The PDMS clastomer was coated by the immersing method
using the polymer solution. In order to disregard the effect of low
concentration, all the polymer solutions were prepared with
a sufficiently high concentration (30 mg mL~"). The changes in
the surface properties on immersing in the polymer solution were
estimated by confirming the changes in a hysteresis loop during
three successive immersing processes (Fig. 2). In the case of pure
ethanol, the hysteresis loop shows no changes during the
repeated immersion process, which indicates no significant
conformation changes on the PDMS surface. In contrast, for
copolymer solutions, the hysteresis loop showed a significant
change at the first cycle of the immersion process, indicating that
the surface property changed with the immersion into the poly-
mer solution; this change is possibly induced by the adsorption of
polymer molecules on the PDMS surface. Further, the hysteresis
area was significantly decreased for each copolymer solutions.
This indicates that the ethanol solvent feel equilibrated state
between the treated PDMS surface and the polymer solution
because of the enhanced wettability on the PDMS surface.

In order to estimate the coating efficiency and the stability in
water, the surface element of treated PDMS was analyzed by
XPS before and after washing with water. The resulting atomic
ratio is shown in Fig. 3. For the PDMS surfaces coated with
a block-type copolymer, only a little amount of MPC polymer
was detected in the case of B1 immediately after coating, whereas
a large amount of coated polymer was detected in the case of B2
and B3. Although Bl solution increased the wettability of the
PDMS elastomer, it did not provide a stable coating from the
ethanol solution. This indicates that in addition to the wettability
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of the substrate, its affinity with solvent must be considered when
designing a coating agent. On the other hand, a large amount of
polymers were coated from ethanol on PDMS elastomer in the
case of B2 and B3 solutions. This indicates that the polarity of B2
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and B3 was hydrophobic enough to overcome the affinity with
solvent for coating on the PDMS surface. Even though both B2
and B3 show a good coating efficiency from a polar solvent, the
stability in the aqueous media was not satisfied. After the PDMS
surfaces were thoroughly washed with water, most of the block-
type copolymer was removed from them. Because both B2 and
B3 did not show good solubility with water (turned opaque), the
result has to be considered with respect to molecular structure. It
is thought that the PMPC block segment on the PDMS surface is
heavily hydrated when the substrate is immersed in water.'
Therefore, a strongly hydrophobic PDMS surface might easily
repel the PMPC block segment in water; this repulsion is prob-
ably the reason for the instability of block-type copolymers on
the PDMS surface (Scheme 2). In all cases, a block-type
copolymer synthesized in this research did not seem to be
a suitable molecular design for developing a stabilized surface
modifier of the PDMS elastomer. Fig. 3b shows the atomic ratio
of the PDMS surface coated with random-type copolymers.
Obviously, R1 and R2 were not effectively coated on the PDMS
surface in ethanol, possibly for a similar reason as that in the case
of Bl. On the contrary, a large amount of R3 was coated on the
surface right after the coating process and most of the R3
molecules were retained even after the surface is thoroughly
washed with water. This indicates that a higher content of
hydrophobic DMS in a random-type molecular structure is a key
factor in maximizing the coating efficiency of the polar solvent.

In order to confirm the effect of the polymer concentration on
the coating efficiency, R3 in various concentrations was tested as
a coating solution. Fig. 4a shows the result of the P/Si atomic
ratio measured after water washing. Clearly, it was confirmed
that the amount of coated polymer was almost saturated when
the polymer concentration was more than 5 mg mL~', and
a slightly increased amount of P/Si was detected along with the
concentration increase. This result indicates that the concentra-
tion of the polymer solution plays an important role in
completely coating the PDMS surface with the R3 polymer
solution. The effect of the immersing time in the 30 mg mL~' R3
polymer solution was also investigated to obtain the optimized
coating condition; the resultant P/Si atomic ratio is shown in
Fig. 4 b. From the result, there was almost no coating effect when
the immersion time was 10 s. However, the P/Si atomic ratio was
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almost saturated when the coating time was over 30 s; this
indicates that a large amount of polymer adsorption onto PDMS
surface requires an immersion time of more than 10 s. In general,
hydrophobic surfaces are completely covered with a large
amount of protein because of hydrophobic interactions within
a few seconds in PBS. The kinetics of this sort of interaction is
generally controlled by physicochemical factors such as
temperature, pH, surface charge, or ionic strength, ezc.?* Since
random-type copolymer adsorption onto PDMS surface is
considered due to hydrophobic interactions, quite similar to that
of the protein adsorption process, this time-dependent coating
efficiency could possibly be varied by controlling the above-
mentioned physicochemical factors in ethanol.

A topological analysis of the coated PDMS surface was carried
out by conducting AFM observations in water; the results are
shown in Fig. 5. All the PDMS elastomers were immersed into
the polymer solution for more than 10 min in order to prevent
insufficient coating induced by the abovementioned time-
dependent properties. The non-coated PDMS surface is flat; as
expected. In the case of the PDMS surface coated with 1 mg
mL~' R3 solution, only a limited amount of polymer adsorption
was observed on the surface. This clearly indicates that the
immersion time is not a sufficient factor for completely coating
the PDMS surface; this result is in good agreement with the XPS
data. When the PDMS elastomer was coated with the 5 mg mL™"
R3 solution, the overall PDMS surface was covered with the
polymer, as shown in Fig. 5 c¢. However, a hole-like surface
indentation was commonly observed on the coated surface; this
indentation is possibly due to the polymer concentration being
insufficient to completely coat the surface. On the other hand,
The PDMS surface coated with the 30 mg mL~! polymer solution
was observed to be almost completely covered; this result once
again confirms the XPS result, i.e. 30 mg mL~' polymer solution
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Fig. 5 AFM topological image of (a) bare PDMS surface and of
a PDMS surface coated with (b) 1 mg mL~, (c) 5 mg mL, (d) 30 mg
mL~' R3 solution.

was the optimized concentration. It is considered that the large
amount of protein adsorption is mainly due to hydrophobic
interactions between the amino acid residue and hydrophobic
surfaces. Other physicochemical factors such as surface charge or
ionic strength also have a considerable effect on the protein
adsorption behavior.** However, the zwitterionic phosphor-
ylcholine group and the DMS units are electrically neutral and
the ionic strength of PBS is not changed in any of the experi-
mental steps in this research. Thus, in this study, the degree of
hydrophilicity was primarily considered as an important factor in
suppressing the protein adsorption. The hydrophilicity of the
coated surface was investigated by measuring the air bubble
contact angle in water; the result is shown in Fig. 6. The bare
PDMS surface shows an air bubble contact angle of approxi-
mately 80°, which indicates strong hydrophobicity in water.
When the PDMS surface was coated with the 1 mg mL™" R3
solution, the hydrophobicity of the PDMS surface did not
improve significantly, even though the air bubble contact angle
was increased slightly. As confirmed from the AFM topological
images, a large area of the bare PDMS surface still remained
when the surface was coated with the 1 mg mL~"' R3 solution.
The coated surface remains a hydrophobic surface possibly
because of the presence of this residual bare surface. In contrast,
PDMS surfaces coated with R3 solution with a concentration of
over 5 mg mL~' show significantly improved hydrophilicity, and
the degree of hydrophilicity was almost saturated when the
polymer concentration was over 5 mg mL~'. The results of
the surface elemental analysis and AFM also indicated that the
minimal concentration of R3 solution required for the complete
coating of the PDMS surface was 5 mg mL . This indicates that
once the surface is covered with the polymer, its hydrophilicity is
not significantly improved even when the polymer concentration
is increased.

Fig. 6 also shows the relative amount of protein adsorbed on
each coated surface, as calculated by the micro-BCA™ experi-
mental method. When the surface was coated by the 1 mg mL™’
R3 solution, the amount of protein adsorption was decreased to
60% of the bare PDMS surface. The amount of adsorbed protein
continuously decreased with the increasing polymer concentra-
tion. The surface coated with the 30 mg mL~" polymer solution
could suppress approximately 70% of the adsorption on the bare
PDMS surface; this value was slightly above the detection limit
of micro-BCA™. Because the surface elemental analysis data
and the subsequent hydrophilicity of the coated surface was
almost saturated for polymer concentrations of over 5 mg mL™,
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it was expected that the amount of protein adsorption could also
be minimized from the surface coated with the 5 mg mL~' R3
solution. However, the amount of protein adsorption on the
surface with 5 mg mL~' solution is almost twice that on the
surface coated with the 30 mg mL~! solution. This indicates that
in addition to the surface hydrophilicity, other factors such as
surface morphology observed by AFM, must be considered for
optimizing the physical coating process as previously discussed in
other literature.® Even though the surface elemental analysis and
the hydrophilicity of coated surface is almost saturated for
polymer concentrations over 5 mg mL~', a hole-like surface
indentation was commonly observed on the coated surface with
the 5 mg mL~"! as described above in the AFM images. It is very
well known that significant protein adsorption is detected even
on hydrophilic polymer surfaces.?® This type of adsorption is
thought to be due to geometrical factors of polymer surfaces,
such as chain mobility, intermolecular distance, or interstitial
vacancies.® Primary protein adsorption is mainly dominated by
the intermolecular distance between coated polymers. Based on
the AFM observation, considerable primary adsorption might
easily occur on the PDMS surface coated with the 5 mg mL~' R3
solution rather than that coated with a 30 mg mL~' R3 solution.

One of the major applications of PDMS in advanced bioen-
gineering field is to fabricate the microfluidic chip. To enhance
the performance of the microfluidics, non-specific adsorption of
biological components should be avoided. In order to confirm
the coating efficiency of the designed polymer, the PDMS micro-
channel was modified using the R3 solution based on the
condition discussed in the above result. Fig. 7 shows the fluo-
rescence microscopy images obtained after the protein adsorp-
tion test using the FITC-labeled BSA solution. Obviously, the
bare PDMS channel shows a significant amount of protein
adsorption on its surface. On the other hand, the amount of
protein adsorption was significantly decreased almost to the
background level when the channel was coated with 30 mg mL™"
R3 solution. This indicates that coating with R3 solution at
a suitable concentration effectively suppresses the protein
adsorption in PDMS-based materials such as a PDMS micro-
channel.
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Fig. 7 Fluorescence microscopy image and relative fluorescence inten-
sity of (a) bare PDMS micro-channel and of the PDMS microchannel
coated with (b) 30 mg mL~" R3 solution, obtained after the FITC-labeled
BSA adsorption test.

(a) (b)

Fig. 8 Optical microscopy image of adhered cells on (a) bare PDMS
surface and (b) PDMS coated with R3 (30 mg mL~, 3min) solution.

The cellular responses on the PDMS surface also play an
important role in designing various types of biomedical devices
such as cell-based drug screening systems or oxygen-permeable
cell analysis systems.?® Therefore, uncontrollable cellular
attachment on the material surface must be prevented by proper
surface modification. Fig. 8 shows the optical microscopy images
of the PDMS substrates after performing the 1929 cell adhesion
test. Contrary to the significantly adhered cells on a bare PDMS
surface, no adhered cells were observed on the PDMS surface
treated with R3. Instead, we could observe cell aggregates flow-
ing on the surface which is normally observed cell morphology
on MPC polymer treated surface. The primary phenomenon
required for cell adhesion on the material surface is a large
amount of protein adsorption.?’ Since the R3-treated PDMS
surface shows a significantly decreased amount of adsorbed
proteins (Fig. 6), non-specific cellular adhesion could be effec-
tively suppressed by MPC polymer coating.?®?*

3. Conclusion

Modification of the surface of a PDMS elastomer in a simple and
efficient manner was investigated by designing various compo-
sitions of block- and random-type MPC copolymers. The level of
the hydrophobic DMS unit as a random-type component should
be high (>70%) in order to stably immobilize the polymer on the
surface in aqueous media. The immersion time and polymer
concentration were also found to be important factors for real-
izing the optimal coating condition for suppression of large
amount of protein adsorption and for inducing non-cell adhesive
properties on the PDMS surface. Namely, molecular structure,
unit composition, immersing time, and concentration of polymer
solution must be comprehensively considered in optimizing the
coating process on the PDMS surface.
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®) Untreated Poly(MPC)-grafted
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1x 108
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5x 108
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10x 108
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B3 ATHEEY S 21— =Y REWC Y 5 MPCASE CLPEEE Y £ 7 —DERNHE
() BEELE L3 EHE, (B) HEY1 7 — L @S hEreh.

%1 MPCHLE CLPE OA&SR R e RBER

Biological effects Test methods Results

Cytotoxicity Cytotoxicity test (extract) Negative

Sensitization Sensitization test Negative

Genetoxicity Chromosomal aberration / Gene mutation ~ Negative

Local pathological effects Implantation in tissue Noabnormal observation
Local pathological effects Implantation in bone Noabnormal observation

Local pathological effects / Subchronic toxicity

Implantation in articular joint

Noabnormal observation
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technology” i3, B LAttt CTHART A2 ATH
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TRESE, HEROESGEATRES & LTE—F%
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CBwbHLRBEME LD EEBEEL TV,
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% PMPC 77 Z 24 T 0. 26, PSBMA 7
S HARTO0.48, PCBMA 77 “EtR T
0.67. PHEMA 7 7 & # T 0.79,
PmOEGMA 7" + FE:AR T 0. 36, PTMAEMA
75 M T 0.38 chains/nm® ToH o
7o BHEINET S 7 NEELFRY <
—EHOWHME» O RmEBEBRTHE
L 7= #& 5. PMPC. PCBMA, PSBMA. PHEMA
PmOEGMA 35 J TV PTMAEMA 7' 7  FEtliz
BWTENFI, 39, T4, 69, 59, 65
BXO3T%THHo7z, T HDRERIT.
Rl XN =R ~—T7 7 VEBRPE
BEERICEL WA Z EERLE,

K1 ERV =T T VEOREYE

Polymer Graftdensity Surface Dynamic contact angle® (2) ¢

(chains/nm?) il {mv)
Poly(MPC) 0.26 39% 21 17 I 5
Poly(CBMA) 0.67 74% 22 16 6

Poly(SBMA) 0.48 69% 23 17 6 9.2
Poly(HEMA) 0.79 59% 65 24 a1 8.1
Poly(mOEGMA)  0.36 65% 50 37 13 8.7
Poly( ) 031 37% 62 19 a3 2

* Polymer brush with 5-nm-thick ({-potential: 10 mM Nadl)

£1IE, SRV ~—TZKED
EhMEBIXOREEMICET LR
L, 2o ofERIEX. 5 nm
BEOHMBEELZETLIR) ~—7
T VREOFERERTH 5, ARISE
IIABRE T CHEINS 2D, KFIZ
B AREFENFICEETHLH, Z
Z Tk, KBRET COENEDTRIE &
72 HENREEAE A O kB EE A IZE B
Uiz, BEA A oS LI FA
HEORY =—7 7 ER T 20° L
ToOIFEINIVEMAZRL, EW
EBhWVEE R LT, —J7. IEA T D
PHEMA 3 X 0% PmOEGMA 7' 7 L K TlX
R E Rl L 72 D | 2B
AKEORETHDZ EBRREINT,
Y — 2 EMNBEFRICELT, AFF
D PTMAEMA 77 & 75 40 mV % 8
ZHRMEMEMERL., FEA A B X
RANVERE A EEORY) ~—T
TUREN-10 nV BE EZD0T7 =4
HETH o T, TR —SEEOEAE

DOEMNDRDBRARRY A LRIV
REIAREA EEEZRTOIRI =
— 7S RETIFIEFE T, Z
DESICEEERY ~—T 7 HE
2 XY R RRER LUk A TRk
ERTAHAETNVREEEBET L L
NTET,

2. B\ EWRAEZEE O

X 312, RY~=w—TFF KB D
FBS DR EE LRI ~—T 7 FRED
R DR Z T,
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BrcioTcs | 1000

&
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Frequency shift value (Hz)
w
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T
Adsorption amount (ng/cm?)

" o

15 —é } [;] A § ¢ 200
0 L m I o
0 5 10 15 20

Ellipsometric thickness / nm

3. R ~=—T7F7RmM~F /N
7 G A g EE O BEMR

ATRP BHZAENEEL SN E T
1%, 800 ng/cm* BBEDH X7 BB
ELF, WA F o HDORY ~—T 5
VERETIX T VEDOE I DM
Eng R EREENET Lz, &
EIFEMM L - KRIEEZ AT 5K <=
—T I VRBIIBWNT, TDF URIE
& &1L PMPC 7' < H T 20 ng/cm’
LLF. PSBMA 77 3K T 30 ng/cm’,
PCBMA 77 “ZE T 80 ng/cm® 2 £
Tl STz, FEA L HEORY v —
77 VERE TS, RRICEEOEMNIC
TEWLEEDBDTHRERLERY
PHEMA 7 Z ¥ % & T 180 ng/cm’,
PmOEGMA 7 Z < T C 30 ng/cm® & 72
oz, —J5. IFF LMD PTMAEMA 7
T URETIE, REOHEMIIHENSF
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NﬁE&%gﬁ%MLto_hiﬁﬁ
WIFEET DO F L DERMEI

%@T&ék%x%héo_wio

2R EOREMHRDRITIRY =
— 7 I VBEERTAE ) v—=2
=v FOLFHESCERICEF L,
KRIZ 5706 10 nm FRE DIRENG &
NI ERAEEDEEICELEZ £
O, &\ EREZETT DK
REOEELFD7-DIZ1E, 5 nm
BREOBEENLETHDZ ENbH

77,

3. RU~=—TFVERIZHTIHZ
N ERES

K 4lZRY <=—T7 7 REIIRT S
TNTIVWMENER) ~—T T
& DR ORRE T,

BKMED ATRP BRAAFE E/L R T
i, 3. OnNFEED Z L R 7 B E 18
B Ehiz, —F., 5mmBEORES
BT 5%KRY ~—7 7 VERICHT
D8 Xy B AETINL ATRP B AR EE
ELER S B L THEBICHE SN
77o BREDEE & Ry 5 &
ORERIZ Y RV EREEOFRER L
FEECTH T, 2FED ., WA A
RY~—7F Tk, BEEOEMZ
LTHE NI ERENMMET L, &K
JEZ= 7> PMPC, PCBMA 5 X U PSBMA 75
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Ellipsometric thlckness (nm)
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T B AE T REIE DO BEfR

VERICKT B F N BRE T
FhZ2H0.2, 0.4BX0. 1 nN &72
STz, IEA A MED PHEMA 75 3 Eofk
WXET B2 T B AETNTEED
ALK L TEIE—ED 0.7 nN Th
STz, IF A NVED PIMARMA 75 S 5
Bz T, FRE O L TH
NI ERENBEM LT, XN D
HWELE N L ERER &
DEBENLREAEERATHDI D, Z0
MERIX A TFAUE ﬁ@ﬁM#%ﬁk
Z Ny EEOHMEERICEEZRES
LTWAZ EamRmme LT,

HSIZH T BRET & Z R
BN EEE OBRFRERT,

K 5nbondLoic, R)~w—7
7 UREIZBWT, &/AﬁE%%ﬁ
X NI EREREDRIZIZIEDE
BT, 2F0 ., BWEA A MHD
R ~=—T7 T REIZBWTH X
JEWREENIEFIT/NILS< MO
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J& L DEBEAERNIEF /NI N
ThHDHI ERbhroT,

4. IKFMIRBE DARMT

80
OPMPC
. OPCBMA -
2 - APSBMA
o @ PHEMA
3 B PTMAEM/
©
>
£
£ 40 -
w
g
[ =
Q
=
T 20 g
= A O .o
On
o LA | l l
0.0 0.5 1.0 15 2.0

Adsorption force of BSA (nN)
X5 RV ~—T7FKMmIZBITH
HUNRTEWAEN & Z R T ER
% £ 0 BAfR

= 128=



X 6 |ZfEEN 5 nm BEORY <w—
75 i ED KL F OB CIEEE
¥ D) B LXOKFEE (o) DIEZTRT,
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@ EMORED
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N oW
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e ©
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1 ] 1
°o = N
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Diffusion coefficient (D)

Diffusing range of hydration layer (o)
s
o

F & v
Q\“ 3 é‘é&é‘z& o

Q&
X 6. 7J‘<’UV>—77/§§ELC:PSH5
K FIR AR

Ko+ OEEE RIS T 5 B OIE
BeBux, b F A MO PIMAEMA 75
RMEMPIEA A PEDPHEMA 75 &K
mC/NEVEEZR LTz, ZAUT5EWA
Z KT BREEHEARTINT LY,
KA FRREICHEE S L. £ OERh M
PMETFLTWAZ EERRTB, —F
T, AV IF LY a—LEER
4% PmOEGMA 77 » R E-CRMEA A
MORY ~—7 7 UREIEEDKS
FiT, B KE 2 B CIERER R
LTE., KyFRE EESEEZH T
5T ERbpots, THUTEERKSE
EEMEATIROA AN EEL
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BL T, A A HEDOR) ~—TF
FEE CTER/NE L, HEOKFIEE
L TWAZ ERnbholz, ZHIE
A A UHEDORY ~—T F REH
AP CHBHEWNVERETHDZ L
CEREL WA EEZILND, —,
HFF ML LIIREAS A D
R ~—T 7 VREEIRE RMEZFH
L. HERIE VKT R S LTV
B EDRPIroT,

B 7IZH Ry BRESEKFFD
H OILERE L OB E =T,
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Diffusion coefficient (D) (x 104 cmzl sec)
7. RV ~—T 7 REIBITD
BRI BERENEKRFTFDOHEE
JLEREL D RER

X 750058512, B CILBERE
DN BTV, &//\ﬁ’gfﬂ%ﬁ
METF L7z, 2%, BEA A D
R ~w—TF7VKRET, FoN7HEE
DHEEERBREFIT/NIVEROD
oL LT, RFREDOKSTOEEM
DIEFICEL ., SHIHHIEERE VK
FIBEZA L TWAEDTHDLED
o,

05—

Adsorption force of BSA (nN)
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BERAELRRY) ~—T7 7V KRE %,
xR EEFETHE/ v —2
=y FERAWTERL, "M F~=T
TIADETFTNEmMETR LT, Z R
JEREBENIEFITDROBEA
VHMEDORY ~w—T7 T URAETIE, F
R7E L OMBAERBIFEREIT/NS B
oz, BT, BEA T UMHERY = —
7T REEFEICFET H KD FIX
BVEEMEEZA L, KFBESRKE W
ZENRDLIroT,
ALY =T U T IOVREAICE
I B E N EREZE T HT B
BN LEFTHZ ERFREE IR o T,
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SRR EE
R A BRI SE R A &
EREL - BRESRELX2T M A 2 ZREPIREE
TRTEE ARk - ARRR SRR E B L E AR OB A 5 15 DBRFE I B3 DA

Sy HBTIERRE S
A EE MRS TF DAL & K OREIERRAT

miEHHE BF B

WIREE

IR FERFEE L IER A A L ETHEL

ARBEAMER D T OKEHE L OCEAE S EREME OMBA 21T 5 729012,
A FRVESLT bR UVEREOT VAN EEETD (AF) T U L—
FBIOFR Y ZVERE A U DERREITO, BGHTIZ & 0 AKFEE 2 8T,
FE & BICFRKOEEIHFERROND Z B mhoT,

A. BHFEERY
ERBE MK - ARk AT D &L B
HIZKRZ N T BB MEEREIC R AE T
%, i, EMBRBORISHOBLEDHIK
FFICEBTDH L, ZOKRGFIXE T
ERoMBOEEVEROBERBR DS 2 F
FRLTHY | ZOKRSFORESEEES
ERERAMBHCER SN D EFESEICR
ERPBEEXDEEZLND Y, R
T, EhtEFEEEZ T
poly(2-methoxyethyl acrylate) (PMEA)
VLR R L ONEE, BT LW AEREEER
ST E LUTEEZILTWDEMEA Z R
Vw—¢ L THRY RANVKRRNEA U EERK
L. KOEEZRANT

B. #f3EiiE

PMEA @ 8 £l & & L T . poly
[2-(2-ethoxyethoxy)ethyl methacrylate]
(PEEMA) 72 DT v ax v 7 X L E
EETDH (AF) 77V L—KA)~F)
(1) BEORYANLVKEREZA L AZT
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neEnF-o Y

a1 E /K EEWC) = Wnf + Wib + WT,
Wifb = AHce / Cp, Wf =(AHm / Cp)
— Wifb, ZZ T, Wnf: RE/KE, Wi :
FRAAkE, WE: BHE/KE, Cp: BIAREEL
A Hce KB &I (CC) L7zKiZ
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