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8 PM1/CCRS cells were infected at 100 TCID,, in the presence of the CCRS inhibitor on day 0.
Cytopathic effect was determined on day 6 by the MTT method.

bDrug concentrations of 50% growth inhibition of the cells (CC;) was > 10 pM.
¢mean + SD (n = 3).
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Certain glycan motifs in glycoproteins are involved in several biological events and diseases. To
understand the roles of these motifs, a method is needed to identify the glycoproteins that carry them.
We previously demonstrated that liquid chromatography—~multiple-stage mass spectrometry (LC—MS?)
allowed for differentiation of oligosaccharides attached to Lewis-motifs, such as Lewis x {Le”,
Galf1—4(Fuco1-3)GIcNAc) from other glycans. We successfully discriminated Le*-conjugated oligosac-
charides from other N-linked oligosaccharides derived from mouse kidney proteins by using Lewis-
motif-distinctive ions, a deoxyhexose (dHex) + hexose (Hex) + N-acetylhexsosamine {HexNAc) fragment
(m/z 512), and a Hex + HexNAc fragment (m/z 366). In the present study, we demonstrated that this
method could be used to identify the Le*-conjugated glycoproteins. All proteins in the mouse kidney
were digested into peptides, and the fucosylated glycopeptides were enriched by lectin-affinity
chromatography. The resulting fucosylated glycopeptides were subjected to two different runs of
LC—MS" using a Fourier- transform ion cyclotron resonance mass spectrometer (FTICR—MS) and an
ion trap-type mass spectrometer. After the first run, we picked out product ion spectra of the expected
Le*-conjugated glycopeptides based on the presence of Lewis-motif-distinctive ions and assigned a
peptide + HexNAc or peptide + (dHex)HexNAc fragment in each spectrum. Then the fucosylated
glycopeptides were subjected to a second run in which the peptide-related fragments were set as
precursor ions. We successfully identified y-glutamyl transpeptidase 1 (+-GTP1), low-density lipoprotein
receptor-related protein 2 {LRP2), and a cubilin precursor as Le*-conjugated glycoproteins by sequencing
of 2-5 glycopeptides. In addition, it was deduced that cadherin 186, dipeptidase I, H-2 class |
histocompatibility antigen, K~K alpha precursor (H2—K(k}), and alanyl (membrane) aminopeptidase
could be Le*-conjugated glycoproteins from the good agreement between the experimental and
theoretical masses and fragment patterns. The results indicated that our method could be applicable
for the identification and screening of glycoproteins carrying target glycan-motifs, such as Lewis
epitopes.

Keywords: liquid chromatography/multiple-stage mass spectrometry = specific detection « database
search analysis e Lewis x-conjugated oligosaccharides

Introduction

Glycosylation is one of the most common post-translational
modifications of proteins.'? Certain glycan motifs on glyco-
proteins are involved in several biological events, including cell
adhesion,” differentiation and development. They are also
known 10 be closely associated with some diseases, such as
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Kamiyouge, Setagaya-ku, Tokyo 138-8501, Japan. Fax: +81-3-3700-9084.
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tumors and hepatic diseases.”"® Glycomics, the study of all
glycoconjugates in a cell type or in an organism, is crucial to
understanding the mechanisms of glycan-mediated biological
events and diseases.”® Mass spectrometry (MS} and multiple-
stage mass spectrometry (MS$") in combination with several
types of chromatography are known to be the most powerful
tools of structural glycomics." " There are two major ap-
proaches to mass spectrometric glycome analysis. One is mass
spectrometric glycan profiling, which is achieved by online or
off-line liquid chromatography/mass spectrometry (LG~MS)
of oligosaccharides enzymatically or chemically released from
proteins.'”"** This technique has advantages for conducting a
detailed structural analysis and a quantitative analysis of

Joarnal of Proteome Research 2009, 8, 3415-3429 3415
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oligosaccharides,®® % but it does not provide any information
on protein sources that carry the glycans of interest. The other
approach is the mass spectrometric mapping of proteolytic
digests. This method enables us to characterize glycan struc-
tures based on fragment ions,” *! and to deduce the peptide
sequence from b- and y-ions that arise from the peplide
backbone.*” In addition (o these approaches, glycomics require
more advanced methods that can identify target proteins
carrying a glycan motif of interest; that is to say, a technique
for focused glycomics.

Lectin and immunological-based approaches have been
widely used for the specific detection of target glycans and
glycoproteins.®® ™ There have been numerous reports on the
use of MS in combination with affinity chromatography and
Western blotting with lectins or glyco-epitope-specific anti-
bodies.* 3 In a previous study, we demonstrated that LC—~MS®
is also uscful for the analysis of target glycans in a complex
mixture.” Several glycan motifs often yield motif-specific ions
by MS", along with common glycan-related ions such as the
N-acetylhexosamine (HexNAc) fragment (m/z 204) and hexose
(Hex) + HexNAc fragment (m/z 366).79* For example, Lewis-
motifs that consist of fucose (Fuc), galactose (Gal) and N-
acetylglucosamine (GleNAg) yield a distinetive ion at m/z 512
that corresponds to the B-type ion of deoxyhexose {dHex) +
Hex + HexNAc. This B-type ion subsequently provides the
product ion at m/z 366 ({Hex + HexNAc|™) by MS/MS/MS.
Using these Lewis-motif-distinctive ions, we successfully dif-
ferentiated the oligosaccharides bearing the Lewis-mortifs from
many other oligosaccharides in mouse kidneys.*® This method
could be used to differentiate the Lewis-conjugated glycopep-
tides from a proteolytic digestion of proteins. Furthermore, the
protein sources of the Lewis-motif-conjugated glycopeptides
could be identified by further MS® of peptide-related ions.

In this study we demonstrated a method for the identifica-
tion ol Lewis x (Le*, Galfl—4Fucal ~3)GleNAc)-conjugated
glycoproteins in tissue by LC—MS". Our method consists of two
different runs of LC-~MS" using a Fourier-transform ion
cyclotron resonance mass spectrometer (FITCR—~MS) and ion
trap-type mass spectrometer (IT-MS). After the first run, we
sorted out the product ion spectra of expected Le*-conjugated
glycopeptides based on the presence of Lewis-motif-distinctive
ions and assigned a peptide + HexNAc or peptide + (dHex-
JHexNAc fragment in each spectrum. Then the fucosylated
glycopeptides were subjected to a second run in which the
peptide-related fragments were set as precursor ions (Figure
1. As a model tissue, we used a mouse kidney in which we
previously confirmed the presence of the Gal$1 - 4(Fucal = 3)GleNAc
motil {Lewis x and y) as well as the absence of the
Galfl—3(Fucal—~4)GlcNAc motif (Lewis a and b) and
Fucal—2Galfl ~3/4GleNAc motif (blood group H).**

Experimental Section

Materials. Trypsin (Trypsin Gold, mass spectrometry grade),
Aleuria aurantia lectin (AAL)-immobilized agarose column and
Peptide-N-glycosidase F (PNGase F) were purchased from
Promega (Madison, WD, Honen (Tokvo, Japan) and Roche
{Mannheim, Germany), respectively. Murine kidneys (MRL/
Mpl-Ipr/ipr) were purchased from Japan SLC Inc. (Hamamatsu,
japan;.

Sample Preparation. Murine kidney cells were filuated by a
cell strainer {70 wmy; BD Biosciences, San Jose, CA} and solubilized
in lysis buffer (7 M urea, 2 M thiourea, 2% CHAPS, and 30 mM
Tris-HCE containing a protease inhibitor mixture (Wako, Tokyo,

3416 Journal of Proteome Research Vol § Ne. 7, 2008
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Japan} by vortexing at 4 °C. After quantifying the proteins, cold
acetone (final concenuration, 80%{v/v)) was added to the protein
solution {500 ug protein). The precipitated protein was dissolved
again in 100 ul. of 0.5 M Tris-HCL plt 7.0, and precipitated with
an 8-fold volume of acctone. The precipitated protein was
dissolved in 810 «L of 0.5 M Tris-HCl {pH 8.6) containing 8 M
guanidine-HCl and 5 mM EDTA, and the mixture was incubated
with 6.0 xL. of 2-mercaptoethanol at room temperature for 2 h.
Freshly prepared 0.6 M soditun monoiodoacetate (135 L} was
added 10 the solution, and the mixture was incubated al room
temperature for 2 h in the dark. The reaction mixture was desalied
with a PD10 column (GE Healthcare Bio-Sciences, Uppsala,
Sweden), and the solution containing proteins was freeze-dried.
The carboxymethylated proteing were dissolved in 500 ul. of
bicarbonate buffer (pH 8.5) and incubated with 2 g of trvpsin at
37 °C for 16 h. After deactivation of trypsin by boiling for 3 min,
a 10-fold volume of phosphate buffered saline (PBS) was added
to the reaction mixture.

Lectin Affinity Chromatography. The sample solution was
applied to the AAL-immobilized agarose column (1.45 mg of
lectin, 1.5 x 1.0 cm) and washed with 2.5 ml. of cold PBS at 4
°C (approximately one drop/s). The absorbed glycopeptides
were eluted with PBS containing 0.2 M fucose (2.3 mL), and
the fraction was desalted with a C18 cartridge (Micro ‘Irap, 8.0
x 1.0 mm; Michrom BioResources, Auburn, CA). The absorbed
glycopeptides in the cartridge were eluted with 2 mL of 0.1%
trifluoroacetic acid containing 45% acetonitrile, and the fraction
was dried, resuspended in 0.1% formic acid, and then analyzed
by LC- MS™.

PNGase F Treatment. Fucosylated glycopeptides enriched
by lectin affinity chromatography were treated with 10 units
of PNGase ¥ in 50 uL of 50 mM phosphate buffer (pH 8.0) at
37 °C for 48 h to release A-linked oligosaccharides. After
terminating the reaction by boiling, the reaction mixture was
evaporated to dryness, resuspended in 0.1% formic acid, and
then analyzed by LC~MS/MS.

Online Liquid Chromatography/Mass Spectrometry
(LC—MS). Chromatographic separation of the fucosylated glyco-
peptide was performed using the Paradigm MS4 HPLC system
(Michrom BioResources). The fucosylated glycopeptides were
dissolved in 25 ul. of 0.1% formic acid, and 2 uL of the sample
solution was injected into 2 L capillary loop. The analytical
column was a reversed-phase capillary column (Magic C18, 50 x
0.2 mm, 5 ym; Michrom BioResources}. The mobile phase was
0.1% formic acid containing 2% acetonitrile (A buffer) and 0.1%
formic acid containing 90% acetonitrile (B buffer). The fucosylated
glycopeptides were eluted at a flow rate of 2 uL/min with a
gradient of 5--65% of B buffer in 90 min.

Mass spectrometric analysis of fucosylated glycopeptides was
performed using a FTICR/IT-MS$ (LTQ-FT; Thermo Fisher
Scientific, Waltham, MA} equipped with a nanoelectrospray ion
source (AMR, Tokyo, Japan). The conditions for FTICR—MS and
[T-MS were as follows: an electrospray voltage of 2.0 kV in-
positive ion mode, a capillary temperature of 200 °C, a tube
lens offset of 140 V, a collision energy of 35% for the MS"
experiment, maximum injection times (FTICR—MS and [T—-M§}
of 1250 and 50 ms, respectively, a resolution of FTICR~MS of
50 000, a scan time of approximately 0.2 s, dynamic exclusion
of 18 s, and an isolation width of 3.0 u {range of precursor ion
41.5).

First Run. The mass spectrometric mapping of fucosylated
glycopeptides was performed by a sequential scan: full mass
scan using FTICR-MS {m/z 1000-2000}, data-dependent
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Figure 1. Strategy for the identification of Le*-conjugated glycopeptides by LC-MS. The fucosylated glycopeptides were subjected to
two different runs. In the first run, fucosylated glycopeptides were analyzed by (a) a full mass scan using the FTICR—MS, (b) data-
dependent MS/MS, (c) MS/MS/MS of the Le*-motif-distinctive ion (m/z 512), and (d) data-dependent MS/MS/MS. (e, f) On the basis of
the presence of the product ion at m/z 512, which subsequently yielded the ion at m/z 366 by the MS/MS/MS, MS/MS and MS/MS/MS
spectra of Le*-conjugated glycopeptides were picked out from all the acquisition data. (g} Peptide-related ions were ascertained in the
MS/MS/MS spectra. (h) The peptide-related ions were listed as precursor ions. In the second run, the fucosylated glycopeptides were
identified by a full MS scan using the (i) FTICR-MS, {j} data-dependent MS/MS, (k) MS/MS/MS of the peptide-related ions listed as
precursor ions, (l) data-dependent MS/MS/MS, (m) MS/MS/MS/MS of the peptide-related ions, and (n) data-dependent MS/MS/MS/
MS. (o) Product ion spectra were submitted to database search analysis with a static modification of Cys with carboxymethyl (58.0 u)
and possible maodification of Asn with HexNAc (203.1 u) and dHex + HexNAc (349.1 u). MS?, MS/MS; MS?, MS/MS/MS: MS?, MS/MS/
MS/MS. (p) Carbohydrate structures were deduced from the oligosaccharide-related ions in the MS/MS and MS/MS/MS spectra.

MS/MS, MS/MS/MS of the LeX-motif-distinctive ion (m/z mlz 366 by the MS/MS/MS, the MS/MS and MS/MS/MS
512) generated in data-dependent MS/MS, and MS/MS/MS spectra of expected Le*-conjugated glycopeptides were
of the most intense ions generated in data-dependent MS/ picked out from all the acquisition data. Peptide-related ions
MS by MS" using [T-MS. Based on the presence of the were ascertained in the MS/MS/MS spectra, and were listed
product ion at m/z 512 that subsequently vielded the ion at as precursor ions for the second run.
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Second Run. Pepride sequencing was performed in a se-
quential scan: a full mass scan using FIICR—-MS (m/z
10002000, data-dependent MS/MS, MS/MS/MS of the pep-
tide-related ions listed as precursor ions, data-dependent MS/
MS/MS, MS/MS/MS/MS of the peptide-related ions, and data-
dependent MS/MS/MS/MS using IT-MS.

Protein Identification by Database Search Analysis. The
spectra data obtained by the data-dependent collision-induced
dissociation (CID)s and predominant CIDs of peptide-related
ions were subjected to dalabase search analysis with the
TurboSEQUEST algorithm (BioWorks 3.1; Thermo Fisher Sci-
entific) by using the NCBInr database (Mus musculus, 28~11-06).
The static modification of carboxymethylation (58.0 u) at Cys,
and the possible modification of HexNAc (203.1 u) and dHex
+ HexNAc (349.1 w) al Asn were used as the modified
parameters of database search analysis. The SEQUEST criteria,
known as cross correlation (Xcorr) scores, were set to 1.5/2.0/
2.5 (charge states of +1/+2/+3) for the protein identifications.
DTA files were generated for specira with a threshold of 10 ions
and a TIC of 100. Precursor and fragment ion mass tolerance
in the MS" specura for database search analysis were set t0 2.0 u
and 1.0 u, respectively.

Results

Sorting out the Product lon Spectra of the Le*-Con-
jugated Glycopeptides by the First LC~MS/MS/MS Run.
Proteins from mouse kidney cells were carboxymethylated and
digested with trypsin. In the mass spectrometric mapping of
the proteolytic digest, we often fail to acquire glycopeptide ions
due to their lower ionization efficacy compared (o coeluted
unmodified peptides. To prevent interference by peptides in
the ionization of glycopeptides, fucosylated glycopeptides
including Lewis-motif-conjugated glycopeptides were enriched
by affinity chromatography with an AAL-immobilized agarose
column. The fucosylated glycopeptides were desalted by a C18
cartridge and injected into an LC—MS system equipped with
FTICR—MS for a MS scan (m/z 1000--2000). The most intense
ions on the MS scan were subjected to data-dependent MS/
MS and MS/MS/MS, and an additional MS/MS/MS was
performed when a dHex + Hex + HexNAc fragment (m/z 512)
was detected on the MS/MS scan (Figure 1, first run). Figure
2A, B and C show the total ion chromatograms (T1C) obtained
by the FIICR—MS scan of the fucosylated glycopeptides, the
extracted ion chromatogram (EIC) of the dHex + Hex + HexNAc
fragment acquired on the data-dependent MS/MS scan, and the
EIC of the Hex + HexNAc fragment {m/z 366) that arose from
the fragment at m/z 512 by the MS/MS/MS, respectively. We
presumed that the Le*-conjugated glycopeptides had been eluted
around the peaks appearing in Figure 2C.

Assignments of the Peptide-Related Tons Derived from
the Expected Le*-Conjugated Glycopeptides. We picked out
dozens of product jon spectra, and 22 precursors were deter-
mined (o be the Lef-conjugated glycopeptide-derived mass
spectra based on the presence of Le*-motif-distinctive ions. The
elution positions of the glycopeptides are indicated in Figure
2C. In our previous report, most of the N-glycosylated peptides
vielded peptide-related ions, such as {peptide + HexNAc +
nH® and {peptide + {dHexjHexNAc + nH{" , which provided
peptide fragment b- and y-ions by further CID, and subsequent
database search analysis successfully revealed the peptide
sequences of the glvcopeptides.” In the present study, there-
fore, we examined the peptide-related ions in the product ion
spectra of the glycopeptides 1--22 for peptide sequencing.

3418 Journa! of Proteome Research o Vol § Ne. 7, 2008

Hashii et al.

1007
(A)
o
2
<
g
]
O
<
o
=
B
g
A
1007
)
(53
Q
Z
=
2
£
p
o
2
£
5
&
LA
1001
©
153
35
=
&
-
o
=
£
<,
v
2
Kz}
21 2
LA

30 60
Time (min)

Figure 2. LC—~MS" of fucosylated gilycopeptides. (A) Tota!l ion
chromatogram (TIC, m/z 1000--2000) of fucosylated glycopep-
tides. {B) Extracted ion chromatogram (EIC) of the ion at m/iz512
produced by data-dependent MS/MS. (C) EIC of the product ions
at m/z 366 produced from the product ion at m/z512 by MS/MS/
MS. Expected Le"-conjugated glycopeptides were designated as
glycopeptides 1-22.

Figure 3A shows the integrated mass spectrum of the
expected Le¥-glycopeptides eluted at 4143 min. On the basis
of an m/z spacing pattern that included n/z 67.69 (HexNAc™),
mlz 54.02 {(Hex*) and 48.69 (dHex™"), intense ions at m/z
1067.105, 1134.803, 1189.505, and 1237.508 were assigned to
triply charged ions of glycopeptides differing in glycosylation.
Two intense ions, glycopeptides 12 (im/z 1237.508) and 13 {m/z
1134.803), were further subjected to MS/MS and MS/MS/MS,
and yielded identical peptide-related ions at m/z 1650 (Figure
3B, C). This result indicates that glycopeptides 12 and 13 are
glycoforms containing Le*motifs, and implies that the carbo-
hydrate heterogeneity of a peptide of interest could be deduced
from the integrated mass spectra.

Figure 4A indicates the MS/MS spectrum of glycopeptide 8.
The presence of a dHex + Hex + HexNAc fragment {(m/z 512)
suggests that this glycopeptide is one of the Le*-conjugated
glycopeptides. The most intense fragment (m/z 1681.0) was
further subjected to MS/MS/MS and provided a series of doubly
charged Y-ions with an m/z spacing pattern, including m/z 101
{HexNAc*") and m/z 81 (Hex*"). It was revealed that the
fragment at m/z 906.2 was our desired product ion, [peptide
+ HexNAc - 2H}*" (Figure 4B).

Figure 5A and B show the MS/MS and MS/MS/MS spectra of
glvcopeptide 15, respectively. The triply charged ion (m/z 1414.4}
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Figure 3. Integrated mass spectrum and MS/MS/MS spectra of glycopeptides 12 and 13. (A) Integrated mass spectrum of the expected
Le*-glycopeptides eluted at 41-43 min. (B) MS/MS/MS spectrum acquired from the most intense ion (m/z 1673.4) detected in the
MS/MS spectrum of glycopeptide 12 (m/z 1237.8). {C) MS/MS/MS spectrum acquired from the most intense ion {m/z 1601.0) detected

in the MS/MS spectrum of glycopeptide 13 (m/z 1135.4).

on the MS/MS scan was further subjected to MS/MS/MS and
vielded a Y-ion series that included [peptide + 2HexNAc -+ 3Hex
+ dHex + 2HI** (m/z 1764.3), [peptide + 2HexNAc + 2Hex +
dHex+ 2HJ?" (m/z 1683.5), [peptide + 2HexNAc + dHex + 2H)]*+
(m/z 1520.2), and [peptide + 2HexNAc + 2H)* (m/z 1447.0) The
fragment detected at m/z 1346.3 was assigned. to our larget ion,
[peptide -+ HexNAc -+ 2HJ?*.

Alternative MS/MS and MS/MS/MS spectra of a Le*
conjugated glycopeptide (glycopeptide 17) are shown in
Figure 6A and B, respectively. The fragment at m/z 1515.4
on the MS/MS scan yielded Y-ion series that included
[peptide + 2HexNAc + SHex + 2H)** (m/z 1659.6) [peptide
+ 2HexNAc + 2Hex + 2H]*" (m/z 1578.3), and {peptide +

2HexNAc + 2H|*" (m/z 1416.5) on the MS/MS/MS scan, We
deduced that the fragment at 1315.0 on the MS/MS/MS scan
could be [peptide + HexNAc¢ + 2H]2*,

Finally we assigned out peptide + HexNAc, peptide +
(dHex)HexNAc, and the peptide fragment from the product
ion spectra of Le*-conjugated glycopeptides 1-22 (Table 1).
These peptide-related ions were listed as precursor ions in
the second run, in which the listed jons were predominantly
submitted to CID {Figure 1, second run).

Peptide Sequencing of the Expected Le*Conjugated
Glycopeptides by the Second LC-MS/MS/MS/MS Run and
Database Search Analysis. In the second run and subsequent
database search analysis with modified parameters, including

Journal of Proteome Research » Vol. §, No. 7, 2008 3419
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Figure 4. [dentification of glycopeptide 8. (A} MS/MS spectrum acquired from the molecular ion [M + 3HI** (m/z 1291.9) of glycopeptide
8 in Figure 2A. (B} MS/MS/MS spectrum acquired from the most intense ion {miz 1681.0) in the MS/MS. {C} MS/MS/MS/MS spectrum
acquired from the product ion {m/z 906.2) in the MS/MS/MS of glycopeptide 8, and amino acid sequence deduced from the resuits of
database search analysis. (D} Deduced oligosaccharide structure. dHex, deoxyhexose; Hex, hexose; HexNAc, N-acetylhexosamine:
white circle, galactose; gray circle, mannose; black square, N-acetylglucosamine; gray triangle, fucose.
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Figure 5. Identification of glycopeptide 15. (A) MS/MS spectrum acquired from the molecular ion [M + 4HJ** {miz 1111.5) of glycopeptide

15 in Figure 2A. (B} MS/MS/MS spectrum acquired from the most intense ion (

miz 1414.4) in the MS/MS. (C) MS/MS/MS/MS spectrum

acquired from the product ion {m/z 1346.3) in the MS/MS/MS of glycopeptide 15, and amino acid sequence deduced from the results
of database search analysis. (D) Deduced oligosaccharide structure.
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Figure 6. identification of glycopeptide 17, (A} MS/MS spectrum acquired from the molecular fon [M -+ 3H[* {nvz 1564.0) of glycopeptide
17 in Figure 2A. {B) MS/MS/MS spectrum acquired from the most intense ion (m/z 1515.4) in the MS/MS. {C) MS/MS/MS/MS spectrum
acquired from the product ion {miz 1315.0} in the MS/MS/MS of glycopeptide 17, and amino acid sequence deduced from the results
of database search analysis. (D} Deduced oligesaccharide structure.
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possible modification at Asn with HexNAc (203.1 u) and with
dHex + HexNAc (349.1 u), seven glvcopeptides were success-
fully sequenced with a high cross-correlation score (charge +1,

Xcorr > 1.5; charge +2, Xcorr > 2.0; charge +3, Xcorr » 2.5
charge +4, Xcorr » 3.0}, Figure 4C shows the MS/MS/MS/MS

spectrum acquired from glycopeptide 8 (precursor ion: [peptide
+ HexNAc + 2HJ*', m/iz 906.2). The database search analysis
resulted in Leu™™-Lys®'® in y-glutamyl transpeptidase 1 (y-
GTP1) (charge +2, Xcorr: 4.12) (Table 1). The linkage of GlcNAc
at Asn®'® in the N-glycosvlation consensus sequence, Asn-Thr.
Thr, was suggested by the good agreement between the
experimental b/y-ion pattern and the predicted pattern.

The MS/MS/MS/MS spectrum acquired from [peptide -+
HexNAc + 2H]®" (m/z 1346.3, glycopeptide 15) is shown in
Figure 5C. This peptide was identified as His"™-Arg'™ in low-
density lipoprotein receptor-related protein 2 (LRP2, megalin}
(charge +2, Xcorr: 2.82). The b- and y-ion paltern suggested
the linkage of GlcNAc at Asn'™ in the N-glycosylation con-
sensus sequence, Asn-Lys-Ser.

Figure 6C shows the MS/MS/MS/MS spectrum acquired
from another expected Le'-conjugated glycopeptide (glycopep-
tide 17; precursor ion: ipeptide + HexNAc + 2HPEY, m/z1315.0).
Database search analysis revealed that this peptide could be
Tyr®Arg!™ in the cubilin precursor {(charge +2, Xcorr: 2.02)
(Table 1). It was also suggested that the linkage position of
GleNAc was Asn’™ in the N-glycosylation consensus sequence
of Asn'9-Tyr-Sert®,

Glycopeptides 2, 10, 12, and 14 were also successfully
identified as Asn®?-Lys™ in cadherin 16 (glycosylation site:
Asn®®; charge +1, Xcorr: 1.52), Ser®™-Lys™¢ in alanyl (mem-
brane) aminopeptidase (glycosylation site: Asn®®% charge +2,
Xcorr: 1.53), Asn*-Arg®™ in y-GTP1 (glycosylaton site: Asn™;
charge +1, Xcorr: 1.73) and Val**#-Lys™% in LRP2 (glycosylation
site: Asn®*%; charge +2, Xcorr: 1.79), respectively. Additionally,
we deduced that glycopeptides 1, 3--6, 13, and 20 could be
Le*-conjugated glycopeptides from tolerable scores (charges
~+1 and +2 Xcorr > 1.30) (Table 1). All identified or probable
glycopeptides contained consensus sequences ol N-linked
oligosaccharides.

By the present method, three glycoproteins were identified
as proteins carrying multiple Le¥-conjugated oligosaccharides—
namely, »-GTP1 (glycosylation site: Asn® and Asn®'%; glyco-
peptides 8, 12 and 13}, LRP2 (glycosylation site: Asn'"7, Asn™6,
Asn'™* and Asn®; glycopeptides 5, 6, 14, 15 and 20), and a
cubilin precursor (glycosylation site: Asn'®®, Asn*®*®, glycopep-
tides 1 and 17). Only one glycopeptide was sequenced, but it
was deduced that cadherin 16, dipeptidase 1, H-2 class |
histocompatibility antigen, and K—K alpha precursor (H2—-K{k)},
and alanyl {membrane) aminopeptidase could be the Le*-
conjugated glycoproteins.

The sequences of the Le-conjugated glycopeptides were
confirmed by an additional LC—MS/MS of deglycosylated
peptides prepared by PNGaseF-treatment. Because of the
deamination of Asn residues by PNGase F treatment, we sel
the mi/z values of {peptide + nH <+ 0.984 u monoisotopic
massi® (n = 2--3) as precursor ions on the MS/MS. By this
conventional method, 8 peptides that were sequenced by our
method were identified as shown in Table L. Moreover, two
peptides which could not be sequenced by our method were

(i S-Lys* in LRP2 (glycopeptide 9}, and

also identified as His?*
Val®-Lys** in the meprin A j subunit precursor {endopepti-
dase-2, glveopeptides 18, 21 and 22}, On the other hand, four
glvcopeptides that were sequenced by our method were not
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identified by the conventional method. Using both methods,
we failed in the sequencing of four glycopeptides.

Structural Analyses of the Oligosaccharides in the
Le*-Conjugated Glycopeptides, The carbohydrate structures of
the Le*-conjugated glycopeptides were deduced from the
fragment patterns and maolecular masses obtained by the first
run using FTICR-MS. The structural assignment of glycopeptide
8 is shown in Figure 4A and B. The carbohydrate composition
was estimated to be 3dHex 5SHex 5HexNA¢ from the molecular
mass of the carbohydrate moiety (calculated molecular mass
of the glycan moiety: 2281.850). The fragment ions at m/z
1681.0 and miz 1425.6 in Figure 4A were assigned to Y;* and
Y2, which arose from [M + 2H}*" {(m/z 1681.8) by the
dissociation of two molecules of the Lewis-motifs. The presence
of B.* Un/z 512) in both Figure 4A and B also suggested the
binding of two Lewis-motifs. The Y,** Turther vielded Hex +
2HexNAc]™ (m/z 569.1), Y = iz 1190.3) and Y4577 (mfz
1263.2) on the MS/MS/MS, which suggested the presence of
hisecting GleNAc. The fucosylation of reducing-end GIcNAc was
proven by the detection of Y- 7 (ipeptide + HexNAc + 2Hi?,
miz906.2) and Y,** {[peptide + dHex + HexNAc + 2H}*", m/z
979.0). Consequently, the glycan of glycopeptide 8 was char-
acterized as a bisected and core-fucosylated oligosaccharide
carrying two molecules of Le*-motifs (Figure 4D). The possibil-
ity of the deduced structure was confirmed by the good
agreement between the experimental mass (2281.850} and the
theoretical mass (2281.845) (Table 1).

Figure 5A and B show the assignments of the carbohydrate
moiety in the glycopeptide 15. The predominant ion (m/z
1414.4) in the MS/MS spectrum was assigned to [M — HexNAc
+ SHI* (Y+" or Yy This Yo7 (Y} fon yielded the By~
(m/z512.3) by MS/MS/MS, suggesting the presence of only one
molecule of the Lewis-motif. The presence of Yi* {(m/z
1346.3), Y2 (miz 1447.0) and Y,*" {(m/z 1520.2) suggested
the fucosylation at the reducing end of GleNAc. The presence
of bisecting GlcNAc was deduced from the detection of the ion
[Hex + 2HexNAcl (m/z 569.3) and Yy awas® (/2 1630.4).
From these fragments, the oligosaccharide structure was
characterized as a bisected and core-fucosylated oligosaccha-
ride carrying one molecule of the Le*-motif (Figure 5D},

The deduced carbohydraie structure of glycopeptide 17 is
indicated in Figure 6D. In the MS/MS spectrum, the fragments
at m/z 1515.4 and m/z 1393.5 were assigned to (M — dHex +
SH)™ (Y, % or Y5*') and [M — dHex — Hex — HexNAc + 3H]®
(Y,#"), respectively (Figure 6A). The detection of B,* (m/z512.3)
in both the M$/MS and MS/MS/MS specua revealed the
binding of two Le*-motils (Figure 6A and 6B). The presence of
bisecting GlcNAc was suggested by the detection of the ion
[Hex + 2HexNAc]® (m/z 569.2), Yyun? (niz 1599.7) and
Yau?® (mlz 1672.1) in the MS/MS/MS spectrum (Figure 6B},
The ions Y;,?" {ipeptide + HexNAc + 2HI*, mlz 1315.0)
and Y,** {Ipeptide + dHex + HexNAc + 2H]*", m/z 1388.1}
revealed the fucosylation at the reducing end of GIcNAc. We
also found the presence of a distinctive ion of the Lewis y (Lef)
motif, (Fucel -2)GalB1 ~4{Fucal -3)GleNAc, at m/z658.3 in the
MS/MS spectrum. To determine whether N-linked oligosac-
charides contained the Le'-motif, N-linked oligosaccharides
were released from mouse kidney proteins and treated with
«l~2 fucosidase. Then the glycan profiles of the fucosidase-
treated and -untreated oligosaccharides were compared by LC/
MS. No change was found in the mass spectrometric glycan
profiles between the two samples, but the fragment {n/z 658
was still detected in the MS/MS spectra of the enzyme-treated
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glycopeptide 17 (data not shown). These results suggest the
absence of al~2 fucose on the glycopeptides. Consequently,

we assigned the glycans of glycopeptide 17 to a bisected and -

core-fucosylated oligosaccharide carrying two Le*-motifs (Fig-
ure 6D).

The oligosaccharide structures of other Le*-conjugarted gly-
copeptides were deduced from their B- and Y-type ions as well
as the molecular masses obtained by FITCR—MS in the same
manner {Table 1 and Figure 7). The most common structure
was a bisected and fucosylated complex-type biantennary
oligosaccharide carrving two Le*-motifs (glvcopeptides 1-5, 8.
10, 12, 14, 17, 20 and 21). A bisected and core-fucosylated
complex-type biantennary oligosaccharide carrying one Le*-
motif was found in glvcopeptides 6, 13, and 15. A bisected and
core-Tucosylated complex-type triantennary oligosaccharide
carrying three Le®-motifs was found in glycopeptides 9 and 18.
The oligosaccharide structure of the glycopeptide in glycopep-
tide 22 was a triantennary carrying two Le*-motifs. All experi-
mental molecular masses of the deduced glycopeptides were
identical to their theoretical masses {Table 1.

Discussion

Several glycan-epitopes, including Lewis antigens, HNK-1,
and polysialic acid, have been widely shown to be involved in
the physiological functions of glycoproteins and certain dis-
eases. Some oligosaccharide-related antigens are being used
as diagnostic markers of tumors in a clinical stage.*?* How-
ever, only a few proteins are known to carry the glycan-
epitopes. To understand the physiological roles of the glycan-
epitopes and to develop more effective diagrnostic markers, we
need methods that allow for the identification of target proteins
carrying the glycan motif of interest. Glycan-epitopes are often
detected by two-dimensional (2D)-electrophoresis in combina-
tion with lectin or immuno-blotting. The stained spots are
subjected (o in-gel tryptic digestion followed by protein
identification by MS/MS and database search analysis. There
are still problems in this procedure with the verification of
the glycan structure in the identified protein. In addition,
the procedure cannot be employed on hydrophobic mem-
brane proteins having a high molecular weight.

In the present study, all proteins in the mouse kidney were
digested into peptides, and the fucosylated glycopeptides were
enriched by lectin-affinity chromatography. The resulting fu-
cosylated glycopeptides were subjected to two different runs
of LC-MS". In the first run, the elution positions of Lev-
conjugated glycopeptides in the tryptic peptide map were
located based on the presence of Let-motif-distinctive ions. We
picked out the product ion spectra of expected Le*-conjugated
glycopeptides from the elution positions and carefully assigned
the peptide + HexNAc, peptide + (dHex)HexNAc, and peptide
fragment. Then the fucosylated glycopeptides were subjected
to a second run in which the peptide-related jons were set as
precursor ions. We successfully identified y-GTP1, LRP2, and
the cubilin precursor as Le*-conjugated glycoproteins by
sequencing of 2--5 glycopeptides. Although only one glyco-
peptide was sequenced, cadherin 16, dipeptidase I, H2—K(k)
and alanyl (membrane) aminopeptidase were characterized as
Le*-conjugated glycoproteins based on the good agreement
between the experimental and theoretical masses of glycopep-
tides and their fragment patterns. Some ol these were mem-
brane proteins with high molecular masses over 400 kDa, the
identification of which might have been difficult by 2D-
electrophoresis with Western blotting,
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Carbobydrate suructures of the identified glycopeptides were
deduced from the accurate molecular masses as well as
fragment patterns obtained by the first run. We confirmed that
all glycopeptides contained a bisected and core-fucosylated
oligosaccharide carrying one or two molecules of Le*-motifs
at the N-linked oligosaccharide consensus sequence. Qur model
tissue was a mouse kidney in which we had previously
confirmed the presence of Lewis x {Galf1~4(Fucal —-31GIcNAC:
and/or y {{Fucol ~2)Galf1—4(Fucxl —3)GleNAc! motifs as well
as the absence of Lewis a {Galfl-3(Fucal ~4)GIcNAc) or b
{{Fucal ~2)Galf1-3(Fucal ~4)GleNAc] motifs.® In this study,
the Le*-distinctive ions, (2dHex + Hex + HexNAc)™ (m/z 658),
were found in all MS/MS spectra of Lewis-conjugated peptides.
However, treatment of « 1-2 fucosidase led to no change in
the mass spectrometric glycan profile, suggesting the absence
of the Le*-motif. Recently, several groups have reported the
internal migration of fucose residues in the ESI-CID of
underived or derived carbohydrates.™ % Fucose residues are
transierred between branches in liberated N-linked oligosac-
charides by the ESI-CID.* OQur finding suggests that the
rearrangement of fucose residues also occurs by the ESI~-CID
of glycopeptides. This phenomenon makes it difficult to deduce
the oligosaccharide structure from only the fragmentation
pattern. A simultaneous use of lectins and/or antibodies would
be crucial for the identification of the desired glycoproteins.

7-Glutamyl transpeptidase 1 is associated with glutathione
sa.!v age, metabolism of endegenous mediators such as leukot-
rienes and prostaglandins. The attachment of Le*-conjugated
oligosaccharide to mouse y-GTP 1 has already been demon-
strated by Yamashita et al.>! They determined the carbohvdrate
structures by the purification of y-GTP 1 and the sequential
exoglycosidase digestion in combination with met hvlation
analysis. The oligosaccharide structures deduced from the MS/
MS and MS/MS/MS spectra were in good agreement with those
they reported. Furthermore, we revealed the heterogeneity of
glycosylation on Asn®®. :

Dipeptidase 1 is a glycosylphosphatidylinositol-anchored
membrane glycoprotein. This protein is highly expressed in
the kidney and small intestine and plays an important role
in the degradation of cysteinyl-glycine, a glutathione pro-
duced by the removal of the glutamyl group from y-glutamyl
cysteinyl-glycine by y-GTP.>* The present study is the first
report on the oligosaccharide structures of a mouse renal
dipeptidase.

Cubilin, which is highly expressed in the renal proximal
tubules, is a 460 kDa membrane glycoprotein consisting of 27
CUB (complement components Clr/Cls, Uegf, and bone
morphogenic protein-1) domains. Cubilin is an endocytic
receptor for intrinsic factor vitamin 812, albumin, apolipopro-
tein A-l, receptor-associated protein, immune globulin light
chain and high-density lipoprotein.®® These factors hind to
cubilin through their CUB domains. The Le*-conjugated oli-
gosaccharides we found were all located on Asn'®? and Asn '8!
in the CUB12 domain (Figure 8).

Low-density lipoprotein receptor-related protein 2, a high
molecular weight membrane protein (520 kDa), is an endocytic
receptor for several ligands, vitamin-binding proteins, apoli-
poproteins, hormones and enzymes. Cubilin and LRP2 are
coexpressed in the renal proximal tubules and are associated
with tubular protein reabsorption, vitamin metabolism and
calcium homeostasis. Low-density lipoprotein receptor-related
protein 2 consists of four ligand-binding sites containing
cysteine-rich complement-type repeats and epidermal growth
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Figure 7. MS/MS and the MS/MS/VS spectra of glycopeptides 1—6, 9, 10, 12—14, 18 and 20—22, and deduced oligosaccharide structures.
Boxed values are peptide-related ions. (A} MS/MS spectrum of the molecular ion {m/z 1136.4) of glycopeptide 1. {A} MS/MS/MS spectrum
of the predominant ion {m/z 1448.2) of {A). (B) MS/MS spectrum of glycopeptide 2 {miz 1170.8). (B") MS/MS/MS spectrum of the ion {m/z
1499.3) in (B). (C) MS/MS spectrum of glycopeptide 3(m/z 1152.5). {C) MS/MS/MS spectrum of the ion (m/z 1472.5) in (C). (D) MS/MS spectrum
of glycopeptide 4 {m/z 1294.2). (D) MSIMS/MS spectrum of the ion (m/z 1685.0) in (D). (E) MS/MS spectrum of glycopeptide 5 {m/z 1226.0).
(E’) MS/MS/MS spectrum of the ion {myz 1682.6) in (E). {F) MS/MS spectrum of glycopeptide 6{m/z 1123.4). {F'}) MS/MS/MS spectrum of the
jon (méz 1428.4) in (F). (G) MS/MS spectrum of glycopeptide 8 {m/z 1156.9). {G') MS/MS/MS spectrum of the ion (m/z 1318.5) in (G). (H)
MS/MS spectrum of glycopeptide 10 (m/z 1100.8). (H) MS/MS/MS spectrum of the ion (nmvz1297.1} in {H). {1} MS/MS spectrum of glycopeptide
12 {miz 1238.1). I/} MS/MS/MS spectrum of the ion (nvz 1673.6) in ). {J) MS/MS spectrum of glycopeptide 13 {nvz 11358}, (U} MS/MSE/MS
spectrum of the fon {m/z 1600.3} in {J). (K) MS/MS spectrum of givcopeptide 14 (miz 1163.5). (K} MS/MS/MS spectrum of the predominant
ion tm/z 1380.8) in {K). (L) MS/MS spectrum of glycopeptide 18 {miz 1482.6). (L) MS/MS/MS spectrum of the predominant ion (m/z 1433.9)
in (L), (M} MS/MS spectrum of glycopeptide 20 (m/z 15658.1). (M) MS/MS/MS spectrum of the predominant ion (m/z 1509.8) in {M). (N}
MS/MS spectrum of glycopeptide 21 (m/21279.2), IN"t MS/MS/MS spectrum of the predominant ion (m/iz 1263.5) in (N). {0} MS/MS spectrum
of glycopeptide 22 {m/z 1387.5). (0"} MS/MS/MS spectrum of the predominant ion (miz 1825.5) in {O). White circle, galactose; gray circle,
mannose; biack square, N-acetylgiucosamine; gray triangie, fucose.
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