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Fig. 1 Terahertz spectra of ciprofloxacin hydrochloride monohydrate
(broken line) and five different commercial tablets (solid lines)

that tablets A, B, C, and D are all consistent with each other
and with the spectra of CPFX-HCI-H,O (broken line). Al-
though the spectral feature of tablet E was different from
those of the other tablets, the spectral feature that is lower
wavenumber than 40 cm ' was similar to that of
CPFX-HCI'H,0. According to the enclosed documents for
the products, CPFX-HCI'-H,O is the active ingredient in
each product. These results suggest that terahertz spectros-
copy can be used to identify API in tablets.

Figure 2 shows the second derivative of terahertz absorp-
tion spectra obtained from the commercial tablets. The
peaks at 60 and 46 cm ' were observed in all of the tablets.
The peaks at 88, 85, 84, 79, and 71 cm ! detected in tablet A
may be water vapor lines.

Table 1 shows the ingredients listed in the manufacturer’s
product literature. This shows that similar ingredients are
used for all tablet formulations. Unfortunately, the literature
does not disclose the percentage content of each ingredient.
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Fig. 2 Second derivative terahertz spectra of the five different
commercial tablets

Analysis of Quality Attributes of Tablets Using Terahertz
Imaging System

Density Distribution of Film-Coated Tablets

Figure 3 shows the distribution maps of the reflected peak
intensities from the surface (A) and 0.26 mm depth (B) of
the tablets obtained from each of the measured commercial
tablets, respectively. Tablets A and B each have a homoge-
neous distribution of the peak reflected strength from the
surface of the coating, while tablets C and D each have a
heterogeneous distribution. As discussed previously, Ho et
al. [17] correlated the intensity of reflection to the refractive
index of the coating from the equation

_(n—1)
Rﬁ(n+1)

where R is the intensity of the reflection and n is the
terahertz refractive index of the material. The intensity of
reflection from each tablet measured is shown in Fig. 3;
these values are labeled with the letter A. They indicate
differences between each of the tablets. From the equation
described above, we can relate the R to the terahertz refrac-
tive index of the coating. This is an indication of a change in
the density of the coating. During scale-up of a sustained-
release coating product, Ho et al. [19] also showed that
similar changes in the density of the coating (or in the
intensity of reflection from the tablet) can affect product
performance. In the case of the tablets studied in this paper,
the coating prevents the decomposition of API by light
exposure. So, we do not expect the coating to affect the
tablets’ dissolution performance. However, this study will
provide the sensitivity needed for terahertz measurements
against this parameter. We also observe a variation in the
intensity of reflection across the surfaces of tablets A and B.
This may suggest regions of defective coating or changes in
local density on the tablets.

A terahertz dataset allows the experimenter to gener-
ate maps at different depths within a tablet without
sectioning the tablet. Image B in Fig. 3 shows the
distribution of relative refractive indices changing from
the tablet surface to a depth of 260 pum. In the images
of tablets A and D, the changes in refraction of tera-
hertz pulsed wave by penetrating of component which
has different refractive indices are larger at the centers
of the tablets than at their outer circles. And tablet B
shows comparatively large changes in refraction of ter-
ahertz pulsed wave through the wider area of the tablet.
In the image obtained from tablet C, small areas having
comparatively small changes in refraction of terahertz
pulsed wave appear in the center of the tablet. Mean-
while, the edge of the tablet shows larger change in

@ Springer



90

J Pharm Innov (2012) 7:87-93

Table 1 Ingredients contained
in each of five commercial

Tablet A

tablets

Com starch

Titanium dioxide
Carboxymethylstarch soduim
Tablet B

Corn starch

Titanium dioxide

Macrogol

Tablet C

Corn starch

Titanium dioxide

Macrogol 6000
Carboxymethylstarch soduim
Tablet D

Corn starch

Titanium dioxide

Macrogol
Tablet E

Cormn starch

Titanium dioxide

Macrogol 4000

Magnesium stearate
Hydroxypropylmethylcellulose (HPMC)
Povidon

Cellulose
HPMC
Crosspovidon

Crystallized cellulose
HPMC

Light anhydrous silicic acid
Lactose

Hydroxypropylcellulose
HPMC
Carboxymethylstarch sodium

Crystallized cellulose
HPMC 2910
Crosspovidon

Cellulose

Silicate unhydrate

Magnesium stearate

Silicate unhydrate

Magnesium stearate

Tarc

Carnauba wax

Magnesium stearate

Citric acid hydrate

Magnesium stearate

Light anhydrous silicic acid

refraction. These observations indicate that features of a
tablet’s physical state resulting from the manufacturing
process, such as the uneven distribution of granule sizes
or the uneven penetration of compression force in a
mortar, will change the density of tablet components.

In-Depth Terahertz Images

The depth (B-scan) terahertz images obtained from com-
mercial tablets A-D are shown in Fig. 4. These tablets each
have a coating thickness of approximately 100 ym. The left

®Tablet A
(B) Time ehy ()0250

4

®Tablet B
(=] F—

Peak Intensity

y-ditection {mm)

4 2 0 S 4
x-direction (mm)

x-direction (mm) x-direction (mm)

®Tablet D

Peak Intensity

x-direction (rmm)

®Tablet C
(B)

Peak Intensity

Tirma Delay (mm) 0260

Ca

— 25 — ‘

E g

E 20 E

{4 =

= 2

] 15 g

5 3

S 10 ES

i 5 4 e
-2 4] 2 4 <2 [1] 2 4 4 2 0 2 4

x-direction (mm) x-direction {memj

x-direction {mm) x-dirgction (mm)

Fig. 3 Terahertz images of four different commercial tablets (a surface area and b at 0.26 mm depth from the surface)
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Fig. 4 Depth (B-Scan)
terahertz images of four .Tablet A B .Tablet B
different commercial tablets : Tk B-scan o
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Fig. 5 Distribution of coating
thickness (leff) and histograms
(right) (upper images, Tablet A;
lower images, Tablet D)
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and right sides of the brown line represent air and the
inside of the tablet, respectively. The echoes showing
several layers formed by compression are observed.
Definite layers up to 1 mm depth and up to 0.5 mm
depth appear in Tablets A and C, respectively. The
indistinct echoes can be seen in Tablet D. On the other
hand, indistinct but layer-like echoes are observed in
Tablet B. Those observations suggest that unevenly pen-
etrated compression force into the tablet. Further study
is necessary to explain the details of these results.
However, features of the pre-compression state, such
as the particle size distribution of components in a
mortar, would be affected by the penetration of com-
pression force in the tablet compaction process. This
physical property would be represented as echoes in
depth terahertz images. Thus, a depth (B-scan) terahertz
image would provide physical information about the
effects of the manufacturing process on the tablet’s state
and also would sensitively detect changes in manufac-
turing quality.

Distribution of Coating Thickness

Figure 5 shows the distributions of coating thicknesses
obtained from Tablets A and D. A histogram of the coating
thickness of each tablet is shown at the right side of this figure.
In the case of tablet A, the coating thickness was between 105
and 125 um, a relatively narrow range of 20 um. The coating
thickness on the outer circuit of each tablet image shows a
tendency toward relative thickness, and that on the center
shows the opposite tendency: In the case of Tablet D, two
peaks in the coating thickness range (40 to 70 and 120 to
150 um) appear. Moreover, the thin and thick layers are
irregularly distributed in the image. This observation definite-
ly indicates that the coating property depends on the coating
process. These results suggest that an inappropriate coating
process was performed for tablet D.

Conclusions

A tablet containing relatively large amounts of API (from
75.1 to 82.3 %) would be detected qualitatively by compar-
ison against the characteristic terahertz waveform of APL
Terahertz imaging can reveal coating thicknesses and their
distributions, the densities of components by compression,
and hollows on a tablet surface based on the detection of the
delayed reflection of terahertz pulses. Detection of the coat-
ing state and changes in the physical state, such as density
distribution inside a tablet, would contribute not only to the
identification of manufacturing quality but also to qualitative
confirmation of commercial tablets including fake (counter-
feit) and/or defective products. The TPS and imaging
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techniques will be useful as nondestructive analytical tools
for the quality control of commercial tablets.
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