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ARTICLE INFO ABSTRACT
Article history: Os-Methnguanine produced in DNA by the action of simple alkylating agénts, such as N-methyl-N-
Received 31 August 2011 nitrosourea (MNU), causes base-mispairing during DNA replication, thus leading to mutations and cancer.
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Available online 29 December 2011

To prevent such outcomes, the cells carrying Of-methylguanine undergo apoptosis in a mismatch repair
protein-dependent manner. We previously identified MAPO1 as one of the components required for the
induction of apoptosis triggered by O%-methylguanine. MAPO1, also known as FNIP2 and FNIPL, forms a
complex with AMP-activated protein kinase (AMPK) and folliculin (FLCN), which is encoded by the BHD

ﬁa’;";’d“ tumor suppressor gene, We describe here the involvement of the AMPK-MAPO1-FLCN complex in the
Apoptosis signaling pathway of apoptosis induced by O%-methylguanine. By the introduction of siRNAs specific for
Folliculin/BHD these genes, the transition of cells to a population with sub-G; DNA content following MNU treatment
MAPO1/FNIP2/ENIPL was significantly suppressed. After MNU exposure, phosphorylation of AMPKa occurred in an MLH1-

08-methylguanine dependent manner, and this activation of AMPK was not observed in cells in which the expression of
either the Mapo1 or the Flcn gene was downregulated. When cells were treated with AICA-ribose (AICAR),
a specific activator of AMPK, activation of AMPK was also observed in a MAPO1- and FLCN-dependent
manner, thus leading to cell death which was accompanied by the depolarization of the mitochondrial
membrane, a hallmark of the apoptosis induction. It is therefore likely that MAPO1, in its association
with FLCN, may regulate the activation of AMPK to control the induction of apoptosis triggered by 0°-
methylguanine.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction leading to induction of mutation and cancer [2,3]. Organisms
possess a specific DNA repair -enzyme, 0%-methylguanine-DNA
methyltransferase (MGMT), which transfers a methyl-group from

OS-methylguanine in DNA onto the enzyme molecule, thereby

Most of the DNA lesions produced by internal and external
agents can be removed by cellular DNA repair enzymes, while

cells with un-repaired lesions are eliminated by apoptosis. The
biological significance of these two mechanisms is clearly shown
when organisms lacking one or both of these cellular functions
are exposed to simple alkylating agents, such as N-methyl-N-
nitrosourea (MNU) and N-methyl-N'-nitro-N-nitrosoguanidine
(MNNG), which alkylate purine and pyrimidine bases in DNA
[1]. Among the various modified bases thus produced, O°-
methylguanine is of particular importance since this modified base
can pair with thymine as well as cytosine during DNA replication,

* Corresponding author at: Department of Physiological Science and Molecular
Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193,
Japan. Tel.: +81 92 801 0411x310; fax: +81 92 801 0685.

E-mail address: hidaka@college.fdcnet.ac.jp (M. Hidaka).

1568-7864/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dnarep.2011.11.006

repairing the DNA lesion in a single step reaction [4,5]. When the
modified base is not repaired, an O-methylguanine-thymine pair
is formed through DNA replication and this mismatch can be recog-
nized by a mismatch repair protein complex, composed of MSH2,
MSH6, MLH1 and PMS2, which induces apoptosis to exclude cells
carrying the mutation-evoking DNA lesions [6-8]. It is noteworthy
that Mgmt~/~ mice, which lack the DNA repair enzyme specific for
05-methylguanine, are hypersensitive to both the killing and to
the tumorigenic action of alkylating chemicals [9-12] and these
dual effects can be dissociated by the introduction of an additional
defect in mismatch repair genes. Mice with mutations in both alle-
les of the Mgmt and the Mih1 genes, the latter éncoding a protein
involved in the recognition of mismatched base, are as resistant to
MNU as are wild-type mice in terms of survival, but are much more
susceptible to MNU-induced tumorigenesis than wild-type mice
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[13]. Consistent with these results, Mgmt—/~ MIh1-/- cells, derived
from the gene-targeted mice, are unable to induce apoptosis and
show an elevated mutant frequency after MNU treatment [14].

The apoptotic signal initiated through the mismatch recog-
nition complex activates a signaling cascade leading to the cell
cycle checkpoints and apoptotic pathways for cell death. Both
the release of cytochrome C from the mitochondria as well as
the activation of Apaf-1 and caspase-3, hallmarks of the induc-
tion of apoptosis, have been demonstrated after the treatment
of cells with alkylating agents that produce Of-methylguanine
[14,15]. However, the precise molecular mechanism underlying
the signal transduction downstream of mismatch recognition still
remains to be determined. To identify the factors involved in the
08-methylguanine-induced apoptotic process, we screened MNU-
resistant clones derived from MNU-sensitive Mgmt~/~ cells using
retrovirus-mediated gene-trap mutagenesis [16]. Mouse-derived
KH101 cells, carrying an insertional mutation in one of the alleles
of an uncharacterized gene, were unable to induce mitochondrial
membrane depolarization as well as caspase-3 activation, after
treatment with MNU. In this way, we identified a new gene, des-
ignated as Mapo1 (08-methylguanine induced apoptosis 1), which
was related to the induction of apoptosis. The mutant frequency
of KH101 cells was significantly elevated after the treatment with
MNU, thus supporting the notion that the induction of apopto-
sis, in which the MAPO1 is involved, contributes significantly to
the elimination of cells carrying mutation-inducing DNA lesions. A
“search in the database revealed that the amino acid sequence of
the MAPOT1 protein is homologous to that of folliculin-interacting
protein 1 (FNIP1), which was identified as a protein having the
capacity to associate with folliculin [17]. Folliculin is a tumor sup-
pressor protein with unknown biological activity, and is encoded
by the FLCN gene. Mutations in the FLCN gene have been found
in patients with Birt-Hogg-Dubé (BHD) syndrome [18,19], which is
characterized by the development of hair follicle hamartomas, lung
cysts, and an increased risk for renal neoplasia [20-22]. Identifica-
tion of another folliculin-interacting protein, displaying a similarity
in its amino acid sequence to that of FNIP1, was reported by two
groups of researchers and the gene responsible was named FNIP2
and FNIPL, respectively [23,24]. The FNIP2/FNIPL gene turned out
to be the same gene as the human homolog of Mapo1. It was also
reported that FNIP2/FNIPL, as well as FNIP1, could bind to 5'-AMP-
activated protein kinase (AMPK), composed of AMPKe, B and vy
subunits, which is an important energy sensor in cells that nega-
tively regulates cell growth and proliferation [25,26].

We report here that a complex composed of MAPO1, FLCN
and AMPK is involved in the induction of apoptosis triggered by
06-methylguanine-thymine mispair. Evidence is presented which
shows that during the course of apoptosis induction, the phos-
phorylation of AMPKa occurs in a MAPO1- and FLCN-dependent
manner.

2. Materials and methods
2.1. Cell lines and cell culture

The YT102 (Mgmt~/~ MIh1*/*), YT103 (Mgmt—/- MIh1~/-) and
KH101(Mgmt—/~ Mapo1*/-) cell lines were established as described
previously [14,16]. The cells were cultivated in Dulbecco’s modi-
fied Eagle’s medium (D-MEM) supplemented with 10% fetal bovine
serum (FBS) at 37 °C in 5% CO,.

2.2. Chemicals

N- Methy1~N—n1trosourea (MNU) was obtained from Sigma.
Compound C and AICA-Ribose were purchased from Calbiochem.

2.3. Immunoprecipitation and immunoblotting

To prepare cells expressing Flag-tagged MAPO1 or HA-tagged
FLCN, a pIRES-puro3 vector {Clontech) containing mouse-derived
Mapo1 cDNA tagged with Flag epitope at the carboxy terminal end
or a pIRES-puro2 (Clontech) vector carrying mouse-derived Flcn
cDNA tagged with the HA epitope at the amiho terminal end was
introduced into YT102 cells using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s protocol. For the immunoprecipi-
tation, the cells were lysed with NETN buffer (50 mM Tris/HCl (pH
8.0), 150mM NaCl, 0.2% NP-40, 1 mM EDTA) containing protease
inhibitors (Roche). To precipitate the Flag-tagged MAPO1, 10 plof
anti-FLAG M2-agarose (Sigma) were added to the extract, and incu-

- bated for 4h at 4°C. Alternatively, 10 .l of anti-HA (HA-7)-agarose

(Sigma) were added to precipitate the HA-tagged FLCN, and the
mixture was incubated overnight at 4°C. After extensive washing
of the beads with NETN buffer, the proteins bound to the beads were
eluted in 40 wl of 2 SDS-PAGE sample buffer (120 mM Tris/HCl (pH
6.8),4% SDS, 20% glycerol, 200 mM DTT, 0.002% bromophenol blue).

For the immunoblotting analyses, immunoprecipitated mate-
rials or whole cell extracts prepared by the lysis of cells with
2x SDS-PAGE sample buffer were subjected to SDS-PAGE and
electroblotted onto a PVDF membrane (Bio-Rad). Detection was
performed using an ECL Plus or Advance Western blotting detection
kit (GE Healthcare). The primary antibodies used were: anti-FLAG
M2 (Sigma), anti-HA HA-7 (Sigma), anti-FLCN (Protein Tech Group,
Inc.), anti-AMPKa (Cell signaling), anti-B-actin (Sigma), and anti-
phospho-AMPKa. (Thr172) (Cell signaling). Anti-mouse IgG and
anti-rabbit IgG conjugated to horseradish peroxidase (GE Health-
care) were used as the secondary antibodies.

2.4. siRNA transfection

Stealth RNAi for the Mapol gene (siMapo1), 5-CAGAAAGCA-
GAGGAUGUUCCUAUUA-3', Flcn gene (siFlcn#1), 5-UUAUUCAGG-
AUAGUGGGCCCAACUC-3/, (siFlen#2), 5'-UGGUGACUGACGUACU-
UAAUAGAGG-3', and Ampka gene (siAmpka#1), 5-UAUCUUAG-
CGUUCAUCUGGGCAUCC-3/, (siAmpka#2), 5'-AAGAUGAUAAGCC-
ACUGCAAGCUGG-3" were purchased from Invitrogen. After cul-
turing 1 x 10° cells in a 6-well plate for one day, the cells were
transfected with 20 nM siRNA, using the Lipofectaminé RNAIMAX
reagent (Invitrogen) according to the manufacturer’s protocol. For
the control transfection, Stealth RNAi Negative Control Med;um GC
Duplex (Invitrogen) was used.

2.5. Flow cytometric analysis

Forthe sub-G; population assay, cells were washed with PBS and
suspended in 400 1 of PBS containing 0.1% Triton X-100, 25 wg/ml
of propidium iodide and 0.1 mg/ml of RNase A. The samples were
analyzed using a FACS Calibur flow cytometer (Becton Dickinson),

-with 10,000 events per determination.

For the mitochondrial membrane depolarization assay, cells
were treated with the MitoProbeTM DiOC2(3) Assay Kit (Invitro-
gen), according to the manufacturer’s protocol, and then subjected
to analysis using a FACS Calibur flow cytometer.

2.6. Trypan blue exclusion assay

The viability of YT102, KH101 and siRNA-transfected YT102 cells
was assayed, based on their trypan blue exclusion. The cells treated
with AICA-Ribose were collected 48 h after the drug treatment and
were stained with 0.2% trypan blue. The percentage of dead cells
was determined as the percentage of trypan blue staining-positive
cells. At least 500 cells were counted per experiment.
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2.7. Statistics

All P-values were generated using two-tailed Student’s t-tests.

3. Resuits
3.1. Interaction of MAPO1 with FLCN and AMPK

To confirm that MAPO1 protein interacts with FLCN and AMPK,
a co-immunoprecipitation experiment was performed. Whole
cell extracts were prepared from mouse YT102 (Mgmt~/~) cells
expressing Flag-tagged MAPO1, and were subjected toimmunopre-
cipitation using an anti-Flag antibody conjugated to agarose beads.
. The results are shown in Fig. 1A. With whole cell extracts, almost
the same intensity of bands for FLCN and AMPKa were detected
in both control and Flag-MAPO1-transfected cells. When the
materials were immunoprecipitated with the anti-Flag antibody,
co-precipitated FLCN and AMPKa were clearly detected, concomi-
tant with the effective precipitation of Flag-MAPO1, whereas no
such bands were seen in a sample precipitated from cells treated
with the control vector alone.

To evaluate the interaction of FLCN with MAPO1 and AMPK in a
reciprocal manner, whole cell extracts prepared from YT102 cells
expressing FLAG-tagged MAPO1, with or without HA-tagged FLCN,
were applied for immunoprecipitation using an anti-HA antibody
(Fig. 1B). When the HA-tagged FLCN was precipitated, as indicated
by doublet bands by the immunoblotting analysis, the Flag-tagged

MAPO1 and AMPKa were co-precipitated. It is evident, therefore, .

that MAPO1 interacts with FLCN and AMPK in mouse cells.

3.2. Suppression of the induction of apoptosis in Flcn- and
Ampkae-knockdown cells

Since MAPO1 has been identified as an apoptosis-inducing pro-
tein, it is plausible that the MAPO1-bound proteins, FLCN and
AMPK, might also be involved in apoptosis induction. To exam-
ine the possible roles of these proteins, siRNAs specific for the Flen
or Ampkea genes were introduced into YT102 (Mgmt=/-) cells. As
shown in Fig. 2A and B, two independent siRNAs (siFlcn#1 and #2,
and siAmpka#1 and #2), designed at different sequences of each
gene, effectively suppressed the expression of the genes when mea-

sured at 48 h after their introduction. The expression level of the
Mapo1 gene in siMapo1-treated cells also decreased to 43% of that
in cells that were treated with the control RNA, siCont, as measured
by quantitative real time PCR [16]. To monitor the appearance of

cells with sub-G; DNA content, cells were treated with or without -

0.4mM MNU for 1h and subjected to a flow cytometric analysis

A input  IP-Flag
VM VoM

Flag-MAPO1/|

FLCN

AMPKo

-72h later. After treatment with MNU, the sub-G; cell population

increased to more than 20% in the siCont-treated cells (Fig. 2C).
Under the same conditions, the degrees of the increases in the
cells treated with siRNAs against the Flcn, Ampka and Mapo1 genes
were significantly suppressed. These results favor the notion that
FLCN and AMPKa, as well as MAPO1, are involved in MNU-induced
apoptosis through protein interactions.

3.3. Suppression of the induction of apoptosis by an AMPK
inhibitor ’

The effects of Ampka knockdown on the MNU-induced apopto-
sis were further examined at multiple time points. The YT102 cells
transfected with siCont or siAmpka#2 were exposed to 0.4 mM
MNU for 1h and then subjected to a flow cytmetric analysis. As
shown in Fig. 3A, the sub-Gy cell population increased gradually,
with similar kinetics in cells transfected with either type of siRNA,
but the degree of the increase in cells transfected with siAmpka
was significantly lower than that of siCont-transfected cells.

To obtain further evidence supporting the involvement of AMPK
in MNU-induced apoptosis, compound C, a specific inhibitor of
AMPK, was used to downregulate the function of AMPK. YT102 cells
were exposed to 0.4 mM MNU for 1 h, followed by incubation with
or without 2 uM of compound C for 72 h, and then cells were sub-
jected to a flow cytometric analysis. As shown in Fig. 3B, the sub-G4
cell population in compound C-treated cells after MNU treatment
significantly decreased in comparison to those not treated with the
inhibitor. The inhibitory effects of compound C on AMPK activity
were assessed by immunoblotting using an antibody that specifi-
cally recognizes a phosphorylated form of AMPKa, since AMPK is
activated when the catalytic subunit of AMPKa becomes phospho-
rylated [27-29]. As shown in Fig. 3C, AMPK appeared to be activated
after MNU treatment, while such activation was significantly sup-
pressed by the exposure of cells to compound C. These findings are
consistent with the notion that AMPK plays an important role in
the induction of apoptosis triggered by MNU.

3.4. MAPO1- and FLCN-dependent activation of AMPK during the
induction of apoptosis

To further examine if AMPKa is phosphorylated during the
induction of apoptosis, YT102 cells were treated with 1 mM MNU
and then collected at 0, 24, 48 and 72h after treatment. Under
these conditions, apoptosis was effectively induced, as was evident
by the detection of the mitochondrial membrane depolarization
and the caspase-3 activity [16]. The whole cell extracts were pre-.
pared, and the phosphorylation levels of AMPKa were assessed by

B input IP-HA
M FM

HAFLCN |

Flag-MAPO1}%

AMPKa

Fig. 1. The association of MAPO1, FLCN and AMPKa proteins. (A) The interaction of MAPO1 with FLCN and AMPKa. YT102 cells were transfected with the pIRES-puro3
vector (termed as V) or pIRES-puro3 containing Flag-tagged Mapol ¢DNA (termed as M) and harvested after incubation for 24 h. Whole cell extracts (input) were used
for immunoprecipitation using anti-Flag M2 antibody beads (IP-Flag). The materials were subjected to SDS-PAGE, transferred to a membrane and immunoblotted using
antibodies that recognize the Flag-tag, FLCN and AMPKa. (B) The interaction of FLCN with MAPO1 and AMPKa. YT102 cells were transfected with either pIRES-puro3
containing Flag-tagged Mapo1 cDNA (termed as M) or pIRE-puro2 carrying HA-tagged Flcn cDNA and pIRES-puro3 containing Flag-tagged Mapo1 cDNA (termed as FM) and
were harvested 24 h later. Following immunoprecipitation using anti-HA HA7 antibody beads (IP-HA), an immunoblotting analysis was performed as described in (A) with

anti-HA, anti-Flag and anti-AMPKa antibodies.
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Fig. 3. The involvement of AMPK in MNU-induced apoptosis. (A) The sub-G; population of cells transfected with control or Ampka siRNA after MNU treatment. Two days
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flow cytometric analysis. The numbers of the cells in the sub-G; population were counted and the ratios were plotted. Open circles, siCont-transfected cells; closed circles,
siAmpke-transfected cells. (B) The suppression of apoptosis by an AMPK inhibitor. After treatment with or without 0.4mM MNU for 1h, YT102 cells were incubated in
medium supplemented with or without 2 uM compound C for three days. The cells were then harvested and subjected to a flow cytometric analysis to monitor the sub-G;
population of cells. *P<0.01 when comparing the sub-G; populations in compound C-untreated and compound C-treated cells after exposure to MNU. (C) The inhibition
of the AMPK activity by compound C. The whole cell extracts from the cells harvested at 48 h after MNU treatment were subjected to an immunoblotting analysis using -
antibodies that recognize phospho-AMPKa (Thr172), AMPKa and B-actin, respectively.



TH. Lim et al. | DNA Repair 11 (2012) 259-266 263

0 24 48 72(h)
&

A YT102 YT103 KH101 C siCont siFicn
MNU() MNU(¥) MNU(E) MNU(  MNUG) MNU @ MNU (+ MNU (+)
0244872244872 0244872244872 0 2448 72 24 48 72(h) 0244872

g-actin
B
@
[}
[
e
2 -0-YT102
2 -0-YT103
k] -0-KH101
©

0 20 40 60 80
Time (h)

D
- 4
[ *%k
9 !
1]
g : /4’
£ 2 +— ~O~siCont
.§ o= | " siFicn
&1
-]
[ 0 . . .
(1} 20 40 60 80
Time (h)

Fig.4. The activation of AMPK after MNU treatment. (A) The phosphorylation of AMPKa in cells with different genetic backgrounds. Three cell lines, YT102 (Mgmt=/-), YT103
(Mgmt~I- MIh1--) and KH101 (Mgmt~/- Mapo1*-), were treated with or without 1 mM MNU for 1 h and then incubated for 0, 24, 48 or 72 h. The whole cell extracts from
cells harvested at various times after MNU treatment were subjected to an immunoblotting analysis using antibodies that recognize phospho-AMPKo (Thr172), AMPKo: and
B-actin, respectively. (B) The relative intensities of the bands for phospho-AMPKa (Thr172) after MNU treatment. Open circles, YT102; open squares, YT103; closed circles,
KH101. *P<0.01 when comparing the relative intensities for YT102 cells with those of the YT103 and KH101 cells at 72 h after exposure to MNU., (C) Activation of AMPK in
cells transfected with Flcn-siRNA. Two days after transfection with control or Flcn-siRNA, the YT102 cells were treated with or without 1 mM MNU for 1 h. The analysis was
performed as described above. (D) The relative intensities of bands for phospho-AMPKa (Thr172) after MNU treatment. Open circles, siCont-transfected cells; closed circles, '
siFlen-transfected cells. **P<0.05 when comparing the relative intensities of the control and Flen-specific siRNA-transfected cells at 72 h after exposure to MNU.

an immunoblotting analysis. As shown in Fig. 4A and B, the lev-
els of phosphorylation of AMPKa increased gradually and reached
about 2.7-folds at 72h after MNU treatment, whereas no such
increase was observed in cells not expose to MNU. The amounts
of the AMPKa protein were almost constant under these situa-
tions. In YT103 (Mgmt—/— Mih1-/-) cells, which are unable to induce
apoptosis due to their lack of the Mlhi gene, the increase of phos-
phorylated forms of AMPKa was hardly detectable, even after MNU
treatment. These results indicate that AMPK is activated during
the course of the induction of apoptosis, triggered in a mismatch
repair protein-dependent manner. To evaluate the effects of Mapo1
mutation on the activation of AMPK, we used KH101 (Mgmt—/-
Mapo1*/-) cells, which carry an insertional mutation in one of the
alleles of the Mapol gene and exhibit haploinsufficiency for the
induction of apoptosis triggered by MNU treatment [ 16]. Similar to
the results described above, no increase in the band corresponding
to phosphorylated AMPKo was detected even after treatment with
MNU (Fig. 4A and B). Since MAPO1 interacts with FLCN (Fig. 1), it
was supposed that FLCN might also play a role in the activation
of AMPK during the course of apoptosis. To examine this possibil-
ity, YT102 (Mgmt—/-) cells were transfected with siRNA targeting
the Flcn gene (siFlen#2), and then were exposed to 1 mM MNU for
1h. The immunoblotting analyses of these samples collected after
incubation for 0, 24, 48 and 72 h revealed that phosphorylation
of AMPKa, which occurred gradually in siCont-transfected cells,
did not take place in the siFlcn-transfected ones (Fig. 4C and D).
These results indicate that the activation of AMPK, which occurs
during the course of MNU-induced apoptosis, is dependent on the
functions of both FLCN and MAPO1.

3.5. Induction of apoptosis through activation of AMPK

~ To confirm the importance of the activation of AMPK for the
induction of apoptosis, AICA-Ribose (AICAR), a specific activator of

AMPK, was applied to YT102 cells. After treatment with a low dose
(0.2mM) of AICAR for 48h, the viabilities of cells were analyzed,
based on the trypan blue exclusion assay. As shown in Fig. 5A, there
was a significant increase of trypan blue staining-positive cells
after treatment with AICAR in the YT102 (Mgmt—/~ Mapo1*/*) cells,
whereas no such increase was observed in the Mapol-defective
KH101 (Mgmt~!~ Mapo1*/-) cells even after the same treatment. To
determine if the increase in dead cells was related to the induction
of apoptosis, the cells were subjected to an assay for mitochon-
drial membrane depolarization, which is known to occur during
the process of apoptosis. The results are shown in Fig. 5B and C. The
depolarization of the mitochondrial membrane was induced after
treatment with AICAR in YT102 cells, but not in Mapo1-defective
KH101 cells. The results indicate that the function of MAPO1 is
necessary for AICAR-induced apoptosis. An immunoblotting exper-
iment, the results of which are shown in Fig. 5D, revealed that the
AICAR-treatmentinduced phosphorylation of AMPKo to the similar
level to that when treated with MNU, however, such an induction
did not occur in the Mapol-defective KH101 cells. These results
suggest that the activation of AMPK is important for the induction
of apoptosis, and that a normal level of MAPO1 is necessary for the
activation of AMPK.

We next examined if FLCN, which interacts with MAPO1, is
also required for the AICAR-induced cell death. For this study, we
applied AICAR to YT102 cells whose FLCN function was knocked
down by siRNA (siFlcn#2). As shown in Fig. 6A-C, the degree of
AICAR-induced cell death, which was accompanied by the depolar-
ization of the mitochondrial membrane, was significantly lower in
siFlcn-transfected cells as compared to that in siCont-transfected
ones. Furthermore, the AICAR-induced AMPKa phosphorylation
was almost completely blocked in siFlcn-transfected cells (Fig. 6D).
Therefore, these results suggest that FLCN is required for AMPK
activation, as well as the cell death induced by the treatment with
AICAR.
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Fig. 6. FLCN-dependent cell death induced by an AMPK activator. YT102 cells transfected with control- or Flcn-siRNA were cultured with or without 0.2 mM AICAR for two
days and then harvested. (A) The viabilities of the cells. The numbers of cells stained with trypan blue (TB) were counted and the ratios are shown. *P<0.01 when comparing
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4. Discussion

MAPO1 was identified as one of the protein elements func-

tioning at a certain step following the induction of apoptosis [16]. .

In Mapo1-defective cells, mitochondrial membrane depolarization
and caspase-3 activation were not observed even after exposure
to MNU, although the cells retain the ability for mismatch repair
protein-dependent DNA damage detection and signaling. Subse-
quent studies have revealed that MAPO1 is identical to FNIP2 and
ENIPL, reported by Hasumi et al. [23] and Takagi et al. [24], respec-
tively. This protein is bound to folliculin, encoded by the FLCN tumor
suppressor gene, and AMP-activated protein kinase (AMPK). To
analyze the possible roles of folliculin and AMPK in the induction of
apoptosis, we introduced siRNAs specific for the Flcn or Ampko gene
and thentreated the cells with MNU. The flow cytometric analy-
ses performed to measure the sub-G; population of cells revealed
that folliculin and AMPK, as well as MAPO1, were involved in MNU-
induced apoptosis. Taken together, these data suggest that MAPO1
forms a protein complex(es) with folliculin and AMPK, and plays a
role in a signal transduction pathway of apoptosis.

It is known that AMPK is one of the signaling kinases that nega-
tively regulates cell growth and proliferation and is phosphorylated
itself under conditions of energetic stress [26-29]. Several recent
papers have observed the pro-apoptotic potential of activated
AMPK[30-33].In thisreport, we found a gradual increase in the lev-
els of AMPK phosphorylation in Mapo1-proficient cells after MNU
treatment, implying a possible involvement of the activation of
AMPK in the MNU-induced apoptosis pathway. In Mapo1-deficient
cells, AMPK activation in this manner was hardly detectable, even
after the treatment with MNU. Furthermore, the treatment of

cells with AICAR, a specific activator of AMPK, resulted in AMPKa °

phosphorylation and mitochondrial membrane depolarization in a
Mapo1-dependent manner. These findings extended onto the case
of Flen-knockdown cells. Taken together, it is likely that MAPO1

.and FLCN positively regulate the activation of AMPK through their
mutual interaction in the apoptotic signaling pathway, triggered by
an alkylating agent. MAPO1 and FLCN proteins have been reported
to undergo some modifications in cells [17,24]. The treatment with
an alkylating agent might affect the modified states of these pro-
teins, and might cause the activation of the protein complex, thus
leading to AMPK activation. Another folliculin-interacting protein,
FNIP1, which is homologous to MAPO1, is also capable of binding
to AMPK [17]. The activation of AMPK might therefore be regu-
lated in more complex ways under the balance of MAPO1 and FNIP1
activities.

Another important problem which remains to be solved is how.
the AMPK-MAPO1-FLCN complex is activated by the signal deliv-
ered from the mismatch repair protein complex, which itself is
activated through the interaction with DNA carrying base mis-
matches. The signal may be delivered by direct physical contact
between the two complexes or through the involvement of other
protein factors. The protein linking analyses, aided by mass spec-
trometry, have been performed, but no evidence to show the
physical association of the two complexes was obtained (unpub-
lished results). It seems likely, therefore, that some other protein
factor(s) might be involved in the signal transduction process. To
identify such factors, it would be relevant to extend this approach
using retrovirus-mediated gene-trap mutagenesis studies.

Germline mutations in the FLCN gene have been identified in
patients with Birt-Hogg-Dubé (BHD) syndrome, which is an auto-
somal dominant disorder characterized by hamartomas of skin
follicles, spontaneous pneumothorax, and renal tumors [20-22].
Furthermore, BHD heterozygous knockout mice were revealed
to develop kidney cysts and tumors as they aged, while BHD
homozygous null mice displayed early embryonic lethality [34,35].
The recent findings, including this report, strongly suggest that

folliculin has physical and/or functional interactions with the
AMPK-mTOR signaling pathway [17,34,36]. Mutations in several
other tumor suppressor genes, such as LKB1, TSC1 and TSC2 [29,37],
have also been shown to lead to dysregulation of AMPK-mTOR sig-
naling and to the development of other hamartomatous syndromes.
Our present findings that folliculin is involved in the induction
of apoptosis might shed some light on the physiological roles of
BHD/FLCN and other related tumor suppressor genes. We are cur-
rently establishing Mapo1 knockout mice to analyze the possible
roles of the gene in the suppression of tumor predlsposmon result-
ing from environmental stresses.
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OXIDATIVE STRESS-INDUCED TUMORIGENESIS IN THE
SMALL INTESTINES OF DNA REPAIR-DEFICIENT MICE

Teruhisa Tsuzuki,* Jing Shu Piao,* Takuro Isoda.® Kunihiko Sakumi,’
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Oxygen radicals are produced through normal cellular
metabolism, and the formation of such radicals is further
enhanced by radiation and by various chemicals. Oxygen
radicals attack DNA and it precursor nucleotides, and
consequently bases with various modifications are iritro-
duced into the DNA of normally growing cells. One such
modified base, 8B-oxo-7, 8-dihydroguanine (8B-oxo(G) is
highly mutagenic because of its ambiguous pairing prop-
erty. Three enzymes, MTHI, OGGI, and MUTYH', play
fmportant roles in avoiding 8-oxoG-related mutagenesis in
marmmalian cells (Sekiguchi and Tsuzuki 20027 Sakumi et
ab. 2003; Tsuzuki et al. 2061, 2007).

The authors have established an experimental system
for oxidative DNA damage-induced mutagenesis and tu-
motigenesis in the gastrointestinal tracts of mice (Sakamoto
et al. 2007), Oral administration of an oxidizing reagent,

‘potassium brommate (KBrOy), effectively induced G:C to
T:A transversions and epithelial twmors in the small intes-
tines of Muvi-deficient mice, implying the significance of
Mutyh in the suppression ol mutagenesis and tumorigenesis
induced by oxidative stress. Mutation analyses were per-
formed on the tumor-associated genes amplified from the
intestinal tumors developed in four mutant mice that had
been treated with KBrQ,. Many tumors had G:C 0 T:A
transversions in either Ape ar Ctinb /. No mutations were
found in either K-ras (exon 2) or Trp33 (exon 3-8} These
findings confirm the association between MUTYH-
deficiency and the recessive form of hereditary multiple
colorectal  adenomafcarcinoma  in humans, known as

INMUTYH - human protein in print, or gene In halic: Mutyh -
mouse counterpants, respectively.
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MUTYH-associated familial adenomatous polyposis (Al
Tassan et al. 20023, with the characteristic featwre: G:C 0
T:A transversions in the GAA sequence context. Also. these
results suggest thar the abnormality in the Wit signal
rransduction pauthway is causatively associated with oxida-
tive stress-induced tumorigenesis in the small intestines of
Migyh-deficient mice. In addition. the multiple formation of
trnors int the small intestines of Muyh-deficient mice provides
4 suitable model system (o investigate the processes of intes-
tinal tumorigenesis.? ‘

Kie et al. showed that Murvlv/Oggl double-deficient
mice predominantly developed lung and ovarian tumors
as well as lymphomas (Xie et al. 2004). They also
showed that 8.0% of Murvh/Oggl double-deficient mice
exhibited adenomas/carcinomas in their gastrointestinal

tracts, which were not observed in wild-type mice. The

current researchers and other groups have previously
reported that there was hittle difference in the number of
intestinal tumors in wild-type and Oggl-null mice, al-
though an Oggl deficiency resulted in 8-0x0G buildup in
genomic DNA and an elevated mutation frequency in the
latter (Klungland et al. 1999; Mmowa et al. 2000,
Sakumi et al. 20033, Thus, the development of intestinal
tumors in Mutyh/Gggl double-deficient mice supports
the notion that having a Mutvh deficlency does indeed
increase susceptibility to intestinal tumorigenesis regard-
less of the genetic background or environmentad factors,

It is of interest that the deficiency of Muyh but nol
Ogg ! makes mice susceptible to intestinal tomorigenesis,
although the deficiency of either Mutyh or Oggl in-
creases (:C to TUA transversion at almost equal fre-
quency in the small intestines of mice, It is possible that
this difference may be atiributed to the additional sub-
strate; MUTYH excises 2-hydroxyadenine, an oxidized
adenine, pabred with guanine, beside adenine paired with
8-oxvguanine, from DNA (Ohtusbo et al. 2000; Ushijima
et ab. 20035). However, Oka et al. recemtly reported the
invotvement of Mutyh in cell death caused by oxidative

“lsady et al., in prepartion.
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Fig. 1. The rofes of MUTYH in the avoiding mechanisms for
ROS-induced mutagencsis and careinogenesis. The defoect in
Nutyh simultancously compromises both DNA repair and cell-
death induced by oxiduive DNA damage. Thus, the defect in
Mutyh makes mice highly susceptible (o oxidative stress-induced
sumorigenesis. This may provide molecutar bases for explaining
why among the factors involved in mpp;msing axidative damage-
induced mutagenesis. only MUTYH is, so far, identificd 1o be
assoviuted with hereditary colorectal cancers in humans,

DNA damage (Oka et al. 2008). Thus, the defect in
Mutyh would simultaneously compromise both DNA
repair and cell-death induced by oxidative DNA damage
(Fig. 1. This may explain why among the factors
involved in suppressing oxidative damage-induced mu-
tagenesis only MUTYH s, so far, idestified to be
associated with hereditary colorectal cancers in humans.
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Oxygen radicals are produced through normal cellular metabolism, and the formation
Of such radicals is further enhanced by radiation and by various chemicals. Oxygen radicals
attack DNA and its precursor nucleotides, and consequently bases with various
modifications are infroduced into the DNA of normally growing cells. One such modified
base, 8-oxo-7, &-dihydroguanine (8-0x0G) is highly mutagenic because of its ambiguous
pairing property. Three enzymes, MTHI1, OGG1, and MUTYH, play important roles in
avoiding 8-oxoG-related mutagenesis in mammalian cells (Figure 1)'.

We have established an experimental system for oxidative DNA damage-induced
mutagenesis and tumorigenesis in the gastrointestinal fracts of mice®. Oral administration
of an oxidizing reagent, potassium bromate (KBrQ,), effectively induced G:C to T:A
~ transversions and epithelial tumors in the small intestines of Mutyh-deficient mice,
implying the significance of Mutyh in the suppression of mutagenesis and tumorigenesis
induced by oxidative stress (Figure 2, 3). We performed mutation analysis of the tumor-
associated genes amplified from the intestinal tumors developed in four mutant mice that
had been treated with KBrO;. Many tumors had G:C to T:A transversions in either Apc or
Ctinbl. No mutations were found in either K-ras (exon 2} or Trp53 (exon 5-8). Our findings
confirm the association between MUTYH-deficiency and the recessive form of hereditary
multiple colorectal adenoma/carcinoma in humans, known as MUTYH-associated familial
adenomatous polyposis®, with the characteristic feature; GiC to TiA transversions in the
GAA sequence context. Also, our results suggest that the abnormality in Wnt signal
transduction pathway is causatively associated with oxidative stress induced
tumorigenesis in the small intestines of Mutyh-deficient. mice (Figure 4). In addition, the
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Figure 1 Mutagenesis induced by oxidative DNA and its avoiding mechanisms in mammals.
Among the various types of oxidative damage in DNA, the oxidized forms of guanine and adenine, 8-
oxo-7,8-dihydroguanine and 1,2-dihydro-2-oxoadenine, can form relatively stable base pairs with
either adenine or guanine in DNA, respectively. During DNA replication, they are thought to induce
spontaneous mutagenesis, such as A: T to C: G and G: C to T A transversions. The direct oxidation of
DNA by reactive oxygen species has been reported to generate a substantial amount of 8-0x0-7,8-
dihydroguanine but little 1,2-dihydro-2-oxoadenine. In contrast, 1,2-dihydro-2-oxoadenine is generated
exclusively by the oxidation of dATP in the nucleotide pool. Studies on mutator mutants have
revealed that Escherichia coli has several error-avoiding mechanisms that minimize the deleterious
effects of 8-0x0-7,8-dihydroguanine, and in which MutT, MutM and MutY proteins play important roles.
MutT protein hydrolyzes 8-oxo-dGTP to 8-0xo-dGMT and pyrophosphate, thus avoiding the occurrence
of A: T to C: G transversion mutations during DNA replication. MutM and MutY proteins are DNA gly-
cosylases, the former excises 8-0x0G paired with cytosine whereas the latter removes adenine paired
with 8-oxo-7,8-dihydroguanine. Mammalian cells are also equipped with elaborate error-preventing
mechanisms similar to those found in prokaryotes; MTH1as a MutT homolog, OGG1 as a functional
homolog for MutM, and MUTYH (MYH) as a MutY homolog. Recent studies showed that MTH1
effectively hydrolyzes 2-OH-dATP as well as 8-oxo-dGTP, while MUTYH has the ability to excise 1,2-
dihydro-2-oxoadenine inserted opposite guanine in the template strand as well as the ability to
remove adenine incorporated opposite 8-oxo-7,8-dihydroguanine in the template. As a result of the
cooperative action among MTH1/OGG1/MUTYH and other repair pathways, mammalian cells
effectively protect the occurrence of spontaneous mutations such as A: T to C: G and G: C to T: A trans-
versions, which are caused by 8-ox0-7,8-dihydroguanine and1,2-dihydro-2-oxoadenine.



