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Pharmacogenomics of the human p-opioid receptor

The- p-oplmd receptor.isa prrmary target for clinically important opioid analgesics, including morphine,
fentanyl and methadone. Man- genet:c variations have been identified in the human p-opioid receptor
'MOP gene (OPRMT1), and their.implications have been reported in the effects of opioid drugs and
susceptibility to drug dependence. Interestingly, agonistic and antagonistic opioid effects are inversely
associated with the A118G polymorphism genotype. The /A118G polymorphism may also be associated with
substance dependence and susceptibility to other disorders, including epilepsy and schizophrenia. The
IVS1+A21573G, IVS1-T17286C, and TAA+A5359G polymorphisms in the OPRM1 gene may be associated
with alcohol, opioid and tobacco dependence, respectively. However, some studies have failed to confirm
the correlations between the polymorphisms and opioid effects and substance dependence. Further studies
are needed to elucidate the molecular mechanisms underlying the effects of OPRM1 polymorphisms.

KEYWORDS: p-opioid receptor analgesia drug addiction genetic polymorphism Shinya Kasai™

narcotic drugs

Pharmacological importance of the
p-opioid receptor

The p-opioid receptor (MOP) is a subtype that
belongs to the superfamily of 7-transmem-
brane-spanning G-protein-coupled receptors.
Pharmacological studies with gene-knockout
mice show that MOP is a major target for
the clinically important opioid drugs, such
as morphine and fentanyl, and it appears
to play critical roles in the mediation of the
major effects of these opioid drugs, including
analgesia, tolerance, dependence and respira-
tory depression [1,2,201]. Homozygous MOP-
deficient mice are insensitive to morphine
(3-s]. In addition, heterozygous MOP-deficient
mice, which possess approximately half of the
amount of MOP protein in wild-type mice,
exhibit haploinsufficiency in the analgesic
effects of morphine [4;5]. The CXBK mouse
strain, a recombinant inbred strain derived
from an F2 intercross between BALB/c and
C57BL/6 mice, exhibit reduced responses to
opioid receptor agonists {6]. The CXBK strain
expresses approximately half of the amount
of MOP mRNA compared with progenitor
strains and display phenotypes similar to those
of heterozygous MOP-deficient mice (7]. In
the CXBK strain, an intracisternal A-particle
transposon is inserted in the 3-UTR of the
MOP gene, which would be expected to be the

mouse MOP gene, and some of these variations
were associated with interstrain differences in
opioid sensitivity [9]. These results suggest that
genetic variations in the MOP gene and MOP
expression influence morphine sensitivity in a
gene dosage-dependent manner.

In this brief article, we focus on and summa-
rize the genetic variations in the human MOP
gene, which are analyzed with regard to pain sen-
sitivity, opioid drug sensitivity and susceptibility
to drug dependence, and other disorders.

B Structure of the human MOP gene

The cDNAs and genes encoding MOP have
been cloned from mouse, rat, porcine, bovine,
and human sources [10-17). The human MOP
gene (OPRM]) spans over 200 kb and consists
of 11 exons that combine to yield 17 splice vari-
ants [18]. The exons A/B, X, Y and 5A-E in
intron 1 or 3 of the OPRM]1 gene yield variants
such as MOR-1B1-1B5, MOR-1X, MOR-1Y,
SV1 and SV2 (Ficure 1). Among the transcripts
from the OPRMI gene, MOR-1, which con-
sists of exons 1, 2, 3, and 4, is approximately
15 kb in length and the most abundant tran-
script (19]. The MOR-1 3’-UTR is continuously
transcribed, beginning with the exon 4 coding
region of MOR-1 mRNA. Human MOR-1
mRNA possesses a long 3'-UTR of over 13 kb.
The other variants of the OPRMI gene, includ-
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Figure 1. Human p-opioid receptor gene (OPRM1) structure. The human
OPRM1 gene spans over 200 kb and consists of muitiple exons that combine to
yield isoforms. Among these isoforms, MOR-1, which consists of exons 1, 2, 3 and
4 of the OPRMT gene, is approximately 15 kb in length and is the most abundant
transcript. Exon A/B was identified in intron 1 as the first exon for the splice
variants SV1 and SV2. In intron 3, exons X, Y and 5 were also identified as the last
exons for the variants MOR-1X, MOR-1Y and MOR-1B1-1B5, respectively.

The human MOP gene structure and splicing
sites are similar to those of mice [19.21]. Mouse
MOR-1 mRNA is transcribed from exons 1, 2, 3
and 4 and possesses a long 3-UTR of over 10 kb,
which is continuously transcribed from exon
4, similar to human MOR-1 mRNA. Human
MOR-1 (GenBank accession no. 1L.25119) shares
87% cDNA and 94% amino acid sequence
identities with mouse MOR-1 (GenBank acces-
sion no. U19380) [202]. The 3-UTR of human
MOR-1 mRNA shows high similarity to mouse
MOR-1 mRNA in the regions of their 5 and
3’ ends [19]. Many splice variants of MOR-1
mRNA have also been reported in mice. Studies
with antibodies against splice variants of mouse
MOR-1 mRNA and gene-modified mice for
exon 11 were performed [22-25], but the func-
tions of these splice variants of MOR-1 mRNA
have been controversial.

SNPs in the OPRM1 gene

Over 700 SNPs have been identified in the
OPRM]I gene (refer to the dbSNP database,
the NCBI database of genetic variations) [203].
Genetic variations in the OPRM] gene are quite
different between different races and ethnicities.
In the International HapMap project, genetic
variations in the African population in Nigeria

(YRI), northern and western European ancestry
in the USA (CEU), Japanese in Tokyo, Japan
(JPT), and Han Chinese in Beijing, China
(CHB) were analyzed, and variations in the
SNPs in the OPRMI gene were the following:
CEU > YRI > JPT and CHB [204]. These data
suggest that the linkage disequilibrium (LD)
blocks and minor allele frequencies (MAFs)
of the SNPs in the OPRMI gene are different
between different races and ethnicities.

In European populations (European Americans
or Caucasians), the OPRMI gene is covered with
two LD blocks whose boundary is located around
the end of intron 1 between rs3778156 and
152075572, 151381376 and rs9479757, rs1381376
and rs563649, or 153778151 and rs660756 [26-30].
In American Indians, the OPRMI gene also con-
sists of two major LD blocks that are separated
by the border between 5506247 and rs2075572
;31). However, in the Japanese population, the
OPRMI gene is covered with four LD blocks [32].
In the Uyghur population, the major LD blocks
were not identified in the OPRMI gene, but a
small LD block was identified at intron 3 con-
taining rs3798683 and rs9397685 [33]. The MAFs
of A118G (rs1799971), which is a well-studied
nonsynonymous SNP leading to an Asn40Asp
substitution in the OPRMI gene, are 0.047 in the
African population, 0.154 in the European popu-
lation, 0.485 in the Japanese population, 0.14 in
the Hispanic population, 0.210 in the Ashkenazi
population, 0.08 in the Bedouin population and
0.17 in the Ethiopian population, indicating a
wide variety of MAFs of the A118G SNP in the
OPRM!1 gene among different races and ethnici-
ties (34]. These results suggest that genetic varia-
tions in the OPRM]I gene need to be analyzed by
the race/ethnicity of populations.

Numerous SNPs in the OPRMI gene have
been analyzed with regard to clinical traits
(SuerLemenTaRY TapLe 1; www.futuremedicine.com/
doi/suppl/10.2217/pgs.11.68). SuerLemenTARY TasLE 1
lists the SNPs in the OPRMI gene that were
previously reported in association studies, with
the exception of haplotype analyses, pain sen-
sitivity, opioid sensitivity, and susceptibility to
drug dependence and other disorders. Almost
all of the analyzed SNPs in the OPRMI gene
are located at exons 1-4, corresponding to the
genomic region for the MOR-1 mRNA.

& Association studies of SNPs in the
OPRMT1 gene & pain sensitivity
Homozygous and heterozygous MOP-deficient
mice exhibited higher sensitivity to thermal
nociception compared with wild-type mice
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in the rtail-flick test at 50°C and 53°C [4].
These data suggest that hypomorphic SNPs
in OPRM]I, which reduce their expression or
function, influence pain sensitivity.

Four SNPs in the OPRM]I gene were ana-
lyzed in association studies with pain and related
traits (Tasie 1) [35-43]. Among four SNPs, the
IVS1-C2994T and IVS2+G31A SNPs were sig-
nificantly associated with pain sensitivity scores
and pressure pain thresholds, respectively (35.43].
However, no other reports have shown an asso-
ciation between these two SNPs and pain-related
traits; therefore, the results of these association
studies remain controversial. Significant associa-
tions with pain-related traits were also observed
in studies of the A118G SNP. The G-allele car-
riers of the A118G SNP showed higher reactivity
to social rejection compared with AA subjects in
the dorsal anterior cingulate cortex and anterior
insula, which are involved in processing social
and physical pain [41]. However, G-allele car-
riers exhibited lower sensitivity to mechanical
stimulation than AA subjects did [36). Therefore,
Further studies are necessary to evaluate the
results of these association studies between the
A118G SNP and pain sensitivity.

Association of OPRM1 SNPs with
opioid sensitivity

The MOP plays an integral role in the vari-
ous effects of opioids. Morphine, fentanyl and
methadone are agonists for the MOP, and the
clinical effects of these analgesic opioids, such as
analgesia and their side effects, including nausea,
vomiting, pruritis and respiratory depression, are
mainly produced through MOP [2]. The anal-
gesic and side effects of analgesic opioids were
abolished or reduced in homozygous or hetero-
zygous MOP-deficient mice (45]. These results
indicate that MOP gene dosage is related to the
clinical efficacy of analgesic opioids. In addi-
tion, the opioid antagonist naltrexone is effec-
tive for the treatment of alcohol dependence [44].
Naltrexone is a nonspecific antagonist of opioid
receptor subtypes, but it strongly interacts with
MOP [45]. The effects of naltrexone on drink-
ing outcome have been found to be greater in
alcoholic individuals with a family history of
alcoholism [46,47], suggesting that genetic fac-
tors highly contribute to the effects of naltrex-
one in alcoholic treatment. Furthermore, the
endogenous opioidergic system via MOP plays
a critical role in the regulation of hypotha-
lamic—pituitary—adrenal (HPA) axis activation.
Corticotropin-releasing factor neurons in the
paraventricular nucleus of the hypothalamus,

which expresses MOP, initiates HPA axis acti-
vation [48.49]. Opioid blockade by naloxone has
been found to show a greater cortisol response
among individuals with a family history of alco-
holism [50-521. Thus, genetic variations in the
OPRM!1 gene appear to affect the analgesic and
side effects of opioids, efficacy of naltrexone for
alcoholic treatment, and HPA axis activation by
naloxone and exhibit interindividual differences
in these effects of opioids.

Many SNPs in the OPRM]I gene have been
investigated in regard to opioid sensitivity,
including the analgesic and side effects of anal-
gesic opioids, efficacy of naltrexone for alcoholic
treatment, and HPA axis activation by naloxone
(TasLE2) [37,40,42,53-96]. Among these studies, statis-
tical significance was found in association studies
between only three SNPs (A118G, IVS2+C691G
and IVS3+A8449G) and opioid sensitivity.

The A118G SNP has been shown to be
associated with the analgesic and side effects
of opioids, including morphine, morphine-
6-glucuronide (M6G) and fentanyl. In these
studies, opioid dose [66.76], consumption [42.68],
requirement [54,56.63,64,80], and 50% effective
concentration (EC,)) (s8,62] were greater in
G-allele carriers compared with AA subjects,
regardless of the analgesic and analgesia type.
Specifically, the analgesic effects were lower in

Table 1. Association studies of OPRM1 SNPs with pain sensitivity.

ng future science group

Polymorphism Result (MAF) Ref.
G-1727 No (pressure pain threshold and tolerance) (0.174) 3]
17T Not analyzed (0.000) [35)
A118G No (heat pain threshold) (0.112) [36]
G-allele carriers > AA subjects (pressure pain threshold,
p < 0.05)
No (ischemic pain threshold)
No (MPQ-sensory postoperative pain rating) (0.125) (37]
Association (MPQ-sensory and MPQ-affective pain (38]
ratings, p < 0.05)
No (pressure pain threshold and tolerance) (0.319) [35]
No (chronic widespread pain) (0.100)* (391
No (cold pressor-induced pain threshold) (0.438) (40]
G-allele carriers > AA subjects (dispositional and neural (41
sensitivity, p < 0.05) (0.208)
G-allele carriers < AA patients (pain tolerance threshold, [42]
p = 0.03 and 0.001) (0.313)
IVS1-C2994T Association (pain-sensitivity score, p = 0.0007) [43)
No (chronic widespread pain) (0.093)* [39]
IVS2+G31A GA subjects > GG subjects (pressure pain threshold, [35]
p = 0.036) (0.028)
No (pressure pain tolerance)
IVS2+C691G Not analyzed (0.000) [35]
"The number of subjects combined the control and chronic widespread pain groups.
MAF: Minor allele frequency; MPQ: McGill Pain Questionnaire.
www.futuremedicine.com 1307
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G-allele carriers than in AA subjects. G-allele
carriers exhibited lower analgesic efficacy com-
pared with AA subjects [40,6770.73,75). Similar
to analgesic efficacy, the incidence of analgesic
opioid side effects was lower in G-allele carriers
than in AA subjects [56,60,68.73.75,77). Numerous
studies have also reported associations of the
A118G SNP with the efficacy of naltrexone for
alcoholic treatment. In contrast to the effects
of analgesic opioids, the efficacy of naltrexone
for alcoholic treatmenc (i.e., rate of relapse,
time to relapse, craving for alcohol and clinical
outcome) were higher in G-allele carriers than
AA patients [57.84,86,88,89]. Similarly, HPA axis
activation induced by naloxone was greater in
G-allele carriers than AA subjects [93-96]. These
results indicate that the G allele of the A118G
SNP is hypomorphic and hypermorphic for the
effects of analgesic opioids and opioid antago-
nists, respectively. The meta-analysis showed an
association of the A118G SNP with less nausea
{effect size, Cohen’s d = -0.21, p = 0.037) and
more dosage requirements (d = 0.56, p = 0.018)
in GG subjects {97]. However, some reports
showed no association between the A118G SNP
and opioid sensitivity. Association studies of opi-
oid sensitivity have been performed with various
races and population ethnicities. As described
above, the MAFs of the A118G SNP vary widely
among race/ethnicity; therefore, the effect sizes
of the A118G SNP in association studies are
quite different between races and ethniciries.
A possible explanation for the incidence of no
association between the A118G SNP and effects
of opioids is that the statistical power was inad-
equate and may be attributable to the different
MAFs between races and ethnicities in the sam-
ple populations. The MAF in the studies of the
association between the A118G SNP and anal-
gesic effects of opioids is 0.260 + 0.032 (n = 16,
average + standard error of the mean), which
tends to be higher than the MAF in studies that
found no association between the A118G SNP
and analgesic effects of opioids (0.173 + 0.067,
n = 5). However, the MAFs in the studies that
found an association between the A118G SNP
and side effects of analgesic opioids or efficacy of
naltrexone for alcoholic treatment, are not dif-
ferent from the studies that found no associa-
tions. These opioid functions are dependent on
metabolic enzymes, transporters and molecules
involved in opioid signal transduction pathways.
Specifically, the side effects of opioid analgesics
are under the influence of drug-metabolizing
enzymes and transporters, which facilitate the
elimination of opioids from the body (e.g., CYP,

UDP-glucuronosyltransferase and ATP-binding
cassette transporters). Therefore, genetic varia-
tions in the genes that encode these molecules
might be involved in opioid sensitivity and affect
the association between the A118G SNP in the
OPRM]I gene and the side effects of opioid anal-
gesics. Naltrexone exerts its effect by interact-
ing not only with MOP but also with 8- and
k-opioid receptors. The A118G SNP in the
OPRM]1 gene may be associated with the action
of opioids, such as morphine and fentanyl, at the
MOP rather than affect the action of nonspe-
cific opioids, such as naltrexone, at other opioid
receptor subtypes. The reasons as to why some
studies did not confirm the association between
the A118G SNP and side effects of analgesic
opioids or treatment efficacy of naltrexone for
alcoholism, remain to be clarified.

In an association study of the IVS2+C691G
SNP, statistical significance was observed with the
effects of naloxone [96], but another study did not-
show an association between the IVS§2+C691G
SNP and analgesic effects of morphine or fen-
tanyl. Similar to the IVS2+C691G SNP, only
one study reported an association between the
IVS3+A8449G SNP and fentaryl analgesia (40].
Therefore, further work is needed to validate and
determine the significance of the IVS2+C691G
and IVS3+A8449G SNPs in the effects of
naloxone and fentanyl analgesia, respectively.

Association of OPRM1 SNPs

with susceptibility to

substance dependence

Pharmacological studies in animals implicate
the endogenous opioid system in the reinforc-
ing effects of a variety of drugs, including alco-
hol, cocaine, heroin, cannabinoids, nicotine and
amphetamine. These drugs have been shown to
release dopamine in the nucleus accumbens and
ventral tegmental area, which are critical brain
loci in the reinforcement pathway [98]. Dopamine
release is a consequence of increased opioider-
gic activity, which inhibits GABA neurons,
thereby disinhibiting dopaminergic neurons
99]. MOP-deficient mice exhibited decreased
ethanol self-administration and decreased
ethanol intake (100-102]. The rewarding effects
of heroin, cannabinoids and nicotine, but not
amphetamine, were also abolished or reduced in
MOP-deficient mice [103-108]. Cocaine reward,
measured by conditioned place preference, was
reduced in both homozygous and heterozygous

- MOP-deficient mice [109], although cocaine

produced comparable conditioned place prefer-
ence in both wild-type and MOP-deficient mice
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G-1784A
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A118G

Opioid

Morphine
Morphine
Morphine
Morphine

Naltrexone
Morphine
Morphine
Morphine/M6G
Morphine
Morphine

Morphine
Morphine

Morphine/M6G
Morphine

Morphine

Morphine/fentany!
Morphine

Morphine
Morphine

Morphine

Opioid effect

Cancer pain relief
Cancer pain relief
Cancer pain relief

Postoperative
analgesia

Side effects
Alcoholic treatment
Pupil constriction
Morphine tolerance
Side effects

Pupil constriction
Side effects

Cancer pain relief
Cancer pain relief
Side effects

Cancer pain relief

Postoperative
analgesia

Side effects
Pupil constriction

Cancer pain relief
Side effects

Postoperative
analgesia

Side effects
Postoperative
analgesia

Cancer pain relief
Cancer pain relief

Postoperative
analgesia

Side effects
Side effects

Postoperative
analgesia

Side effects

*The number of subjects combined the control and switcher groups.
ACTH: Adrenocorticotropic hormone; EC,,: 50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial
pressure; PaCO,: CO, arterial pressure; PONV: Postoperative nausea or vomiting; VAS: Visual analogue scale.

Table 2. Association studies of OPRM1 SNPs with the effects of opioid drugs.

Result

GA carrier < GG carrier (pain relief)
No (morphine requirement)

No (opioid switching)

No (morphine requirement)

No (nausea, vomiting episodes and pruritis)

Not analyzed

No (EC,, of morphine)

Morphine tolerance with high plasma M6G in GG subjects

Dizziness, sleepiness and apathy in AA subjects

G-allele carriers < AA subjects (miotic effects of morphine and M6G)
G-allele carriers < AA subjects (nausea and vomiting, p < 0.05)

Less effective in AG patients

GG patients > AA patients (morphine requirement, p = 0.006)

No (nausea, vomiting, dyspnea, sleepiness, loss of appetite
and constipation)

No (opioid switching)
No (morphine dose)

No (PONV requiring ondansetron)

GG subjects > AA subjects (EC, of opioids, p < 0.001)

GG patients > AA patients (morphine requirement, p = 0.024)
No (nausea score, vomiting and sedation score)

GG patients > AA patients (morphine requirement, p = 0.003)

No (nausea, vomiting, and other adverse effects)
No (morphine dose)

G-allele carriers > AA patients (morphine dose, p = 0.012)
GG patients < AA patients (pain relief, p < 0.001)
G-allele carriers > AA subjects (morphine consumption, p < 0.05)

G-allele carriers < AA subjects (nausea, p = 0.02)
No (pruritus severity score)
Association (morphine requirement, p < 0.01)

Association (nausea, p = 0.026; vomiting episodes, p = 0.022)

" Number of subjects

GG, 1, GA, 1, AA, 0
GG, 90; GT, §, TT, 1
GG, 137; GT, 19; TT, O*
GG, 819; GT, 156; 1T, 8

CC, 6;CT,5TT,0
AA, 6; AG, 5; GG, 1
AA, 1; AG, 0; GG, 1
AA, 6; AG, 4; GG, 2
AA, 1; AG, 1;GG, 0
AA, 78; AG, 17, GG, 4

AA, 114; AG, 37, GG, 5
AA, 57; AG, 15; GG, 2

AA, 23; AG, 6; GG, 2

AA, 43; AG, 19; GG, 18

AA, 74; AG, 33; GG, 13

AA, 70; AG, 30; GG, 1
AA, 166; AG, 36; GG, 5

AA, 106; AG, 22; GG, 10
AA, 272; AG, 234, GG, 82

AA, 389; AG, 435; GG, 170

[57]
{58]
[59]

f0]
{53}

[54]

{55]
(61]

(62]

{63]

(64]

[65]
[66]

(67}
[68]

[56]
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fféblél‘z;’As‘sociation‘studi_es of OPRM1 SNPs with the effects of opioid drugs (cont.).

Polymorphism
A118G (cont.)

Opioid
M6G
M6G
M6G

Fentany!
Fentany!
Fentany!

Fentanyl
Fentanyl

Fentanyl
Fentanyl/morphine

Alfentanyl

Alfentanyl

Levomethadone
Buprenorphine

Methadone
Some opioids

Some opioids
Some opioids

Naltrexone

Naltrexone

Opioid effect
Pupil constriction
Electrical pain relief
Electrical pain relief

Respiratory depression

Preoperative analgesia
Labor analgesia

Postoperative
analgesia

Side effects

Thermal pain relief

Postoperative
analgesia

Labor analgesia

Postoperative
analgesia

Electrical pain relief
Chemical pain relief
Side effects

ESWL pain relief

Pupil constriction

Heroin dependence
treatment

Opioid abuse
treatment

Postoperative
analgesia

Chronic pain relief
Postoperative
analgesia

Alcoholic treatment

Alcoholic treatment

The number of subjects combined the control and switcher groups.

ACTH: Adrenocorticotropic hormone; EC,,: 50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial
pressure; PaCO,: CO, arterfal pressure; PONV: Postoperative nausea or vomiting, VAS: Visual analogue scale.

Result

G-allele carriers > AA subjects (EC,, of M6G, p < 0.05)
Low M6G analgesia in G-allele carriers

AG subjects < AA subjects (M6G analgesia, p < 0.01)
and EC,, of acute hypoxic response)

No (E

max

No (gastric response to fentanyl)
G-allele carriers < AA subjects (EC, of fentanyl, p < 0.01)
G-allele carriers > AA patients (VAS score, p < 0.05)

G-allele carriers < AA patients (PaCO,, p < 0.05)
GG patients < AA patients (time to awakening and extubation,

p < 0.05)
No (respiratory depression)

G-allele carriers < AA subjects (pain threshold decrease, p = 0.046)
GG patients > A-allele carriers (fentanyl consumption, p = 0.039

or 0.01)

No (duration of fentanyl analgesia)
No (morphine requirement and duration of morphine analgesia)

G-allele carriers < AA subjects (alfentanyl analgesia, p < 0.05)
GG subjects < A-allele carriers (alfentanyi analgesia, p < 0.05)
GG subjects < A-allele carriers (respiratory frequency, p < 0.01)
G-allele carriers > AA subjects (alfentanyl dose, p < 0.01)
G-allele carriers > AA subjects (frequency of boluses, p < 0.05)
G-allele carriers < AA subjects (miotic effect, p < 0.001)
G-allele carriers < AA patients (ACTH response, p = 0.03)

No (methadone response)

SNP x anger-out (analgesic consumption, p < 0.05)

G-allele carriers < AA patients (opioid dose, p < 0.005)
GG patients > A-allele carriers (analgesic requirement, p < 0.05)

G-allele carriers < AA patients (rate of relapse, p = 0.044)
G-aliele carriers > AA patients (time to relapse, p = 0.040)
No (effects of naltrexone treatment)

G-allele carriers > AA patients (decrease of MAP, p < 0.005)

Number of subjects
AA, 6; AG, 5; GG, 1
AA,12; AG, 6; GG, 0
AA, 12; AG, 4; GG, 0

AA, 15; AG, 2; GG, 1
AA, 150; AG, 62; GG, 11
AA, 99; AG, 66; GG, 24

AA, 86; AG, 143; GG, 51
AA, 86; AG, 67; GG, 21

AA, 144; AG, 34; GG, 12
AA, 78: AG, 22: GG, 3

AA, 10; AG, 4, GG, 6

AA, 72; AG, 24; GG, 3

AA, 40; AG, 8; GG, 3
AA, 14, AG, 4, GG, 2

AA, 177, AG, 57, GG, 4
AA, 37; AG, 10; GG, 1

AA, 103; AG, 17, GG, 1
AA, 41; AG, 70; GG, 27

AA, 89; AG or GG, 41

AA, 59; AG or GG, 29

Ref.
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[72]
[73]

[40]
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Polymorphism  Opioid

A118G (cont.) Naltrexone
Naltrexone
Naltrexone

Naltrexone
Naltrexone

Naltrexone
Naltrexone
Naltrexone

Naltrexone
Naltrexone
Nalmefene
Naloxone

Naloxone
Naloxone
Naloxone
IVS1+C5143T

IV§1-C17823T
IVS2+G31A

Morphine
Morphine
Morphine
Morphine
Morphine/M6G
Morphine
Morphine
Morphine/M6G
Fentany!

IVS2+C691G

ACTH: Adrenocorticotropic hormone; EC,,; 50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial

Table 2. Association studies of OPRM1 SNPs with the effects of opioid drugs (cont.). -

Opioid effect

Alcoholic treatment
Alcoholic treatment
Alcoholic treatment

Alcoholic treatment
Alcoholic treatment

Alcoholic treatment
Alcoholic treatment
Alcoholic treatment

Alcoholic treatment
Alcoholic treatment
Alcoholic treatment
HPA axis activation

HPA axis activation
HPA axis activation

HPA axis activation

Cancer pain relief
Cancer pain relief
Cancer pain relief
Cancer pain relief
Pupil constriction
Cancer pain relief
Cancer pain relief
Pupil constriction

Result

No (effects of naltrexone treatment)

No (rate and time to relapse)

G-allele carriers < AA patients (craving for alcohol, p < 0.05)
No (alcohol-induced stimulation, sedation or mood changes)
No (effects of naltrexone treatment)

G-allele carriers > AA patients (% of days abstinent, p < 0.05)

G-allele carriers < AA patients (% of heavy drinking days, p < 0.05)

G-allele carriers > AA patients (rate of good clinical outcome,
p = 0.005)

No (effects of naltrexone treatment)

G-allele carriers > AA patients (time to relapse, p = 0.014)
Haplotype (including A118G) x medication (p = 0.03)
G-allele carriers > AA patients (rate of good clinical outcome,
p = 0.006)

No (effects of naltrexone treatment)

No (naltrexone effects on impulsive choice ratio)

No (effects of nalmefene treatment)

G-allele carriers > AA subjects (cortisol response, p < 0.05)
AG subjects > AA subjects (plasma ACTH response, p < 0.05)
G-allele carriers > AA subjects (cortisol response, p < 0.05)
No (plasma ACTH response)

G-allele carriers > AA subjects (cortisol response, p = 0.046)
No (plasma ACTH response)

G-allele carriers > AA subjects (cortisol response, p < 0.05)
No (cortisol response)

G-allele carriers < AA subjects (plasma ACTH, p = 0.04)

No (opioid switching)

No (opioid switching)

No (morphine requirement)

No (opioid switching)

No (EC,, of opioids)

No (morphine requirement)

No (opioid switching)

No (EC,, of opioids)

Preoperative analgesia No (gastric response to fentanyl)
*The number of subjects combined the control and switcher groups.

pressure; PaC0,: CO, arterial pressure; PONV: Postoperative nausea or vomiting; VAS: Visual analogue scale.

* Number of subjects

AA, 16, AG, 6, GG, 3
AA, 148; AG or GG, 42
AA, 25; AG, 14; GG, 1

AA, 119; AG or GG, 54
AA, 469; AG or GG, 135

AA, 75; AG or GG, 17
AA, 25; AG or GG, 38
Unknown

AA, 89; AG, 16; GG, 3
AA, - AG, - GG, -

AA, 167; AG, 96, GG, 29
AA, 29; AG, 9; GG, 1

AA, 24, AG, 5; GG, 1
AA, 59; AG, 14; GG, 1

AA, 6; AG, 5; GG, 1
AA, 7; AG, 8; GG, 2
AA, 13; AG, 13; GG, 3
CC, 100; CT, 55; TT, 1!
CC, 80; CT, 70; TT, 6'
GG, 83; GA, 16; AA, 0
GG, 129; GA, 27, AA, 0'
GG, 26; GA, 5; AA, 0
CC, 39; CG, 46; GG, 14
CC, 34; CG, 72; GG, 50"
CC, 11; CG, 16; GG, 4
CC.4; CG, 14; GG, 0

[82]
(83]
[84]

85]
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(87]
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Table 2. Association studies of OPRM1 SNPs with the effects of opioid drugs (cont.).

Number of subjects
CC, 87; CG, 45; GG, 6

Result

Opioid effect
Postoperative
analgesia

Opioi

Polymorphism
IVS2+C691G

(cont.)

[80]

No (analgesic requirement)

Some opioids

[96]

CC, 13, CGor GG, 16

0.04)

G-allele carriers > CC subjects (plasma ACTH response, p

HPA axis activation
No (cortisol response)

Naloxone

(80}

GG, 112; GA, 25; AA 1

No (analgesic requirement)

Postoperative
analgesia

Some opioids

IVS3+G5953A

(40}

AA, 219; AG, 60; GG, 1

0.01)

Postoperative G-allele carriers > AA subjects (fentanyl requirement, p
analgesia

Fentanyl

IVS3+A8449G

(80]

AA, 116; AG, 21; GG, 1

No (analgesic requirement)

Postoperative
analgesia

Some opioids

[83]
[92]
[55]

AA, 152; AG or GG, 50

No (rate and time to relapse)

Alcoholic treatment
Alcoholic treatment

Cancer pain relief

Naltrexone
Nalmefene
Morphine

IVS3-A1188G

AA, 169; AG, 95; GG, 8
TT, 91; TC, 55; CC, 10t

No (nalmefene effects of treatment)

No (opioid switching)

TAA+T1371C

(80)

AA, 116; AG, 21; GG, 1

No (analgesic requirement)

Postoperative
analgesia

*The number of subjects combined the control and switcher groups.

Some opioids

TAA+A2109G

50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial
VAS: Visual analogue scale.

pressure; PaCO,: CO, arterial pressure; PONV: Postoperative nausea or vomiting;

ACTH: Adrenocorticotropic hormone, EC,:

when they were conditioned for a long period of
time (two sessions per day for 45 days) [103,104].
SNPs in the OPRM1 gene might be expected
to affect the susceptibility to substance depen-
dence in humans. To date, numerous SNPs in
the OPRMI gene have been analyzed for their
involvement in the susceptibility to substance
dependence (SUPPLEMENTARY TABLE 2) [26-31,34,110-150].
In studies of substance dependence or related
traits, SNPs in exon 1 and intron 1 corre-
lated with clinical traits with high frequency
{number of analyses with positive correlation/
total analyses: 0/7 [5" flanking region], 0/5
[S” UTR], 25/66 [exon 1], 26/47 [intron 1],
5/17 [intron 2], 0/1 [exon 3], 10/37 [intron 3],
3/11 [3°-UTR]). In the European and Japanese
populations, a large LD block covers the region
from exon 1 to intron 1, indicating that the
LD block covering exon 1 and intron 1 in the
OPRM1 gene is critically involved in substance
dependence and related traits.

Among the SNPs that have been analyzed
with regard to substance dependence and
related clinical traits, numerous studies showed
that the A118G and IVS1+A21573G SNPs were
associated with alcohol dependence or related
traits. The G-allele frequency of the A118G
SNP in alcohol dependence is higher or tends
to be higher compared with nonalcoholic con-
trols (111-113,121,124,125,130]. In contrast, some
studies showed lower G-allele frequencies of the
A118G SNP in alcohol dependence than non-
alcoholic controls [119,120,128]. These controver-
sial results in the A118G SNP for alcoholism
might result from the various MAFs in different
races/ethnicities, but this remains to be eluci-
dated. The minor allele (G) frequency of the
IVS+A21573G SNP in alcohol dependence was
higher than in nonalcoholic controls [26].

In the case of opioid dependence, many
studies have reported that the A118G and
IVS1-T17286C SNPs were associated with opi-
oid dependence. Similar to alcohol dependence,
the G-allele frequency of the A118G SNP in
opioid dependence was higher than in con-
trols [114,133,137). The minor allele (C) frequency
of the IVS1-T17286C SNP in heroin dependence
was higher than in controls [138].

The A118G and TAA+A5359G SNPs were
also associated with tobacco dependence. In
contrast to alcohol and opioid dependence,
abstinence rates in G-allele smokers were higher
than in AA smokers [139,141,142], and the number
of cigarettes smoked in G-allele female smok-
ers was smaller than in AA allele smokers [140],
suggesting that the G-allele of the A118G SNP
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is protective against smoking. In smokers, the
minor allele (G) frequency of the TAA+A5359G
SNP was smaller than in control subjects [27].

In these three types of substance dependence,
previous studies have reported no significant
association with the A118G SNP. A meta-
analysis of 22 case—control studies failed to
detect a significant association between A118G
and substance dependence (odds ratio = 1.01,
95% CI: 0.86-1.19) 151). The case—control stud-
ies examined by this meta-analysis examined
dependence on several substances, including
alcohol and opioids. Therefore, this meta-ana-
lysis did not strictly include specific substances.
In another meta-analysis of case—control stud-
ies that examined the association between the
A118G SNP and opioid dependence, no signifi-
cant evidence was found for either dominant
(p = 0.810) or additive (p = 0.406) effects of
the A118G SNP on the risk for opioid depen-
dence [152]. The pooled odds ratios and 95% CI
derived from the eight European, six Asian, four
Affican, two Hispanic, and one Native American
samples were 1.20 (0.91-1.58), 0.93 (0.66-1.31),
0.99 (0.44-2.21), 2.60 (0.54~12.47) and 2.34
(0.68-8.03), respectively. The association with
opioid dependence was not significant for any
of these specific ancestral groups. However,
the meta-analysis was designed to maintain
statistical power greater than 97% for detect-
ing additive effects and greater than 70% for
detecting dominant or recessive effects with an
odds ratio as small as 2.0. Therefore, if the odds
ratio for the actual effect of the A118G SNP
on the risk for opioid dependence was smaller
than 2.0, then the meta-analysis would not have
sufficient power for detecting the effects of the
A118G SNP, indicating that further analyses are
needed with specific ancestral samples.

Association of SNPs in the OPRM1
gene with other disorders

SNPs in the OPRMI gene have been investi-
gated for their involvement in various other
disorders (SuepLemenTaRY TasLe 3) [33,153-170]. The
A118G SNP is the only variation that has been
associated with susceptibility to disorders and
related traits in numerous studies. Patients with
idiopathic absence epilepsy showed high G-allele
frequencies of the A118G SNP compared to con-
trol subjects (154,157). The G-allele frequency in
patients with schizophrenia was also higher than
in control subjects [160]. By contrast, G-allele car-
riers, including normal subjects, with glucose
tolerance and patients with impaired fasting
glucose or Type 2 diabetes mellitus exhibited

better glucose tolerance compared with AA-

homozygotes (161]. Furthermore, G-allele carriers
in patients with painless diabetic foot ulcer were
higher than in patients with painful diabetic
foot ulcer [162]. In addition, a positive associa-
tion was found between BMI and copy number
of G-allele of the A118G SNP, and the G-allele
frequency in the obesity groups was lower than
in control groups in the Uyghur population [33].
The obese controls showed a lower G-allele fre-
quency of the A118G SNP than patients with
binge eating disorder [167). These results indicate
that the G-allele of the A118G SNP is a risk
allele for epilepsy and schizophrenia, but it is
protective for diabetes and obesity.

Effects of A118G SNP on MOP
expression & function

Some #n vitro and in vive studies have reported
the effects of the A118G SNP on opioid func-
tions, including receptor binding and expres-
sion. One report found that the ligand-binding
affinities of B-endorphin, morphine and nal-
oxone for the MOP were not significantly dif-
ferent between wild-type and knockin mice
(Oprm1 Al12G) p71. Mice have four puta-
tive N-glycosylation sites in the MOP, and the
number of these N-glycosylation sites is pur-
portedly reduced to three in Oprmil A112G
knockin mice. The human MOP has putatively
five N-glycosylation sites, and the number of
these N-glycosylation sites is reduced to four in
118G/G subjects. For this reason, the Oprml
Al112G knockin mouse strain is not a suitable
model for analyzing the effects of the A118G
SNP in the human OPRMI gene. The effects of
opioid antagonists have not been analyzed with
regard to differences between G-allele and com-
mon allele homozygous carriers of the A118G
SNP in vitro.

The binding affinity of B-endorphin, but
not endomorphin-1, to the 118G variant of
the MOP was higher than the common allelic
form of the MOP in AV-12 cells 172]. No differ-
ences were observed, however, in morphine and
[D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin
(DAMGO) agonist binding between the
118G and common form of the MOP in COS
cells (173). Similarly, in HEK cells, no differences
were observed in morphine, M6G, and B-endor-
phin agonist binding between the 118G and
common form of the MOP [174]. A subsequent
study, however, did not confirm these binding
affinity results (175]. Kroslak ez 4/. reported that
the binding activity of morphine, DAMGO, and
methadone but not B-endorphin were lower in
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the 118G variant than in the common form
of the MOP in both AV-12 and HEK cells.
In vivo, in the somatosensory region of homo-
and heterozygous carriers of the 118G variant,
the efficacy of DAMGO was lower compared
with homozygous carriers of the common allele,
whereas the number of DAMGO binding sites
was unaffected {176]. These discrepancies in the
binding affinities of MOP agonists remain to be
resolved. In heterozygous samples, the mRNA
from the common allele was 1.5-2.5-fold more
abundant than from the 118G variant allele [177).
A possible explanation for the reduced efficacy of
opioid antagonists in 118G allele carriers may be
the attenuation of MOP expression.

The expression of endogenous opioid pep-
tides, including preproenkephalin and prepro-
dynorphin, was reduced in numerous regions
of heterozygous carriers of the 118G allele [173].
Alterations of endogenous opioid systems might
underlie the enhanced susceptibility to alcohol
and opioid dependence in 118G allele carriers.

Conclusion & future perspective

We have reviewed many OPRMI gene varia-
tions that have been identified and analyzed
for their associations with pain sensitivity, opi-
oid sensitivity and susceptibility to substance
dependence and other disorders. These stud-
ies revealed significant associations between

genetic variations, including the A118G SNP,
with opioid sensitivity and susceptibility to sub-
stance dependence and other disorders (Freure 2).
However, associations between variations in the
OPRMI gene were not found in every analysis.
Therefore, the pharmacogenetic significance
of variations in the OPRMI gene is still being
discussed. One explanation why statistical sig-
nificance was not found in some analyses is
that the MAFs of the variations are different
among different races and ethnicities and lead
to different effect sizes in the analyses. The
MAFs of the A118G SNP vary among differ-
ent races/ethnicities, which would be expected
to affect the results of association studies. To
further elucidate the genetic variability in the
OPRM1 gene that contributes to opioid efficacy
and susceptibility to substance dependence,
replication studies will be required in different
races/ethnicities with sufficient samples for each
effect size. In addition, although some func-
tional analyses of the A118G SNP have been
performed, the results of these studies are also
controversial similarly to those of association
studies. Molecular mechanisrns underlying the
relationships between genetic variations in the
OPRM!1I gene and MOP expression and func-
tion should be elucidated for underlying and
supporting the associations of these variations
with clinical traits.
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As written in this article, a great number
of genetic variations in the OPRMI gene have
been analyzed for the opioid sensitivity, sus-
ceptibility to substance dependences and other
disorders. Technologies for genetic analyses
are developing remarkably in recent years and
therefore genetic studies will be carried out
more generally and inexpensively in the future.
The pharmacogenetic information of the
OPRMI gene including the associations with
individual opioid sensitivity and susceptibility
to substance dependences will be accumulated
(see PharmGKB [205]), and these data will be

absolutely essential for the establishment of per-
sonalized medicine for pain and drug abuse in
the future.
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Executive summary

SNPs in the OPRM1 gene

with AA patients.

opioid dependence, respectively.

= QOver 700 polymorphisms have been identified from exon 1 to exon 4 of the OPRM1 gene.

= Numerous studies have shown associations between these polymorphisms and opioid effects, substance dependence and susceptibility
to other disorders, including epilepsy and schizophrenia.

Association of OPRM1 SNPs with opioid sensitivity

= The analgesic and side effects of opioid agonists may be lower in G-allele carriers of the A118G polymorphism (rs1799971) compared

= The effects of opioid antagonists for alcoholic treatment may be higher in G-allele carriers than in AA patients.

Association of OPRM1 SNPs with susceptibility to substance dependence & other disorders

= The G-allele of the A118G polymorphism may be a risk allele for alcoholism, opioid dependence, epilepsy and schizophrenia, but it may
also be a protective allele for tobacco dependence, diabetes and obesity.

= The G-allele of the IVS1+A21573G polymorphism and C-allele of the IVS1-T17286C polymorphism may be risk alleles for alcohol and

= By contrast, the G-allele of the TAA+A5359G polymorphism may be a protective allele for tobacco dependence.
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