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ARTICLE INFO ABSTRACT

Insulin analog products for subcutaneous injection are prepared as solutions in which insulin analog
molecules exist in several oligomeric states. Oligomeric stability can affect their onset and duration
of action and has been exploited in designing them. To investigate the oligomeric stability of insulin
analog products having different pharmacokinetics, we performed hydrogen/deuterium exchange mass
spectrometry (HDX/MS), which is a rapid method to analyze dynamic aspects of protein structures.
Two rapid-acting analogs (lispro and glulisine) incorporated deuteriums more and faster than recom-
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fey”;'_ords" binant human insulin, whereas a long-acting analog (glargine) and two intermediate-acting prepara-
iy tions (protamine-containing formulations) incorporated them less and more slowly. Kinetic analysis
HDX/MS P g po! Y. y

revealed that the number of slowly exchanged hydrogens (D) (k < 0.01 min~') accounted for the differ-
ence in HDX reactivity among analogs. Furthermore, we found correlations between HDX kinetics and
pharmacokinetics reported previously. Their maximum serum concentration (Cnax) was linearly corre-
lated with D; (r=0.88) and the number of maximum exchangeable hydrogens (D..) (r = 0.89). The max-
imum drug concentration time (tmax) Was also correlated with reciprocals of D and D, (r=0.86 and
r=0.96, respectively). Here we demonstrate the ability of HDX/MS to evaluate oligomeric stability of

Oligomeric stability

insulin analog products.

© 2011 Elsevier Inc. All rights reserved.

Insulin is a peptide hormone consisting of two peptides: an A
chain with 21 amino acids and a B chain with 30 amino acids. Insu-
lin is the only hormone in vertebrates to induce cellular uptake of
glucose and lower blood glucose levels, and it is an essential drug
for treating diabetes mellitus.

As a drug product, insulin molecules primarily form hexamers,
which diffuse and dilute in the subcutaneous tissue after injection
[1] and dissociate into monomers via dimers or tetramers [1,2].
Monomeric insulin is absorbed into microvessels to exert its phar-
macological action [3]. Therefore, oligomeric stability is a crucial
property of insulin, determining its onset and duration of action
(Fig. 1).

To mimic the intrinsic insulin secretion and enable better con-
trol of blood glucose levels, several recombinant human insulin
analogs with different onset and duration of action have been
developed and marketed. Compared with the basic preparation of
recombinant human insulin, insulin analog products are generally
categorized on the basis of differences in the onset and duration of
their action—rapid-acting, long-acting, and intermediate-acting
groups. Fig. 2 and Table 1 present the primary structures and
several characteristics of insulin analogs investigated in this study

* Corresponding author. Fax: +81 3 3700 9084.
E-mail address: hashii@nihs.go.jp (N. Hashii).

0003-2697/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ab.2011.09.002

[4-6]. Insulin lispro (lispro) is a rapid-acting insulin analog in
which the positions of proline at B28 and lysine at B29 are re-
versed. Insulin glulisine (glulisine) is another major rapid-acting
analog in which asparagine and lysine at positions B3 and B29
are replaced by lysine and glutamic acid, respectively. The amino
acid substitutions in lispro and glulisine lead to a decrease in olig-
omeric stability; therefore, they act rapidly after subcutaneous
injection. Insulin glargine (glargine) is a long-acting analog in
which asparagine at position 21 on the A chain is substituted by
glycine and two arginine residues are added to the C terminus of
the B chain. Glargine has a higher isoelectric point (6.7) [7,8] than
human insulin and its analogs, which range from 5.0 to 5.5 [9-12].
Glargine formulated at pH 3.5 to 4.5 precipitates in neutral condi-
tions after subcutaneous injection [13,14]. Its precipitant gradually
dissociates and is absorbed slowly into the bloodstream, and there-
by glargine has a slower onset and longer duration of action than
human insulin. Insulin detemir (detemir) is another type of long-
acting analog that was designed with a concept different from
modification of oligomeric stability. Detemir, in which a myristic
acid is covalently bound to lysine at B29, binds to albumin in sub-
cutaneous tissues and plasma. This modification leads to delay in
absorption and prolongation of the serum half-life. The intermedi-
ate-acting group is another type of insulin with longer action in
which the hexameric insulin (analog) is stabilized by forming a
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Fig.1. Absorption of subcutaneously injected insulin. Insulin molecules in drug
products exist mainly as hexamers. After subcutaneous injection, diluted hexamers
dissociate to monomers to be absorbed by microvessels.
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Fig.2. Primary structures of insulin analogs we examined. Dashed lines represent
disulfide bonds. Mutated residues are underscored.

Table 1
Human insulin and its analog products examined in this study.

Group Analog Onset Duration Molecular pI  pH of
of of action weight drug
action product

Human Insulin 30-60 min 4-12h 580757 54 7.0-7.8

Rapid Lispro 5-15min° 4-6h 5807.57 5.65 7.0-7.8

Glulisine 5-15min 1-25h 582258 5.1 7.0-7.8
Long Glargine 2-4h 20-24h 6062.89 6.7 3.5-45
Detemir 2h? 6-24h*® 5916.82 7.2-76
Intermediate NPH 2-4h 10-16h 5807.57 7.0-7.5
NPL 1-2h 10-16h 5807.57 7.0-7.8

2 Dose dependent.

complex with protamine to suppress dissociation in subcutaneous
tissue after injection. Human isophane insulin (neutral protamine
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Fig.3. Schematic model of HDX/MS. The protein sample is exposed to deuterated
solvent and subjected to MS. Hydrogen atoms, without participating in hydrogen
bonds or any other noncovalent bonds, are more easily exchanged with deuteriums.
Exchanged deuteriums are detected as the shift in m/z value distributions.

Hagedorn, NPH)' and a lispro preparation containing protamine
(neutral protamine lispro, NPL) belong to the intermediate-acting
group.

Evaluation of oligomeric states of formulated insulin analogs is
important to support their appropriate use. Previously, the oligo-
meric states of insulin analogs were determined by sedimentation
velocity or static light scattering or were estimated by comparing
their circular dichroism spectra under different conditions [15].
However, the oligomeric stability of these formulated insulin ana-
logs have not been investigated because of the absence of conve-
nient methods. Therefore, there is an increasing need for an easy,
rapid, and accurate method to evaluate stability of the association
state of insulin.

Hydrogen/deuterium exchange mass spectrometry (HDX/MS)
is a known method to analyze structural fluctuations of proteins
[16-18]. HDX/MS is based on the exchange reaction between
hydrogens in proteins and deuteriums in the DO solvent. A pro-
tein sample is incubated in a D,0 solvent to incorporate deuteri-
ums, and then the sample solution is mixed with an acidic
reagent to suppress the HDX reaction. The number of incorpo-
rated deuteriums is calculated from the difference in the average
mass obtained by liquid chromatography mass spectrometry (LC/
MS) before and after the HDX reaction (Fig. 3). Deuteriums that
were exchanged with amide hydrogens in the protein backbone
are primarily detected by HDX/MS because hydrogens in protein
side chain groups (e.g., -OH, -NH,, -SH, -COOH, -CONH_) have
lower pK, values, have higher exchange rates even after the addi-
tion of H*, and undergo a back-exchange reaction to lose deuteri-
ums [19]. The exchange rate of each amide hydrogen depends on
its interaction with the solvent [20-22]. A moiety with more
structural fluctuations, which is not involved in an a-helix or a
B-sheet, not packed in the hydrophobic core, and not trapped in
other interactions, has more solvent accessibility. Thus, a moiety
or molecule that interacts with the solvent further (e.g., a mono-
mer vs. an oligomer) will gain more exchanged deuteriums [23].

U Abbreviations used: NPH, neutral protamine Hagedorn; NPL, neutral protamine
lispro; HDX/MS, hydrogen/deuterium exchange mass spectrometry; LC/MS, liquid
chromatography mass spectrometry; HPLC, high-performance liquid chromatogra-
phy; PCA, principal component analysis; DSL, dynamic light scattering.



Analysis of oligomeric stability using HDX/MS/S. Nakazawa et al./Anal. Biochem. 420 (2012) 61-67 63

HDX/MS can potentially be applied to estimate the stability of
insulin oligomers.

In this study, we compared the HDX reactivity of insulin analog
formulations with different oligomeric stability and different drug
dispositions. We found correlations between their HDX Kkinetic
parameters and their pharmacokinetic parameters. Here we dem-
onstrate the usefulness of HDX/MS to evaluate oligomeric stability
of insulin analog products and propose its potential use for predict-
ing their onset and duration of action.

Materials and methods
Materials

Human insulin (Humulin R), insulin lispro (Humalog), NPH
insulin (Humulin N), and NPL (Humalog N) were purchased from
Eli Lilly (Indianapolis, IN, USA). Insulin glargine (Lantus) and insu-
lin glulisine (Apidra) were purchased from Sanofi-Aventis (Paris,
France). Insulin detemir (Levemir Penfill) was purchased from
Novo Nordisk (Bagsvard, Denmark). All compounds were provided
at a concentration of 100U/ml, approximately 3.5 mg/ml
(0.61 mM). Ammonium acetate and formic acid were purchased
from Wako Pure Chemical Industries (Osaka, Japan). Acetonitrile
and D,0 were purchased from Sigma-Aldrich (St. Louis, MO, USA).

HDX/MS

Protein solutions were diluted 10-fold with 10 mM ammonium
acetate in 90% D,0 (pH 7.4) and kept on ice during the HDX reaction
because conducting the reaction at room temperature resulted in a
very high exchange rate that made it difficult to successfully
observe a time-dependent change. Final concentrations of insulin
analogs were approximately 60 mM (0.35 mg/ml). At each time
point, 50 pl of the reaction solution was mixed with an equal vol-
ume of ice-chilled formic acid/acetonitrile/water (1:49:50) to
repress the exchange reaction; this step is called “quenching.” Deu-
terated proteins were introduced into the mass spectrometer with
the Paradigm MS4 HPLC (high-performance liquid chromatogra-
phy) system (Michrom BioResoruces, Auburn, CA, USA) through

Table 2
Hydrodynamic diameters of insulin analogs in 10 mM ammonium acetate (pH 7.4).

Concentration (LM)

15 30 60 120
Insulin 4.7+0.1 5.1+03 47+0.1 46+0.1
Lispro 3.2+04 3.6+0.6 44+0.2 46+0.1
Glulisine 3.3+0.6 3.7+0.2 4.5+0.1 45+03
Glargine 609.1 +42.8 284.2+8.2 274.0+28.0 49+0.1
Detemir 13.2+0.1 11.0+£2.9 6.2+0.0 54+0.1
Insulin/H* 26+1.0

Note. Values are mean diameters (nm) + standard deviations (n = 3).

Table 3
Relative volume in neutral buffer compared with that of human insulin in acidic

solution.

Concentration (uM)

15 30 60 120
Insulin 5.9 76 6.2 5.8
Lispro 19 2.8 5.1 55
Glulisine 2.1 29 54 53
Glargine 1.3 x 107 1.3 x 10° 1.2 x 108 6.8
Detemir 1316 77.2 14.0 92

Note. Relative volume (to insulin/H*) was calculated as (mean diameter of each
analog at each concentration)?/(mean diameter of insulin/H*).

Table 4
HDX kinetics of insulin analogs.

Number of exchangeable hydrogens

Maximum Slow Medium Fast

(Do) (Do) (Ds) (Dy) (D)
Insulin 203 (11.9) 39 1.5 3.0
Lispro 245 (12.2) 73 2.6 25
Glulisine 24.7 (12.1) 72 26 2.8
Glargine 18.0 (10.1) 2.0 1.8 4.2
Detemir 19.9 (12.7) 33 1.6 2.5
NPH 16.4 (9.9) 1.0 1.8 3.6
NPL 16.9 (11.8) 1.3 2.0 1.8

Note. Shown are numbers of maximum exchangeable hydrogens and slow-
exchanging (k<0.1min™!), intermediate-exchanging (0.1 <k< 1), or fast-
exchanging (k > 1.0) hydrogens that were calculated on the basis of Eq. (1). D, values
of when t =0 are in parentheses.

an L-column Micro trap column with C18 solid phase (Chemicals
Evaluation and Research Institute, Tokyo, Japan) at a flow rate of
50 pl/min over 10 min with 0.1% formic acid in 50% acetonitrile.
Mass spectra were recorded using a Fourier transform ion cyclotron
resonance mass spectrometer (LTQ-FT, Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a nanoelectrospray ion source
(AMR, Tokyo, Japan). The conditions for MS analysis were as fol-
lows: an electrospray voltage of 2.5 kV in positive ion mode, a cap-
illary temperature of 200 °C, and an m/z range of 1000 to 4000. The
number of incorporated deuteriums was determined by subtraction
of the weight-average molecular weights.

Calculation of kinetic parameters

The modeling and calculation of deuterium incorporation were
done using Mathcad 14.0 software (PTC, Needham, MA, USA). De-
tails of fitting with Eq. (1) are described in Results.

Size distribution measurements

Hydrodynamic diameter distributions were determined with
the dynamic light scattering method by Zetasizer Nano (Malvern
Instruments, Worcestershire, UK). Insulin analog products were di-
luted with 10 mM ammonium acetate (pH 7.4) to 15, 30, 60, and
120 pM. Acidic solution of insulin for the control was prepared
with Humulin R and a 9-fold volume of 0.1% formic acid, which
had a final pH of 2.7 at 25.7 °C. Overnight equilibration was per-
formed at 4 °C prior to measurements. The relative volume given
in Table 3 was calculated as the cube of the ratio of the mean diam-
eter to that of insulin/H*.

Multivariate analysis

Principal component analysis (PCA) was performed using SIM-
CA-P* software (Umetrics, Umeda, Sweden) with the PCA method.
As the variables, the numbers of maximum exchangeable hydro-
gens (D), and slow- and intermediate-exchanging hydrogens (D
and D, respectively) (Table 4) were input. Before input, the vari-
ables were divided by the number of amide hydrogens in the main
chains of each analog.

Results
Hydrodynamic diameter distributions of insulin analog products

To confirm the oligomeric states of insulin analogs used in this
study, the particle size of four analogs (lispro, glulisine, glargine,
and detemir) were measured by dynamic light scattering (DLS)
after dilution of these analogs with an H,0 solvent of the same
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composition as HDX solvent (Tables 2 and 3). As a control, an acidic
solution of 60 pM human insulin (insulin/H*), in which insulin ex-
ists mainly as a mixture of monomers and dimers, was prepared
[24]. At a high concentration (120 pM), the mean diameters of
the four analogs obtained by DLS were similar to that of human
insulin. In addition, their volumes calculated from the mean diam-
eters were 6-fold larger than that of insulin/H* (Table 3), suggest-
ing that they could exist as hexamers at a high concentration.

At lower concentrations (15 and 30 pM), the mean diameters of
the two rapid-acting analogs, lispro and glulisine, were smaller
than the diameters at higher concentrations, although the diame-
ter of human insulin remained roughly constant at all concentra-
tions. These data indicate that the rapid-acting analogs dissociate
more rapidly than human insulin. Glargine, with an isoelectric
point of 6.7, showed an increase in diameter with a decrease in
concentration by dilution with a neutral solvent, indicating the
aggregation of glargine molecules. At lower concentrations
(15 uM), detemir formed large particles approximately 130 times
larger than insulin/H*, possibly suggesting the association of det-
emir molecules at lower concentrations. These results are consis-
tent with the prevailing oligomeric stability of insulin analogs
except for detemir.

HDX/MS of human insulin and insulin analogs

First, to determine deuterium incorporation by human insulin
as the standard, human insulin was subjected to the HDX reaction
and LC/MS as described in Materials and Methods. To conduct ex-
change reaction under physiological pH conditions, we selected
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Fig.4. Representative mass spectra of human insulin observed during the HDX
procedure. The original spectrum of human insulin without deuterium label [D(-)]
and spectra obtained at several time points of HDX reaction are shown.
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Fig.5. Time-series plot of deuterium uptake by insulin analog products.

ammonium acetate buffer, one of the better buffers to mimic
in vivo pH condition, considering applicability to the mass spec-
trometer. The time-dependent shift of the mass spectra and the
number of incorporated deuteriums by human insulin are shown
in Figs. 4 and 5 (red rhombus). The uptake was fast during the first
5 min, and approximately 80% of the incorporation was complete
within the first minute. After 3 h of the HDX reaction, the number
of incorporated deuteriums was 19.82 + 1.64 (mean * standard
deviation, n =4).

Next, to determine whether the HDX reactivity of rapid-, long-,
or intermediate-acting insulin analogs differed from that of human
insulin, six analog products were examined (Fig. 5). Lispro and glu-
lisine exhibited higher exchange reactivity than human insulin
(24.48 +1.10 and 24.74 £ 0.70, respectively, after a 3 h reaction,
n = 3), but glargine showed lower exchange reactivity than human
insulin (17.57 * 0.42 after 3 h, n = 3), indicating its enhanced oligo-
meric stability. Similarly, two formulations of the intermediate-
acting group, NPH and NPL, also had lower reactivity
(16.32 £ 0.43 and 16.39 + 1.03, respectively, after 3 h, n = 3). Unlike
the other analogs, detemir had a similar number of incorporated
deuteriums as human insulin (19.84 + 0.40 after 3 h, n=3).

Kinetics of HDX reactivity of insulin analogs

To obtain further information on the oligomeric stability of
insulin analogs, we investigated the kinetics of HDX reactions of
human insulin and the insulin analogs. In general, HDX reactions
of proteins can be modeled as a pseudo-first-order reaction [21],
and exchangeable amide hydrogens are classified into three kinetic
groups: fast-, intermediate-, and slow-exchanging hydrogens [25].
On these bases, we calculated the kinetics using Eq. (1), a tetrano-
mial function of reaction time (t) defined by reaction rate constants
of each hydrogen group (k;, k;, and k), denoting the maximum
number of exchangeable hydrogen atoms by D,,, and the number
of hydrogens of each kinetic group by Dy, D;, and Ds. The latter three
terms represent the hydrogens that have not been exchanged after
a t-min reaction. We employed the tetranomial model because it
gave higher values of Pearson correlation coefficients than model-
ing with three or five terms:

D¢ = D, — Ds exp(—kst) — D; exp(—kit) — Ds eXp(—Kkst). (1)

The sets of coefficients (Ds, D;, Ds, and D,,) and reaction rate con-
stants (kg, k;, and k) that gave the highest Pearson correlation coef-
ficients were sought by fitting the mean number of incorporated
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Fig.6. The score plot for the PCA of the HDX kinetic parameters. Primary (PC1) and
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deuteriums at every observed time point to Eq. (1). The resulting
values for Dy, D;, Ds, and D, are shown in Table 4. The fast-acting
group had the highest D, followed by the human insulin, long-
acting, and intermediate-acting groups. Interestingly, the number
of hydrogens that were already exchanged at the beginning of
the HDX reaction (D, when t=0) was not different among the
respective groups, suggesting that differences in D, originated
from hydrogens that had lower exchange reaction rates and, there-
fore, were not exchanged during the first few seconds. Further-
more, D of the rapid-acting analogs were increased compared
with those of the other groups. From these results, the number of
D; could be related to the difference in the overall HDX reactivity
among insulin analogs.

PCA using HDX kinetic parameters of insulin analogs

We examined whether rapid-, long-, and intermediate-acting
groups were distinguished by PCA using the HDX kinetic parame-
ters, Do, Ds, D;, and Ds. The score plots for PC1 and PC2 are shown in
Fig. 6. Lispro and glulisine were plotted at neighboring positions,
distant from human insulin and other analogs. In addition, three
preparations with a lower tendency for dissociation (i.e., glargine,
NPH, and NPL) were plotted closely together. However, detemir
was plotted near human insulin, not near analogs of the long-
acting group. This result demonstrates that the insulin analogs
with different pharmaceutical properties are distinguished by their
HDX reactivity.

Pharmacokinetic parameters and HDX kinetics of insulin analogs

We analyzed the association between the HDX kinetic param-
eters and the actual pharmacokinetic parameters in humans. We
compared previously reported values [11,26-32] of the maxi-
mum plasma concentrations (Cmax) and the maximum drug
concentration time (tmax) after subcutaneous injection with our
kinetic parameters, D.,, Ds, D;, and Dr (Table 5). Detemir, employ-
ing the affinity to albumin instead of the oligomeric stability for
its longer action, was excluded. Crax had linear correlations with
D, and Ds (r=0.88 and r=0.89, respectively) (Fig. 7A). In addi-
tion, tmax correlated with reciprocals of D., and Ds (r=0.86 and
r=0.96, respectively) (Fig. 7B).

Table 5
Reported values of Crax and tpay.

Analog Crax (LU/ml) tmax (min) Reference

Insulin 433 109 [26]
35.8 97.5 (27]
400 104 [28]
46.0 92 [28]
46.0 82 [29]
51.1 101 [11]

Lispro 147.2 71 [30]
81.0 71 [28]
914 53 [11]

Glulisine 73.0 57 [28]
92.0 83 [28]
82.0 55 (29]

Glargine 18.9 180 [31]

NPH 135 [32]
200 [32]
22.8 360 [31]

NPL 21.3 200 [30]

Note. Shown are reported values of Crax and tmax in studies about insulin analog
products [11,26-32]. Glargine’s tma.x was deduced from the time-concentration plot
in Ref. [31].
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Fig.7. Relations between HDX kinetic parameters and Cpax (A) OF tmax (B) values.

Discussion ,

Since insulin lispro was first sold in 1995 as an analog of recom-
binant human insulin, many insulin analog products have been
marketed. Oligomeric stability of formulated analogs is important
for controlling their onset and duration of action. In this study,
we analyzed the oligomeric stability of formulated insulin analogs
by HDX/MS, which is an analytical method to determine structural
fluctuations of proteins, and we investigated relationships between
the parameters of HDX kinetics and pharmacokinetics of the
analogs.
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We first measured the diameters of the formulated insulin ana-
logs under the same conditions as the HDX reaction. The diameters
of two rapid-acting analogs (lispro and glulisine), which have low
oligomeric stability, were smaller than that of human insulin at
low concentrations, although glargine, a long-acting analog,
formed large aggregates with an increase in pH by neutralization
(Fig. 4). These results are consistent with previous studies and pro-
vide evidence that rapid-acting analogs dissociate more easily than
human insulin and glargine forms aggregates at physiological pH.
Detemir, another long-acting analog, exhibited unique behavior.
It did not form huge aggregates like glargine, but it had larger
diameters with dilution; its mean diameters were 2- or 3-fold lar-
ger than those of human insulin. This would have resulted from the
suggested complex of detemir hexamers mediated by their acyl
chains [33,34].

Next, we determined the HDX reactivity of human insulin and
insulin analogs of rapid-, long-, and intermediate-acting groups
(Fig. 5). Lispro and glulisine incorporated more deuteriums than
human insulin. On the other hand, glargine and two products of
the intermediate-acting group (NPH and NPL) incorporated fewer
deuteriums than human insulin. These results demonstrate that
HDX reactivity of insulin analogs at neutral pH were associated
with their oligomeric stability. Interestingly, detemir, in spite of
its prolonged action, had exchange reactivity similar to that of hu-
man insulin. Considering the mechanism in which detemir hexa-
mers associate, there could be little effect on the solvent
accessibility of peptide moieties of detemir molecules even when
their hexamers form a larger complex.

The PCA using kinetic parameters of the HDX reactions resulted
in a distinction among the three groups (Fig. 6). Two analogs of the
rapid-acting group, one long-acting preparation, and two interme-
diate-acting preparations were plotted at close positions. However,
detemir was plotted far from the other analogs of long- and inter-
mediate-acting groups and was closer to human insulin. This result
was in agreement with the time-dependent incorporation of deu-
teriums (Fig. 4). We suggest that only four kinetic parameters
(Do, Dy, D;, and Ds) obtained by HDX/MS allow for discrimination
of insulin analogs of different groups. In addition, PCA using the ki-
netic parameters could also be applicable to evaluate similarities in
similar biological medicinal products of insulin analogs under
development.

We analyzed the association between the HDX kinetic parame-
ters and the actual pharmacokinetic parameters in humans. We
compared previously reported values of Cpax and tmax (Table 5)
with our kinetic parameters (Table 4). This resulted in the correla-
tions with D, and D shown in Fig. 7. These results suggest that D,
and D; could be useful as characteristic markers for prediction of
Cmax and tmay. In a previous study on HDX with human insulin
and lispro reported by Chitta and coworkers [25], D,,, values were
nearly equal to the total number (Df + D; + D) of amide deuteriums
in the peptide backbone. However, in our study, the total number
of Dy, D;, and Ds was from 30% to 51% of D, indicating that there
could be some deuteriums left in side chains. Differences from
the previous study could be caused by the difference in the tem-
perature at which the HDX reaction was performed. In other
words, continuous cooling through the entire procedure of HDX
to moderate the exchange reaction in our study could account
for the differences. Chitta and coworkers also reported a difference
in D; between human insulin and lispro [25], whereas in our study
the only difference was observed in the D; numbers. On ice, incu-
bation could have switched some of the fast hydrogens to interme-
diate hydrogens and switched some of the intermediate hydrogens
to slow hydrogens.

The concentration of insulin is a significant factor that affects the
association and dissociation of insulin oligomer [24] and, thus, also
affects the HDX reactivity [25]. When comparing the oligomeric

stability of insulin preparations by HDX/MS, one should be careful
about sample concentration because the difference in HDX reactiv-
ity could attenuate if insulin concentration were too high to disso-
ciate (or too low to form even dimer).

Finally, we demonstrated the utility and capability of the HDX/
MS method for evaluating the oligomeric stability of insulin analog
products. We also revealed relationships between some HDX ki-
netic parameters and pharmacokinetic parameters. We believe
that our current method could be helpful in predicting the pharma-
cokinetics of insulin analogs.
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Glycosylation of cells is known to alter with several biological events such as cell differentiations and proliferations
as well as some diseases. ‘‘Glycomic approaches”, comprehensive qualitative and quantitative glycan analyses of the
cells, have become increasingly important as a means of discovering biomarkers that have the potential of being used as
disease diagnostic markers and molecular markers for cell characterizations. In this paper, we introduce a method of
quantitative glycan profiling by liquid chromatography/mass spectrometry with a combination of an isotope tagging
method. In addition, we demonstrate the potential of glycan profiling as a tool for the identification of differentiated hu-
man bone marrow mesenchymal stem cell (hAMSC) and non-differentiated hMSC.

Key words——glycan profiling; quantitative glycan analysis; isotope tagging method
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Fig. 1. Total Ion Current Chromatogram (TICC) Obtained by LC/MS of Reduced N-linked Glycans Prepared from hMSC

The solid line and the dashed line denote chromatograms obtained by LC/MS in the positive ion mode and the negative ion mode, respectively. LC, Paradigm
MS4 HPLC system (Michrom BioResources) ; MS, LTQ-FT (Thermo Fisher Scientific) ; column, graphitized carbon column (0.075X 150 mm; particle size, 5 pm) ;
mobile phase, 5 mm ammonium bicarbonate containing 2% acetonitrile (A buffer) and 5 mm ammonium bicarbonate containing 80% acetonitrile (B buffer) ; flow
rate, 300 nL/min; gradient condition, 2-45% B buffer (60 min) ; electrospray voltage, 2.5 kV in the positive and negative ion modes. 4, fucose (Fuc); &, mannose
(Man); O, galactose (Gal); B, N-acetylglucosamine (GlcNAc); €, N-acetylneuraminic acid (NeuNAc).
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Fig. 2. Glycan Distribution in hMSC

The relative peak intensity of each glycan is expressed as a percentage of the total peak intensity of the glycans. Error bars represent the standard deviations.
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N-acetylhexosamine: NeuNAc, N-acetylneuraminic acid.
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Fig. 3. Cell Images of hMSC and Its Differentiated Cells Taken by a Light Microscope
(A), hMSC; (B), osteogenic differentiation; (C), adipogenic differentiation; (D), neural differentiation.
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Fig. 4. Quantitative Glycan Analysis by a Combination of Isotope Tagging Method

(A), Strategy for quantitative glycan analysis using d;-2AP and dg-2AP as labeling reagents; (B), chromatogram obtained by the LC/MS of a mixture of do-
PA and d+-PA-glycans; (C), mass spectra obtained from a mixture of dy-PA and ds-PA-glycans.
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Fig. 5. Tagging of Glycan with Phenylhydrazine (PHN)
(A), Reaction mechanism of glycan tagging with PHN; (B), preparation of PHN labeled glycan.
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Fig. 7. Quantitative Glycan Analysis between hMSC (untreated cell) and Its Neural-lineage Cell (treated cell)

Each value is the average of a triplicate. Error bars represent the standard deviations.
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