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here observed in the young group. Also, neurotoxic lesions
such as central chromatolysis of ganglion cells in the tri-
geminal nerves, degenerated axons in the sciatic nerve and
dot-like SYP-immunoreactive structures in the cerebellar
molecular layer, were evident from 100 ppm in both young
and adult groups. The magnitude of changes in these
parameters was higher in the young group than in the adult
group, especially at the highest dose, and neurotoxicity
appeared stronger in young animals, though the types of
lesions observed were similar between the young and adult
groups. Compared to adult animals, intake of ACR per kg
body weight was higher in young animals at each dose and
the parameters indicating the neurotoxicity increased in
proportion to ACR intake. Accordingly, the stronger
neurotoxicity in the young animals can be considered to be
a reflection of larger amount of ACR intake per body
weight., These results suggest that the susceptibility to
ACR-induced neurotoxicity in young and adult rats is
qualitatively similar under the given experimental condi-
tions. As mentioned in the Introduction section, a few

studies have demonstrated life stage-related differences in
susceptibility to ACR neurotoxicity, though the experi-
mental conditions, such as age of animals, dosing
methods, and parameters examined, were different.
While Suzuki and Pfaff concluded that suckling rats
were more susceptible (Suzuki and Pfaff 1973), it seems
that there was not much difference in number of injec-
tions to cause apparent symptoms and myelin degener-
ation between suckling and adult rats. In the report by
Ko et al.,, earlier occurrence and faster progression of
neurological abnormalities in young animals were similar
to those observed in our study (Ko et al. 1999).
Although the authors stated that the daily intake was not
significantly different between the young and adult
groups, intake of ACR per body weight at the beginning
of the experiment might have been higher in the young
group, because younger animals usually take more water
than older ones. Taken together, clear evidence of the
susceptibility difference in neurotoxicity between young
and adults animals is considered to be undetermined.
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Fig. 7 Tail intensity of the comet image (a) and micronuclei
frequency (b) obtainec from young and adult rats given ACR in the
drinking water for 4 weeks. Data are mean = SD. **P < 0.01 vs.

0 ppm .

Regarding the susceptibility to ACR testicular toxicity
in the present study, young animals showed apparently
diverse and more profound lesions exceeding the dose—
effect relationship observed in adult animals. ACR is
known to interfere with motor proteins such as kinesin
found in the sperm flagellum and alkylate protein sulf-
hydryl groups in the sperm tail (Sickles et al. 2007;
Friedman et al. 2008). Therefore, it is considered that
elongate spermatids are highly susceptible to ACR. In
the comet assay, although DNA damage in the young
group was higher than that in the adult group at
200 ppm, the values were not greatly different. However,
the MN test revealed that ACR clearly induced MN in
the young group, but not in the adult group. These
results well correspond with the observations on histo-
pathological examination. Because the comet assay and
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MN test in the testis target spermatocytes and early
spermatids, the late stage of spermatogenesis may be
more susceptible to ACR-induced genotoxicity in young
than in adult animals.

As reported by others (Yousef and El-Demerdash
2006), the basal level of testicular GST activity in our
cases was much lower than that in the liver. Although
there were no life stage differences in the liver levels of
GST activity, testicular GST activity in the present study
was significantly lower in the young groups, irrespective
of the ACR treatment. The activity of GST is low at
birth and then increases gradually, but it has been known
that the developmental profiles of antioxidant enzymes
including GST in the testis differ greatly from those in
the liver (Peltola et al. 1992). A study of the immuno-
localization of GST-Yo, a member of the mu class
expressed at high levels in the testis and epididymides,
revealed that this enzyme was not detectable until
39 days of age and then appeared mainly in the elongate
spermatids, with expression reaching maturity by day 49
(Papp et al. 1994). Therefore, the detoxification capacity
of the testis in young animals was considered to be
much lower than that in the adult animals during the
experimental period in the present study, and such a
difference might reasonably account for the high sus-
ceptibility to ACR-induced testicular toxicity observed in
our young animals. In the liver, although GST activity
was increased at 200 ppm, there were no apparent life-
stage differences. Considering that the liver is the main
organ involved in detoxification of ACR, similar level of
GST activity may have contributed to the lack of dif-
ferences in susceptibility to neurotoxicity between young
and adult rats. Increase in GST activity in ACR-treated
rats has been reported and considered to be due to
increased formation of S-conjugates between ACR and
GSH (Yousef and El-Demerdash 2006). ACR is known
to cause GSH depletion (Zhang et al. 2009); however,
decrease in GSH contents was not found in the present
study. Because recovery or rather increase in liver GSH
contents after depletion by treatment animals with acet-
aminophen has been.reported (Ishii et al. 2009), the level
of GSH in the present study might possibly have
recovered after repeated treatment with ACR during the
experimental period.

In summary, our results suggest that susceptibility to
ACR neurotoxicity in young animals might not be different
from that in adult ones when exposure levels are adjusted
for the body weight. Regarding testicular toxicity, young
animals proved more vulnerable than adults, and this might
be due to a low level of testicular GST activity.
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