cost of deployment, creates
a substantial barrier to the adoption of these systems
across the scientific community.

A different option, which integrates data manage-
ment and analysis, is the use of workflow-management
systems (WMSs). These systems harness the power of the
Web to integrate different tools and services in a com-
putational pipeline. Systems like Konstanz Information
Miner (KNIME), caGrid®, Taverna®, Bio-STEER® and
Galaxy™, allow the construction, execution and sharing of
specialized workflows. A comprehensive catalogue
of biclogical Web services is available at BioCatalogue.
WDMSs provide the first step in building a computational
pipeline by enabling data exchange, data integration and
inter-tool communication. However, most current sys-
tems are tailored for specific research workflows (for
example, KNIME for bioinformatics tools and Galaxy
for genomic data analysis), and they support only spe-
cific sets of tools and standards; this forces researchers to
use several different WMSs for a holistic understanding
of their biological system of interest.

There are emerging efforts that focus on data manage-
ment, such as Sage Bionetworks and ELIXIR. Sage
Bionetworks is currently focused on establishing a plat-
form for data acquisition and curation. The future aim of
this platform is for modelling, using an open collabora-
tive approach for gathering expression profile and protein
interaction data, with the specific aim of using these data
for drug discovery. ELIXIR is a European effort that plans
to build a biological data-management infrastructure.
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Table 1] A resource matrix of software tools and data resources

Tools Standards Projects
Software Resources Ontologies File format Minimum
information
Data and MAGE-TAB, ISA-TAB. KNIME, caGrid, BioCatalogue SBO,0BO, MGED MIAME, MIAPE,
knowledge Taverna, Bio-STEER NCBO (MAGE), PS1, MIBBI, ISO
management Msl MDR, DCMI
Data-driven  R,MATLAB, BANJO DREAM
network Initiative, Sage
inference Bionetworks
Deep CellDesigner, EPE, Jdesigner, KEGG, Reactome, SBML,SBGN,  MIRIAM
curation PathVISIO Panther pathway CellML,
database, BioPAX, PSI-MI
BioModels.net,
WikiPathways
Insilico COPASI, SBW, JSim, Neuron, SED-ML, MIASE
simulation GENESIS, MATLAB, ANSYS, SBRML, PNML,
: FreeFEM, ePNK, ina, WoPeD, Petri SBML
nets; OpenCell, CellDesigner + -
COPASI, CellDesigner + SOSlib,
PhysioDesigner (formerly insilicolDE) -
Model MATLAB, Auto, XPPAut, BUNKI,
analysis ManLab, ByoDyn,SenSB, COBRA,
MetNetMaker, DBSolve Optimum,
Kintecus, NetBuilder, BooleanNet,
SimBoolNet
Physiological JSim, PhysioDesigner (formerly CellML, SBML, IUPS Physiome
modelling insilicolDE), CellDesigner (cellular NeuroML, Project, Virtual
V k modelling), FLAME, OpenCell, MML Physiological
Virtual Physiology (produced by Human,
clLabs), GENESIS, Neuron, Heart High-Definition
Simulator, AnyBody Physiology
Molecular AutoDock Vina, GOLD, eHiTS RCSBPDB,
interaction ZINC, PubChem,
modelling PDBbind

This table summarizes the tools and resources that correspond to each step in a systems biology workflow; please refer to FIG. 1 for an overview of the workflow
and to Supplementary information $1 (table) for additional information and Weblinks to these resources.

Mutual information

A dimensionless quantity that
measures the extent to which
one random variable is
informative about another
variable. Zero mutual
information between two
random variables means

that they are independent.

Data-driven network inference

A specific kind of modelling from large-scale data,
known as data-driven network-based modelling, has
been developed over the last decade”. Data-driven
network-based modelling approaches use computa-
tional algorithms to infer causal relationships among
molecular entities (such as genes, transcription fac-
tors, proteins and metabolites) from high-throughput
and time-course experimental data that has been col-
lected under various perturbations. The models that
result from this kind of modelling from large-scale
data sets are variously known as inference networks,
co-expression networks or association networks. Early
studies focused on finding patterns in gene expression
profiles to distinguish disease states from healthy states;
for example, in breast cancer prognosis®. Further stud-
ies have integrated multi-dimensional data — including
genome-scale DNA variation data®-*', gene expression
data®, protein-protein interaction data, DNA-protein
binding data and complex binding data — to construct
probabilistic, causal gene networks®-?’. The advent of
next-generation sequencing technologies provides new
opportunities to incorporate the knowledge of splicing
variation and SNPs into network inference models.

Approaches to network inference models. Network
inference models have been predominantly based on
Bayesian inference techniques; that is, computing the
probability of a hypothesis (in this case, the relation-
ship between two molecular entities) based on some
kind of evidence or observations (known as priors).
However, several alternative techniques have also been
applied®-#, including regression, correlation methods
and mutual information approaches. Mutual information
approaches compute the relationship between two genes
or proteins based on mutual information (a quantity
that measures the mutual dependence of two variables)
to infer statistically significant associations between
these variables®*, '

The current focus of the research community is on
the development of novel algorithms and techniques
for reconstructing molecular interaction networks
from large-scale experimental data sets. In this regard,
standard tools and exchange formats are not yet well
established, and most research groups develop their
own implementation of network reconstruction algo-
rithms. Common software tools for implementing net-
work reconstruction algorithms include R, MATLAB
and BANJO.
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Meta-database

A database for storing
metadata, which was originally
defined as ‘data about data’,
such as tags and keywords.
The database is used for
integrating independent
distributed databases.

Standards in data-driven inference. One of the key chal-
lenges in network inference techniques is the problem of
underdetermination®, in which the number of possible
inferred interactions far exceeds the number of inde-
pendent measurements. The number of experiments and
the systematic selection of perturbations and time points
play an important part in the reljability of inferred net-
works. Also, there are no true benchmarking standards
for biological data and networks, and most techniques
currently have their accuracy evaluated using simu-
lated data, which do not always capture the reality in
biological systems. Recent efforts towards community-
driven standardization and systematic, rigorous assess-
ment have been initiated through Sage Bionetworks
(see above), and the Dialogue for Reverse Engineering
Assessments and Methods (DREAM) initiative. The
DREAM project attempts to evaluate and benchmark
different algorithms that influence network inference.
Analysis of DREAM results (from the DREAM?2 and
DREAMS3 challenges) reveal that algorithms comple-
ment each other in a highly context-specific manner,
and that a community-based, consensus-driven reverse-
engineering approach can lead to high-quality network
inference*. One of the explanations for why such a
community-based approach performs better than the
best algorithm in a pool of algorithms is the compen-
satory effects from multiple algorithms on the strength
and weaknesses of each individual algorithm. This is an
interesting observation and it is consistent with the pro-
posed explanation for why IBM’s DeepQA system (an
open-domain, automatic question-answering comput-
ing system) was successful in a Jeopardy!” challenge?,
based on a US quiz show that requires participants to
have a wide range of topical knowledge and to interpret
nuances in subtle clues that are provided to them.

Deep curation

An alternative to data-driven network inference is the
deep curation approach. The deep curation approach
creates a detailed molecular interaction map by the
large-scale integration of knowledge, such as informa-
tion from publications, databases and high-throughput
data*®-5'. Unlike the data-driven approach, in which
hypotheses about interactions are generated automati-
cally, the deep curation approach constructs the model
manually or semi-manually, thus making it easier for
researchers to add their own hypotheses into it. Users
can explicitly add unknown interactions to deep cura-
tion pathways as ‘hypotheses, but it would be helpful if
these interactions were made distinct from the evidence-
based interactions and if they also included a rationale
to support the hypothesis. Although the data-driven
approach, depending on observed data, might generate
networks that represent inferred causality or the asso-
ciation of behaviours at the transcriptional or protein-
protein interaction level, they do not provide mechanistic
details nor confirm causality. By contrast, the deep cura-
tion approach can provide mechanistic details of each
interaction because curators will look into the details of
the reported molecular mechanisms and experiments
in the literature and will read them critically. Precise and
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in-depth mechanistic-level models are essential not only
for precise computer simulations and an understanding
of biological mechanisms, but also for the proper evalu-
ation of potential drug targets. In both basic research
and drug discovery, a deep curation approach is essential
when the priority is to understand the details of molecu-
lar mechanisms, rather than to identify novel molecules
and novel interactions.

It would be ideal to combine deep curation and data-
driven approaches, but this will require further work.
For example, some of the interactions that have been
inferred by data-driven approaches are likely to be con-
firmed by deep curation approaches, and some can be
clearly rejected. The remaining inferred interactions can
be prioritized for further studies, and resources can be
focused on these hypotheses.

Resources, standards and software for deep curation.
Deep curation requires an open-ended assembly of
knowledge from diverse literature and data sources and
is tailored for specific purposes. Therefore, if required,
the scope of the model can span multiple pathways.
A variety of pathway databases — such as the Kyoto
Encyclopaedia of Genes and Genomes (KEGG)%,
Reactome®, Panther pathway database®, Pathway
Commons®, BioCyc®® — provide information that can
be used to create an initial draft of the pathway model.
There also are meta-databases, such as the Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING) and ConsensusPathDB, which integrate diverse
knowledge resources and provide a broader context for
pathway curation.

There are several machine-readable model-
representation standards, which have been developed for
different purposes; two widely used standards are the
Systems Biology Markup Language (SBML)% and
the Biological Pathways exchange (BioPAX)%® format,
both of which were designed to represent biomolecu-
lar networks from different perspectives. The Systems
Biology Graphical Notation (SBGN)* was designed to
standardize a human-readable pathway notation. This
notation defines the graphical representation of networks
so that users can interpret the diagrams consistently.
Minimum Information Required in the Annotation of
Models (MIRIAM)® defines the rules for model annota-
tion. Workshops, such as the Computational Modelling
in Biology Network (COMBINE) workshop, occur
regularly and provide a forum for such standardization
efforts. The establishment of standards enables data and
models to be re-used across multiple software tools, pro-
motes healthy competition among these tools and helps
to build a pipeline of tools for efficient analysis.

Several tools and model databases are currently avail-
able to support deep curation efforts. CellDesigner®'
is one of the most widely used software tools® — it
enables users to visually define a model of biological
interactions and to comply with SBML and SBGN. A
plug-in application programming interface (API) for
CellDesigner enables users to develop various additional
functionalities, including the conversion of models
to other formats, such as BioPAX. Several other tools
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Ordinary differential
equations

(ODEs). A type of differential
equation involving functions
of one independent variable,
such as time, and derivatives
of the functions with respect
to the variable.

Partial differential equations
A type of differential equation
involving functions of several
independent variables, such

as time and spatial axes (that
is, x, y and 7), and partial
derivatives of the functions

with respect to those variables. -

Agent-based modelling

A class of computational
models that simulate the
interaction of agents to study
their effects on a system.
Agents are autonomous,
decision-making entities

that have heterogeneous
characteristics; examples of
agents are molecules or cells.

Process algebra

A mathematical modelling
language for describing the
behaviour of distributed
systems.

Rule-based modelling
When used in biochemical
science, this termrefersto a
way to model molecules and
proteins as objects that
interact with each other. The
interactions are described
as rules that define how

the objects transform their
attributes and the relationships
between the objects.

provide graphical editing and visualization capabili-
ties; for example, the Edinburgh Pathway Editor (EPE),
JDesigner®, PathVISIO® (which is for pathway cura-
tion) and Cytoscape®® (which is a widely used tool for
the visualization of molecular networks).

Challenges of deep curation. The quality of pathways
in existing pathway databases is often compromised by
fragmentation and inaccuracy because these databases
cover a broad range of pathways and hence little time
can be spent on curating each pathway. The current ‘gold
standard’ is manually curated maps that have been care-
fully built by a small group of people who spend months
studying a pathway, such that they would be familiar
with almost every publication on that pathway®. Several
such maps have been reported, including for the epi-
dermal growth factor receptor (EGFR) pathway*, the
Toll-like receptor pathway*®, the mammalian target of
rapamycin (mTOR) pathway®, the yeast cell cycle®' and
the E2F pathway®’. In addition, the community-based
reconstruction of metabolic networks for several spe-
cies has been accomplished through the systematic use
of various omics databases and publications®7'.

Another consideration is that pathways reflect a
specific context, such as a tissue, a disease status or a
species. Pathway databases do not always identify the tis-
sues in which interactions have been identified, thus the
context of interactions should be carefully noted during
the curation process. In addition, tissue-specific prot-
eomic and gene-expression data can be used to ascertain
which parts of generic pathways actually exist in the tis-
sue of interest. This is an important practice, especially
when computational models are used to explain and pre-
dict cell-line-based drug-screening experiments'. An
additional point to consider is that there can be crosstalk
among pathways.

One of the main challenges of the deep curation
approach is to keep the pathways up-to-date and to vali-
date them. This is particularly important in view of the
context-specificity of molecular maps. Several disease-
specific maps have been curated — for example, for
rheumatoid arthritis’® and for cardiovascular pathways
— but manually creating large-scale network maps from
the literature is extremely labour-intensive and requires
specific quality-control procedures. Also, it is challeng-
ing for curators to maintain the motivation to continu-
ously update the map with new discoveries. There is a
need to develop techniques that automate knowledge
discovery, the aggregation of pathway components and
the addition of context-specific control mechanisms to
pathway maps. Automated literature mining has also
been investigated extensively, but is not yet close to being
ready to replace human curators. Pathway validation
requires an expert knowledge of the underlying biol-
ogy and the ability to transform literature evidence into
pathway diagrams. Recruiting experts, assigning them to
pathway curation and coordinating their efforts to build
integrated pathways is a major challenge.

Another option is collaborative curation, and several
approaches are being developed to enable community-
driven pathway updates. An example is the Payao”

system, which has been used to promote pathway
development and annotation in large and geographi-
cally distributed teams. An alternative is the community-
based development and refinement of pathways, as is
used in WikiPathways™. However, insufficient par-
ticipation from active users remains a challenge for
such approaches, and it is not yet clear how the wide-
spread engagement of the biological community can be
incentivized.

In silico simulation models

Molecular interaction maps provide a static picture,
but the dynamics of molecular interactions in time and
space have a central role in the behaviour of cells
and organisms. Dynamical simulations are mostly based
on models that have been created by the deep curation
approach, rather than by the data-driven approach. This
is because deep curation captures causality, stoichiom-
etry and mechanisms of interactions, which are manda-
tory in dynamical simulations. Here we provide a brief
overview for readers who are unfamiliar with the subject;
for further details we recommend reading reviews that
are focused on simulation and analysis®7575,

Simulations have an important role in the compu-
tational verification of biological models and the com-
putational prediction of behaviours. After the initial
model is created as a set of hypotheses, dynamical
simulations examine whether the model behaves like
the real biological system. When some observed behav-
iours are not reproduced by the model, this indicates
that some hypotheses are inaccurate or missing, and
alternative hypotheses should be incorporated into the
model and verified. Thus, the proper identification of
discrepancies between experimental results and model
predictions is the key for successful computational
research. Dynamical modelling of complex biologi-
cal systems has been applied with varying degrees of
success'®?”’. Ordinary differential equations (ODEs) have
been used widely as a standard numerical method in
many successful cases of biological modelling®¢91°.
Dynamical models that capture the stochastic (ran-
dom) behaviour of molecular interactions have suc-
cessfully elucidated gene transcription and translation
processes’” or Escherichia coli fate decisions during
phage infections®. Physiological models of systems
also use partial differential equations (PDEs) and a dif-
ferent set of tools (see below). Other techniques, such
as agent-based modeliing®', process algebra (for example,
the Petri net® system) and rule-based modelling®, have
also been applied to study the behaviour of specific
biological systems.

Reaction constants and other parameters are required
for simulations, and the proper calibration of models
remains a major bottleneck for biological systems.
Researchers can consider using rate constants that have
been measured using biochemical assays, but in many
cases these differ from the rate constants within cells and
have not been collected in a high-throughput manner.
Thus, parameters must be measured in vivo or be esti-
mated through parameter-optimization techniques that
are supported by various simulation and model-analysis
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Phase-space analysis

A way to analyse the dynamics
of a system in a space (the
phase-space], in which each

of the possible states of the
system is represented as a
unique point.

Bifurcation analysis

A way to analyse the
qualitative changes in the
dynamics of a system that
are caused by varying one
or several parameter
values continuously.
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Box 1| Parameter optimization: stochastic search methods and gradient descent methods

There are several methods to estimate parameters for models. The stochastic search approach generates a set of
parameters randomly, but often following certain rules to make the search more efficient. Each parameter set is tested
in the model to see whether it generates results that are consistent with the experimental results or other defined
criteria. The best set is selected and parameter values are generated again, usually close in value to the selected set,
to see if there are better parameter sets. Eventually, a parameter set that can be considered optimal will be found.

The gradient descent approach has a defined algorithm that tunes parameters. It depends on error gradients
that can be calculated from the difference in error values between two parameter sets. The parameter value is
chosen that is estimated to have a smaller error value. Such algorithms can quickly find the optimal parameters for
simple problems in which there is only one optimal point and the parameter sets near this optimal point only
gradually become suboptimal. However, it may only find a local optimal parameter set for highly nonlinear and

multi-peak problems.

tools and reaction databases, such as the System for the
Analysis of Biochemical Pathways — Reaction Kinetics
(SABIO-RK)* database. Sophisticated parameter-
estimation algorithms, and data to calibrate them, are
essential. Algorithms for optimization include stochastic
methods and gradient-descent methods (BOX 1).
Nevertheless, there are limitations in the current tech-
nologies and resources for creating large-scale dynami-
cal models; it may be more practical to select part of the
pathways for precise dynamical modelling, rather than
to try to use an entire pathway map that inevitability
contains uncertain parameters.

Standards and tools for simulations. Several stand-
ardization efforts empower the modelling community.
Examples include SBML¥, SBGN* and MIRIAM®
for model representation and annotation. Minimum
Information About a Simulation Experiment (MIASE)®
is used to define the minimum set of information that is
required to reproduce numerical simulations, and the
Simulation Experiment Description Markup Language
(SED-ML) is an XML-based specification for encoding
configurations for simulations, for defining models to
be used, for setting up numerical calculations and for
formatting outputs. In addition, the Systems Biology
Results Markup Language (SBRML)* is a complemen-
tary language to SBML that specifies the format of results
of simulations carried out on models.

Based on these standards, a series of simulation
tools and software has been developed, with tools such
as MATLAB and the Complex Pathway Simulator
(COPASI)¥ being widely used for model simulation
and analysis. The Systems Biology Workbench (SBW)
is a software platform that allows multiple applications
— such as software packages for modelling, analysis or
visualization — to communicate with each other; this
aims to enhance mode] exchange and simulation effi-
cacy. Several tools support process algebra and Petri net
modelling. For example: ePNK, a modelling platform for
Petri nets that is based on the Petri net Markup Language
(PNML); Time Petri Net Analyser (TINA), a toolbox for
the editing and analysis of Petri nets; and WoPeD, a tool
for modelling, simulation and analyses of Petri nets that
also supports PNML. BioModels.net provides a data-
base portal for curated, validated dynamical models that
can be used to kick-start a modelling effort by re-using
well-known components.

Model analysis. The next step is to analyse models for
insights into the intrinsic and dynamical nature of the
system (FIC. 1). A conventional time-course simulation
from a defined initial state gives an indication of how
the system behaves under a specific condition; more
in-depth insight is provided by systematic analyses of
the system under different conditions. Different math-
ematical techniques have been developed to analyse
the behaviour of complex biological models and are
supported by specific software tools®*® (80X 2).

Many model-analysis techniques focus on dynami-
cal systems that are represented as set of ODEs (BOX 2),
but alternative analyses have also been developed that
are based on statistical network analysis®. In particu-
lar, Boolean network modelling of genetic regulatory
networks has gained wide acceptance in the modelling
community, based on pioneering work by Kauffman®.
Several Boolean network simulators for biological
systems have been developed, including NetBuilder,
BooleanNet and SimBoolNet®'. In addition, a series
of tools is available for phase-space analysis and bifur-
cation analysis, such as XPPaut and BUNKI. We refer
readers elsewhere for details of using these analysis
approaches®7688%2,

Multi-scale physiological modelling

The next level, in which there is an increasing inter-
est, is to develop physiological models that are linked
with underlying molecular networks and genetic poly-
morphisms. Developing these models is a substantial
challenge, but such models should have important
applications because genetic polymorphisms and the
associated differences in network dynamics can influ-
ence many diseases. For example, mutations in the
voltage-gated sodium channel SCN5A disrupt the
flow of sodium ions into cardiac muscle cells, which
affects heart electrophysiology and leads to clinical syn-
dromes®. Understanding how genetic differences affect
protein structure, ion channel function, molecular net-
work dynamics and cellular behaviours (such as elec-
trophysiology and cardiac events) would lead to a better
understanding of diseases but requires well-integrated,
multi-scale modelling.

Efforts are underway to achieve integrated multi-
scale modelling that links molecules and genetics
to physiology, especially for models of the heart *,
and large, community-driven projects have been
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Homeodynamics

A concept that views an
organism as a dynamical
system; this concept emerged
after the concept of
homeostasis. Biological
systems can be considered
as homeodynamic: they
can lose stability and show
diverse behaviours, such as
bi-stability, periodicity and
chaotic dynamics.

launched. The long-running International Union of
Physiological Sciences (IUPS) Physiome Project aims
to promote basic science and to provide a technologi-
cal foundation for integrated physiological models.
Two new initiatives that started in 2010 are the Virtual
Physiological Human (VPH) project in Europe and the
High-Definition Physiology (HD-Physiology) project
in Japan. The HD-Physiology Project, funded by the
Japanese government, is trying to develop a comprehen-
sive platform for the virtual integration of models from
the molecular to whole body levels. It focuses on devel-
oping a combined model of whole-heart electrophysiol-
ogy that is interconnected with cellular-, pathway- and
molecular-level models and a whole-body metabolism
model (FIG. 2).

Box 2 | Model-analysis methods and tools

Several different mathematical techniques have been developed to analyse the
behaviour of comp[ex biological models*#, Here we describe the basic principles
of some of the options: sensitivity analysis, phase-space analysis and metabolic

control analysis.

Sensitivity analysis

The sensitivity of a system against various parameter changes is one of the properties
that affects the robustness and fragility of a system. Sensitivity analysis can reveal not
only the stability of a system against various perturbations, but can also provide

. information about the controllability of a system.

Phase-space analysis

As living systems operate under conditions of cellular homeostasis and homeodynamics,
it is highly informative to study complex biological models to discover possible steady
state and dynamical behavioural tendencies. Bifurcation analysis (the analysis of a
systeém of ordinary differential equations (ODEs) under parameter variation) and
phase-plane analysis (for example, the analysis of null-clines and local stablhty) help to
predict systems behaviour (such as equilibrium or oscillations) when parameters are
perturbed. (For details, please consult dedicated textbooks and papers®7643%2)

Metabolic control analysis

Metabolic control analysis (MCA) is a powerful quantitative framework for
understanding the relationship between the properties of a metabolic network {at
steady state) that is characterized by its stoichiometric structure and cornponent
reactions. MCA has been widely applied for the analysis of cellular metabolism,
particularly for the analysis of the regulation of cellular metabolism. An alternative to
MCA is flux-balance analysis (FBA); this a constraint-based modelling technique that
has been applied in metabolic engineering'®**. FBA does not require details of enzyme
kinetics or metabolite concentrations. It aims to compute metabolic fluxes across a
network that maximizes certain system properties (such as growth rates) under
conditions of constraint. Notably, FBA has been shown to accurately predict the growth
rates of Escherichia coli under different culture conditions*®*.

Model analysis is supported by many ODE solver systems (such as MATLAB), but more
specialized tools are widely used in the community. Some examples are AUTO (a
software package for bifurcation analysis) and XPPAut (a tool for solving ODEs that is
capable of showing an orbit on the phase plane and that provides a user-friendly
mterface on AUTO). BUNKI and ManLab are MATLAB-based bifurcation analysxs
toolkxts Several tools support sensitivity analysis and parameter estimation; these
include SBML-SAT, MATLAB SimBiology, ByoDyn and SensSB. SensSBisa
MATLAB-based toolbox for the sensitivity analysis of systems biology models.

Arelated set of tools allows the study of metabolic networks. For example, DBSolve
Optimum can be used for MCA computations and Kintecus is a software tool for
simulating chemical kinetics, for MCA and for sensitivity analysis. These techniques fall
into the category of constraint-based reconstruction and analysis (COBRA) methods,
and several tools exist to support them. The COBRA Toolbox is a MATLAB-based
toolbox that can be used to perform a variety of COBRA methods, including many
FBA-based methods. MetNetMaker is a software tool that can create metabolic
networks ready for FBA based on the KEGG LIGAND database.

Physiological modelling tools and standards. Currently
there is no agreed standard for modelling physiological
functions and for performing simulations at all levels of
physiology. Indeed, more research is probably needed
before these standards can be fully established. A hin-
drance to the development of standards in this field is the
diversity of biological processes that operate at different
spatiotemporal scales (such as in cells, tissues or organs);
these processes require diverse modelling and numerical
computation techniques®. CellML is a pioneering effort
to define a markup language to describe mathematical
models of physiology. Modelling languages are also avail-
able for specific fields, such as NeuroML*® and NineML
for describing models in computational neuroscience.
Several tools that are based on these standards have been
developed for physiological modelling (BOX 3). For exam-
ple, the HD-Physiology project uses both CellDesigner
(for cellular-level modelling) and PhysioDesigner, which
is a software tool for modelling physiology from multicel-
lular to whole-body levels. PhysioDesigner supports the
in silico Markup Language (ISML)¥, which is an emerging
standard XML-based language for multi-level physiologi-
cal modelling, and is partially compatible with CellML
and SBML. Both CellDesigner and PhysioDesigner can
interface with other software platforms, and these tools
are envisaged to be able to communicate with other
tools through the Garuda platform (see below).

There also are publicly accessible resources that pro-
vide molecular structure and bioactivity data and that
can be used for physiological modelling. These include
RCSB PDB, ZINC, PubChem and PDBbind, the latter of
which has had several of its commonly used programs
comprehensively evaluated®. In silico simulation of
protein-ligand interactions can be considered as an
option for predicting the activity of small molecules, such
as drugs®®®. This type of simulation can be performed
using ‘virtual docking’ software, such as AutoDock Vina,
GOLD or eHiTS.

Although integrating multiple levels of simulation
has advantages, how this integration can be accom-
plished and how standards should be defined require
further investigation. Some working standards are use-
ful for clarifying the issues that need to be resolved and
for outlining what can be achieved based on our current
understanding; however, the introduction of obligatory
standards may hamper the progress of the field.

An integrated software platform

Integrated software platforms have been a driving force
of productivity, quality improvement and innovation in
industries'', and we can expect the same in systems biol-
ogy. The concept is of an integrated software platform
that enables users to access data and knowledge from
any stage in the workflow, that allows the adaptation of
the workflow to best fit the user’s needs and that provides
consistent user experiences and high levels of interoper-
ability. All of these features can reduce the time costs that
are associated with using independent and incompatible
software. In principlé, integrated platforms would signif-
icantly improve productivity and would reduce errors in
the handling and analysis of complex data and models.
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Figure 2 | An example application of the High-Definition Physiology Project. a| A possible use of anintegrated
multi-scale modelis to evaluate the effects of a drug on cardiac events. A simulation condition can be set that
consists of a specific drug dose and itstemporal pattern of administration. Absorption, distribution, metabolism
and excretion pharmacokinetics (ADME-PK) models that are built based on various molecular properties can
compute drug distribution and metabolism, so that a change inthe drug dose that a cardiomyocyte is exposed to
can be simulated. The molecular properties of the drug can also be calculated using in silico methods'°, such as
quantitative structure-activity relationship (QSAR) modelling, and can be applied as a parametric component to a
specific cell model. Pathway- and cellular-level models use the computed drug dose as an environmental factor in
the simulation of ion channel activity, signalling and energy metabolism and then compute the membrane
potential and cellular contraction. In some cases, genetic polymorphisms may change the behaviours of the cell.
For novel protein structures of ion channels or other important molecules, in silico simulations of molecular
interactions may be used to better estimate the interaction parameters that are not experimentally known.

The computed membrane potential can be used to reproduce the organ-level electrophysiology of arrhythmia.

b| Three different timescales have to be coupled for the simulations that are outlined in part a, and the methods
that are relevant to each simulation are computationally intensive. ADME-PK are simulated on the scale from
minutes to days. Cellular- and pathway-level simulations are mostly on the scale of milliseconds to hours.
Molecular dynamics is computed onthe scale of nanoseconds to microseconds. Owing to these large differences
intimescales, loosely coupled, dynamically measured simulations and precomputed values are used for the final
integrated computation. Inevitably, different numerical solution methods need to be used, but they must function
coherently. For example, fluid dynamics of the blood in a heart can be described by partial differential equations
(PDEs). An electrocardiogram that is derived from the cardiac electrical activity can also be computed using PDEs,
but most of the intracellular signalling and the whole-body ADME-PK model will be calculated by ordinary
differential equations (ODEs). Close linkage of ODEs and PDEs is crucial in such amodel. In those cases in which
the stochastic behaviour of molecules has a crucial role, stochastic computation may also need to be used. MD/BD,
molecular dynamics or Brownian dynamics.
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Box 3] Physnologlcal modelhng tools

Physnologlcyal"m el[mg mvolves spatlotemporal systems bemg represented by partlal
differential equatlons (PDES), solvmg PDEs is more involved than for ordinary -
d!fferent:a[equatlons ODEs) In most cases, PDEs are solved by the lete Element

neurons, S|mHeart and Heart S|mulator, whichare used ln'cardiolog ‘and'AnyBody,
a full-body musculoskeletal s:mulatlon tool.

Although many standards have been defined for
data and model representations, they only ensure that
data and models that comply with these standards can
be used by software that support these standards; they
do not ensure that multiple software tools can be used
seamlessly'®. When software tools are developed by
independent research groups or companies without an
explicit agreement as to how they can be integrated, this
can cause problems when forming a workflow of multiple
tools. This is because the tools are likely to be inconsist-
ent in their operating procedures and their use of various
non-standardized data formats. Thus, users often have
to convert data formats, to learn operating procedures
for each tool, and sometimes even to adjust operating
environments. This impedes productivity, undermines
the flexibility of the workflow and is prone to errors.

As an example workflow, a researcher working on
modelling an oncogenic MAPK pathway may wish
to quickly access, by one click, the sequences of genes
that are involved in this pathway to see the mutations
that are associated with a specific subgroup of cancer
patients. They might then search a protein structure
database for the three-dimensional structures of pro-
teins that are encoded by these mutated genes to see
how the mutations might affect the three-dimensional
structures. Next, they might explore possible docking
interactions of candidate kinase inhibitors (using virtual
docking simulations). Then, using advanced text-mining
tools, the researcher could search for experimental and
clinical articles that have reported possible effects of the
compound and similar compounds on the cell line of
interest or a cell line with similar mutations. Finally, the
researcher could modify the original model to incorpo-
rate possible differences in networks owing to the muta-
tions and could run dynamical simulations to see the
effects on the cellular responses to specific compounds.
Currently, this workflow requires multiple separate soft-
ware tools, and there is no transfer of retrieved infor-
mation among software tools. A successful, integrated

software tool would enable such a workflow in a few
clicks, so that users could concentrate on science rather
than on software operation.

Recently, several initiatives have been launched
to move towards software integration. The US
Department of Energy is initiating the Systems Biology
Knowledgebase project for building an integrated envi-
ronment for data, knowledge and tools as part of their
Genomes to Life programme. Another example is the
Garuda Alliance, which was formed with the aim of
creating a platform and a set of guidelines to achieve a
highly productive and flexible software and data envi-
ronment; that is, a one-stop service for systems biology
and bioinformatics. The aim is to have a high level of
interoperability among software in a language-agnostic
manner, to provide consistent user experiences and to
offer a broader accessibility of tools and resources. To
achijeve these objectives, the Garuda Core will provide
defined and comprehensive APIs, a wide range of pro-
gram and widget parts, and a series of design guidelines.
Developers of tools will be able to use the provided APIs
to make their own tools operational through the Garuda
Core. Garuda-compliant software would need to adopt
user-interface guidelines so that researchers could use a
range of tools without the need for additional learning.
Initially, software — such as CellDesigner, the Panther
pathway database'?, bioCompendium, PathText'®?, the
Edinburgh SBSI tools and others — will be provided as
Garuda-compliant software. The intention is to host
increasing numbers of software and data or knowledge
resources. Achieving a smooth workflow is still a long
way off, but these efforts are certainly the first step.

A vision for the future

Creating and making the best use of software and data
resources will facilitate an in-depth understanding of bio-
logical systems. However, the impact of creating a widely
accepted software platform may go far beyond produc-
tivity improvements in each research group because
the platform could potentially connect research groups
globally. Although international collaboration in scien-
tific projects is common, determining how best to create
a successful open collaboration is still a challenge. For
example, creating and maintaining a comprehensive and
in-depth model of a biological system is often beyond
the scope of any single research group. Maintaining,
updating and improving pathway databases — such as
Reactome, KEGG, and the Panther pathway database —
requires continuous funding. Also, such databases are not
sufficiently in-depth for many complex pathways, espe-
cially when compared with interaction maps that have
been developed by a few dedicated researchers who are
focused on specific pathways®.

Some alternative approaches have been proposed that
use Web2.0 services, as Wikipedia does. There are several
such attempts, including Wikipathways, Wikigenes'®
and Gene wiki'*. However, many of these efforts are
struggling'®. One possible reason is the lack of incen-
tive for scientists to contribute their knowledge and
data. Why would somebody spend time to share their
knowledge when such a contribution is not properly
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acknowledged'*? Although there are discussions of
schemes to systematically acknowledge such efforts, it is
yet to be seen whether these schemes can change social
dynamics and hence the motivations of potential contrib-
utors. There may be a great opportunity to enhance our
scientific productivity when a ‘network of intelligence’
or ‘wisdom of crowds"? approach can become a reality
because everyone could gain from the ideas and experi-
ences of others. However, we do not know yet how best
to achieve this in reality. Web2.0 approaches are often
suggested by computer science-based researchers because
of the success of such approaches in their field. However,
there are cultural differences in biological research, and
overcoming these differences may be a substantial chal-
lenge and may also require the involvement of a broader
range of experts, such as sociologists and psychologists.

REVIEWS

Our vision is that the increased capability to navigate
and relate various data and knowledge resources using
integrated platforms would enable researchers to enjoy
a higher level of productivity and a greater potential for
innovation. Connecting genomics, molecular networks
and physiology will provide us with a deeper under-
standing of how individual differences in the genome
affect physiological processes through alterations in
molecular networks. The current reality is that there
are varjous software tools that can be used for a broad
range of systems biology research, and these tools are
being increasingly integrated owing to standardization
and alliance efforts. Emerging comprehensive, consist-
ent and community-wide software platforms enable us
to promote systems biology research today, and also to
think about what comes next.
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The oscillation of Notch activation, but not its boundary, is
required for somite border formation and rostral-caudal

patterning within a somite

Masayuki Oginuma'?*, Yu Takahashi>*, Satoshi Kitajima®, Makoto Kiso?, Jun Kanno?, Akatsuki Kimura®* and

Yumiko Saga'?"

SUMMARY

Notch signaling exerts multiple roles during different steps of mouse somitogenesis. We have previously shown that segmental
boundaries are formed at the interface of the Notch activity boundary, suggesting the importance of the Notch on/off state for
boundary formation. However, a recent study has shown that mouse embryos expressing Notch-intracellular domain (NICD)
throughout the presomitic mesoderm (PSM) can still form more than ten somites, indicating that the NICD on/off state is
dispensable for boundary formation. To clarify this discrepancy in our current study, we created a transgenic mouse lacking NICD
boundaries in the anterior PSM but retaining Notch signal oscillation in the posterior PSM by manipulating the expression pattern
of a Notch modulator, lunatic fringe. In this mouse, clearly segmented somites are continuously generated, indicating that the NICD
on/off state is unnecessary for somite boundary formation. Surprisingly, this mouse also showed a normal rostral-caudal
compartment within a somite, conferred by a normal Mesp2 expression pattern with a rostral-caudal gradient. To explore the
establishment of normal Mesp2 expression, we performed computer simulations, which revealed that oscillating Notch signaling
induces not only the periodic activation of Mesp2 but also a rostral-caudal gradient of Mesp2 in the absence of striped Notch
activity in the anterior PSM. In conclusion, we propose a novel function of Notch signaling, in which a progressive oscillating wave
of Notch activity is translated into the rostral-caudal polarity of a somite by regulating Mesp2 expression in the anterior PSM. This
indicates that the initial somite pattern can be defined as a direct output of the segmentation clock.

KEY WORDS: Notch signaling, Hes7, Mesp2, Segmentation clock, Presomitic mesoderm, Lunatic fringe, Somitogenesis

INTRODUCTION

The periodicity of the segmented somites is established in the
posterior presomitic mesoderm (PSM) via the function of a so-called
molecular clock, which is based on complex gene regulatory
networks under the control of three major signaling pathways:
Notch, Fgf and Wnt (Dequeant et al., 2006; Dequeant and Pourquie,
2008). Among these pathways, Fgf and Wnt are implicated in the
maintenance of immature PSM cells (Aulehla et al., 2003; Aulehla
etal., 2008; Wahl et al., 2007; Delfini et al., 2005; Niwa et al., 2007),
whereas Notch signaling might be directly involved in the
generation of periodicity (Oginuma et al., 2008; Yasuhiko et al.,
2006; Takahashi et al., 2000; Takahashi et al., 2003). In mice, Notch
signal oscillations are produced by the suppressive function of the
glycosyltransferase lunatic fringe (Lfng) as the levels of activated
Notchl (cleaved form of the Notch1 intracellular domain, referred
to as ¢NICD hereafter) are upregulated in the Lfizg-null mouse
embryo (Morimoto et al., 2005). The expression of Lfig exhibits a
biphasic pattern involving oscillation in the posterior PSM and a
stabilized striped pattern in the anterior PSM (Aulehla and Johnson,
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1999; McGrew et al., 1998; Morales et al., 2002; Cole et al., 2002).
The oscillatory expression of Lfig is positively regulated by Notch
signaling as it is greatly downregulated in DI/I-null mice, whereas
itis negatively regulated by Hes7 as revealed by its upregulation in
Hes7-null embryos (Barrantes et al., 1999; Bessho et al., 2003;
Morales et al., 2002). The stabilized expression of Lfizg is under the
control of the Mesp2 transcription factor and stabilization does not
occur in the absence of Mesp2 (Morimoto et al., 2005). In the
absence of Lfng, no clear segmental border is defined and the
rostral-caudal (R-C) compartmentalization within a somite is
randomized (Zhang and Gridley, 1998; Evrard et al., 1998).

In the anterior PSM, the Mesp2 transcription factor plays an
important role in the creation of a ¢cNICD on/off state that
corresponds to the future segmental boundary via the activation of
Ling transcription (Morimoto et al., 2005). This suggests that the
Notch on/off state is important for boundary formation. However, a
recent study has shown that mouse embryos expressing Notch
activity throughout the PSM still show the ability to form more than
ten somites, indicating that the Notch on/off state is dispensable for
boundary formation (Feller et al., 2008). By contrast, however, other
studies have reported that transgenic mice expressing Lfsg only in
the anterior PSM show normal segmental border formation after
embryonic day 10.5 (E10.5), suggesting that the Notch on-off state
generated in the anterior PSM is sufficient to create a somite
boundary at least in the later stage embryos (Shifley et al., 2008;
Stauber et al., 2009).

To resolve this discrepancy, we have, in our current study,
generated a mouse that lacks the anterior striped Lfng expression
pattern, but at the same time retains oscillating Lfng activity in the
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posterior PSM. The resulting transgenic mouse shows no clear
c¢NICD on/off state in the anterior PSM. Nevertheless, this mouse
exhibits normal boundary formation, indicating that the cNICD
boundary is dispensable for somite formation. In addition, our
transgenic mouse shows normal R-C patterning within a somite.
Further analyses by computer simulation have led us to conclude
that Notch signaling oscillation functions as an output signal that is
both required and sufficient to establish the AMesp2 expression
pattern needed for normal somitogenesis.

MATERIALS AND METHODS

Animals

The wild-type mice used in this study were the MCH strain (a closed colony
established at CLEA, Japan). The Lfing-null (Evrard et al., 1998), Mesp2-
null (Mesp2CM*) (Takahashi et al., 2007) and Mesp2-lacZ (Mesp2'®#™)
(Takahashi et al., 2000) mouse lines are maintained in the animal facility of
the National Institute of Genetics and National Institute of Health Sciences,
Japan.

Gene targeting strategy to generate the Mesp2-™9 allele

The knock-in strategy used to target the AMesp2 locus is largely similar
to our previously described method (Takahashi et al., 2000), except that
Lfng cDNA was inserted. The pgk-neo cassette flanked by a lox sequence
was removed by crossing with CAG-Cre mice (Sakai and Miyazaki,
1997).

Generation of the Hes7-Lfng transgenic mice

We used a 12 kb Hes7 gene cassette comprising 5 kb of upstream sequence
and all of the exons and introns, as this construct had previously been
confirmed to be sufficient to reproduce the endogenous Hes7 oscillation
pattern when inserted in-frame at the translational start site (Kageyama et
al., personal communications). We generated the construct Lfing IRES-
EGFP, in which IRES (internal ribosomal entry site)-EGFP (enhanced GFP)
was fused to the 3" end of Lfing cDNA, and inserted this construct into the
Hes7-translational initiation site. The resulting DNA was digested with
restriction enzymes to remove vector sequences and gel purified. Transgenic
mice were generated by microinjection of this construct into fertilized eggs,
which were then transferred into the oviducts of pseudopregnant foster
females.

In situ hybridization, inmunohistochemistry, histology and
skeletal preparations

The methods used for wholemount in situ hybridization, section in situ
hybridization, immunohistochemistry, histology and skeletal preparation by
Alcian Blue/Alizarin Red staining are described in our previous reports
(Morimoto et al., 2005; Oginuma et al., 2008; Takahashi et al., 2000). The
cNICD signal was detected by immunohistochemistry using anti-cleaved
NICD (Val1744; 1:500; Cell Signaling Technology). Probes were prepared
also as described previously: Mesp2 exon-intron (Oginuma et al., 2008),
Mesp2 (Takahashi et al., 2000) and Lfing (Evrard et al., 1998). The GFP
cRNA probe was prepared by PCR-amplification of GFP ¢cDNA.

Computer simulation
Our computer simulation model is based on the previous mathematical
description of a clock-and-wavefront model constructed by J. Lewis
(Palmeirim et al., 1997). By using the basic oscillating function in the Lewis
model, we modeled the activity of ¢NICD, n, at given time, t, and
anteroposterior position, X, as:

dtH/ 2

)
n(x,f) = [1— cos{Zﬂ: IOW(%)/Z

For the control simulation with constant activity of ¢cNICD, the cNICD
activity, 7, was set to 0.3. For the simulation with oscillating cNICD without
wave, n was formulated as n(x,f)={1-cos(mt)}/2. The activity of Fgf8 is
known to gradually decrease from posterior to anterior, and also according
to the time elapsed. These features of Fgf8 fit well with the formulation of
the clock cycling rate in the Lewis model and, thus, we calculated the
activity of Fgf8, 7, using the formula f{x,f)=1/(1+e*"2).

We next added the regulation of Mesp2 and Tbx6 expression to the
model. As cNICD and Fgf8 play positive and negative roles for Mesp2
expression, respectively, we assumed that the increase of Mesp2 expression
occurs when the ¢tNICD activity, 7, exceeds that of Fgf8, /; with the amount
dependent on n—. Tbx6 (b) is also required for Mesp2 expression. We thus
modeled the Mesp2 mRNA expression, 7, and Mesp2 protein expression,

p as:
[{n(x,0) = f(x,0} / K,
1+ [{n(x,0) = f(x,0)}/ Ky

» {b(x,0)/ Kp )
1+ {b(x,1)/ K>

m(x,t+ At) = m(x,t)+ Sy X

~ Dy Xm(x,0),

p(x,t+At) = p(x,t)+ Sp X m(x,t = T)— Dy X p(x,1) ,

with the initial condition m(x,0)=0, and p(x,0)=0. The degradation of Tbx6
is dependent on Mesp2 (Oginuma et al., 2008). We introduced a hypothetical
molecule, z, that is expressed depending on Mesp2 and degrades Tbx6 by
interacting with it. The expression of Tbx6 (b) and the Tbx6 degrading
molecule (z) were modeled as:
{p(x,1=T)/ Kp}»

1+ {p(x,t=T)/ K, ¥r
b(x,t + Ar) = b(x,1) = Dy X {b(x, )} x {z(x, 1)} |

z(x,t+ At) = z(x,0) + S, X - D, xz(x,t),

with the initial condition z(x,0)=0, and 5(x,0)=1.0.

These formulas were implemented using C language. The activities of
cNICD (n), Fef8 (), Mesp2 (m and p), Tbx6-regulator (z) and Tbx6 (b) were
calculated over the ranges —12.5<x<-2.5 and 0<¢<20. The calculations were
conducted discretely with a single unit of x (Ax) of 1/10 and ¢ (Af) of 1/10.
The parameter values we used are shown in Table S1 in the supplementary
material. We also introduced time delay, 7=2At, for protein expression
(Lewis, 2003), which did not affect the results much.

RESULTS

Dissection of the Lfng expression pattern in the
PSM

To examine the significance of the Notch on/off state during
boundary formation, we focused on Lfng expression, which
exhibits a biphasic pattern involving oscillation in the posterior
PSM and a stabilized striped pattern in the anterior PSM (Aulehla
and Johnson, 1999; Cole et al., 2002; McGrew et al., 1998;
Morales et al., 2002). Each of these two patterns is implicated in
the generation of the corresponding Notch activity profile via
negative regulation. To induce only the oscillatory expression of
Lfng, we utilized the Hes7 transcriptional regulatory unit as the
oscillation of Lfng and Hes7 is regulated by similar factors, i.e.
positively by Notch signaling and negatively by Hes7 protein. As
shown in Fig. 1, these two transcripts show similar expression
patterns in the oscillation phase. Both signals manifest a waved
pattern within the Tbx6 expression domain from phase I to phase
III (Fig. 1A-L). However, in phases I-II, Hes7 expression is lost
from the anterior domain (Fig. 1G-J), whereas that of Lfng
persists for a longer period in the anterior PSM and forms a clear
stripe (Fig. 1A-D,M,0). It should also be noted that the anterior
Lfng expression domain was found to merge with that of the
Mesp2 protein (Fig. IN,P), the expression of which is restricted
to the anterior PSM. This is not unexpected as Lfizg expression is
induced by Mesp2 in the anterior PSM and creates the Notch
on/off state (Morimoto et al., 2005). Taken together, we concluded
from these data that the Lfig expression pattern can be reproduced
by two distinct regulatory systems — the Hes7 promoter-enhancer
and the Mesp2 regulatory system — and this enabled us to further
investigate the significance of Notch activities.
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The cNICD on/off state is not required for somite
boundary formation

To further elucidate the functional significance of the oscillatory
cNICD in the posterior PSM and that of the cNICD on/off state in
the anterior PSM, we generated a transgenic mouse line by inserting
Lfng cDNA flanked with JRES-EGFP under the control of the Hes7
promoter (see Fig. S1A in the supplementary material). As expected,
the expression pattern of this transgene, examined by in situ
hybridization using EGFP as a probe, was found to be very similar
to that of endogenous Hes7 and Lfng except for the lack of anterior
striped expression (see Fig. S1B-D in the supplementary material).
We then introduced this transgene into the Lfig-null genetic
background to establish the Hes7>Lfug/Lfing”™ mouse line and
examined the expression pattern of exogenous Lfig and cNICD
expression in the absence of endogenous Lfiig expression (i.e. an

Phase-| Phase-ll Phase-lli

Fig. 1. Comparison of the Hes7 and Lfng expression patterns. In
situ hybridization analysis of the spatiotemporal changes in the Lfng
(A-F) and Hes7 (G-L) transcription patterns during somitogenesis by
double staining for the Tbx6 protein as the reference point. The stained
sections shown in the vertical rows are derived from a single embryo.
The phase was defined by the location of the Hes7 and Lfng transcripts
and the waves of oscillating Hes7 and Lfng were initiated at the
posterior PSM (Phase [). The oscillating wave then moves to the
intermediate PSM (Phase Il) and reaches the anterior PSM (Phase Il).
(M,0,Q,R) Magnified images of B, D, F and L, respectively. Phase | and
Phase Il sections were also subjected to double staining for Lfng mRNA
and Mesp2 (N,P).

Lfng-null background). In wild-type embryos, Lfizg and cNICD
showed biphasic patterns, these being oscillation in the posterior
PSM and stabilization in the anterior PSM, whereas ¢cNICD
oscillation was barely detectable and a constant level of cNICD
could be observed through the entire PSM in the absence of Lfig, as
reported previously (Morimoto et al., 2005). In the
Hes7>Lfng/Lfng”" embryo, however, we observed the recovery of
cNICD oscillation in the posterior PSM, which overlapped with
Lfng expression (Fig. 2A-F), clearly indicating that the Lfng
transgene was functionally active in these embryos. In addition, we
previously showed that ¢cNICD and Mesp2 generate a clear
boundary in the anterior PSM, which demarcates the presumptive
segmental border in phase-II embryos (Morimoto et al., 2005) (Fig.
2G-I). In the absence of Lfng, this clear border between ¢NICD and
Mesp2 was not generated and a merged pattern was instead observed

Phase-l

& f
@
«
=
o

Phase-llI

Wild

Lfng*

les7>Lfng/Ling™”

Fig. 2. Hes7>Lfng/Lfng™~ mice show cNICD oscillation in the
posterior PSM but do not form a cNICD boundary in the anterior
PSM. (A-F) The patterns of Lfng mRNA (A,C,E) and cNICD (B,D,F)
expression were revealed in each channel by double staining of these
signals using single embryos of Hes7>Lfng/Lfng™" mice at three
different phases, I-Ill, respectively. Lfng expression shows a traveling
wave (arrow) but no stabilized stripe (arrowheads, A,C). The first somite
is indicated by a white dotted line. The wave of oscillating cNICD is
initiated at the posterior PSM (B; Phase I; n=3), moves to the
intermediate PSM (D; Phase Il; n=4) and eventually reaches the anterior
PSM (F; Phase Ill; n=3). (G-O) The relationship between cNICD and
Mesp2 in Phase Il was compared among wild-type (G-1), Lfng™~ (J-L)
and Hes7>Lfng/Lfng™ (M-O) embryos by double staining. Single
channels for cNICD (G,J,M) and Mesp2 (H,K,N), and merged images of
both (,L,0), are shown. In the wild-type embryos, cNICD and Mesp2
generate a clear boundary (). Lfng™ and Hes7>Lfng/Lfng™ mice,
however, do not show a clear segregation between cNICD and Mesp2
(L,0).

=307~



1518 RESEARCH ARTICLE

Development 137 (9)

(Fig. 2J-L). In the Hes7>Lfng/Lfn g7~ embryo, as expected by the
lack of Lfng expression in the anterior PSM, we did not detect
segregation between the cNICD and Mesp2 domains (Fig. 2M-O).
Lfng”™ embryos did not show clear somite boundaries, although
incomplete somites did appear to be formed (see Fig. S2 in the
supplementary material), as also suggested previously (Evrard et al.,
1998; Zhang and Gridley, 1998). Very surprisingly, however,
Hes7>Lfng/Lfng”™ embryos showed clearly segmented somites
(Fig. 3A-C). This strongly indicates that the oscillatory expression
of cNICD mediated via oscillating Lfng is sufficient to provide the
conditions for normal somitogenesis to occur and that the cNICD
boundary in the anterior PSM is not required for this process.
Recently, we and others have suggested that the Mesp2
downstream events, such as the activation of ephrin-EphA4
signaling and the formation of a Tbx6 protein boundary, were more
important for segmental border formation (Watanabe et al., 2009;
Oginuma et al., 2008; Nakajima et al., 2006). In Lfing”~ embryos,
the expression of EphA4 and the Tbx6 protein boundary were

Wiid

Ling”

Hes7>Lfng/Ling™*

Lfng*

<
)]
&
B
£
~F
Q
&
X

Fig. 3. Exogenous Lfng controlled by the Hes7 promoter
completely rescues the boundary formation defect in the Lfng™
mice. The segmental morphologies (A-C), the EphA4 expression
pattern (D-F) and the relationship between Mesp2 and Tbx6 in Phase |l
(G-O) were compared among wild-type (A,D,G-I), Lfng™ (B,E,J-L) and
Hes7>Lfng/Lfng™ (C,FM-0) using E11.5 embryonic tail regions. Single
channels for Mesp2 (G,J,M) and Tbx6 (H,K,N), and merged images of
both (I,L,0), are shown. Expression of the EphA4 and Tbx6 protein
boundary forms a clear border in the wild-type (D, n=7; G-I, n=4) and
Hes7>Lfngl/Lfng™ embryos (F, n=4; M-O, n=4), but this is diffuse or
randomized in the Lfng™~ embryos (E, n=4; J-L, n=3).

found to be diffuse or randomized (Fig. 3E,J-L), whereas in
Hes7>Lfng/Lfng”" embryos, these expression patterns appeared to
be normal (Fig. 3F,M-0), i.e. similar to those in wild-type embryos
(Fig. 3D,G-I). Taken together, our current findings show that the
¢NICD boundary is dispensable, but that the Mesp2 boundary might
be required, for the creation of the segmental border through the
regulation of downstream genes.

R-C polarity is completely recovered in
Hes7>Lfng/Lfng”~ embryos

We next further examined the morphological features of the
Hes7>Lfng/Lfng” " embryo. Surprisingly, these transgenic embryos
showed a completely normal skeletal system, with segmented
vertebra and ribs (Fig. 4A-C). Furthermore, the expression pattern
of Uncx4. 1, a caudal marker of R-C polarity (Fig. 4D), was fully
recovered in the Hes7>Lfng/Lfng”~ embryo (Fig. 4F), which
contrasts with the randomized pattern we observed in the Lfing”"
embryo (Fig. 4E). These results suggest that the cNICD boundary in

Wwiid

Lfng*

Hes7>Ling/Lfng”

Fig. 4. Exogenous Lfng under the control of the Hes7 promoter
completely rescues the R-C patterning defect in the somites of
Lfng™ mice. A comparison of the segmental morphologies of skeletal
preparations of E17.5 embryos (A-C) and the expression pattern of
Uncx4.1, indicative of R-C patterning within a somite (D-F).
Hes7>Lfng/Lfng™ mice show a normal skeleton (C, n=4) and
expression pattern of Uncx4. 1 (F, n=3), whereas Lfng™" mice show
randomized pattern of skeleton (B) and Uncx4. 1 expression (E).

(G-M) Mesp2 transcription states revealed by high resolution in situ
hybridization analysis of wild-type embryos for transcriptional initiation
(G, n=3), active state (H, n=5) and rostral localization (I, n=3), and Lfng-
null U, n=11) and Hes7>Lfng/Lfng”~ embryos for transcriptional
initiation (K, n=2), active state (L, n=3) and rostral localization (M, n=3).
Double arrows indicate the length of the Mesp2 transcription domains.
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