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Materials and Methods
Sampling of Market Products

Fresh meats (akami and toro) of Pacific bluefin tuna cul-
tured in the Okinawa, Kagoshima, Kochi, Nagasaki,
Wakayama, and Mie Prefectures, Japan, were purchased
from retail outlets mainly in Sapporo, Hokkaido Prefecture,
but also in the Tokyo metropolitan area during April 2003
and December 2007 (Fig. 1). Okinawa Prefecture is the
southernmost and Mie Prefecture the northernmost of the
six Prefectures in which tuna are cultured. Fresh meat
samples from FC tuna (Wakayama Prefecture) were pur-
chased from a retail outlet in Nara Prefecture during July
and August 2005 and in June 2008. To distinguish the
tuna cultured in Wakayama Prefecture from larval fish
and gamete (FC) tuna, we hereafter refer to them as
Wakayama-I and -II, respectively.

We discriminated between the cultured bluefin tuna and
wild bluefin, yellowfin, and albacore tuna sold in retail
outlets not only on the basis of labeling but also by
appearance and the results of testing. The tuna samples
were stored at —20°C until analysis.

Chemical Analyses

T-Hg concentrations in the tuna samples were determined
using a flameless atomic absorption spectrophotometer
(HG-1; Hiranuma Sangyo, Ibaraki, Japan) after digestion
by a mixture of HNO;, HCIO,, and H,SO4 (Endo et al.
2003). M-Hg concentrations in the samples were deter-
mined using a gas chromatograph (GC-14A; Shimazu,
Kyoto, Japan) with a 3Ni electron capture detector (ECD)
(Haraguchi et al. 2000). DOLT-2 (National Research
Council of Canada) and CRB463 (BCR [European Com-
mission]) were used as analytical quality-control samples
for the determination of T-Hg and M-Hg as reported pre-
viously (Endo et al. 2003, 2004, 2008). The mean recov-
eries of T-Hg and M-Hg from the quality controls were
95% (n = 5) and 88% (n = 4), respectively. The M-Hg
data were corrected by the recoveries.

Concentrations of organohalogen compounds in the tuna
samples were determined as reported previously (Hisa-
michi et al. 2010). Briefly, the lipids in the minced samples
were extracted three times by hexane. The combined
extracts were concentrated, and the lipid content (hexane-
extractable lipid [HEL]) was determined gravimetrically. A
portion of the HEL (10-100 mg) was spiked with an
internal standard (30 ng CB205), and 13 PCB congeners
(CB99, CB101, CB118, CB138, CB146, CB149, CB153,
CB170, CB183, CB187, CB194, CB199, and CB208),
p,p'-DDE, trans-nonachlor, HCB, TBA, and QI in the HEL
were analyzed using a gas chromatograph (GC-2014;
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Shimazu, Kyoto, Japan) equipped with ECD. All PCBs
congeners, p,p’-DDE, trans-nonachlor, and HCB were
purchased from Accu Standard (New Haven, CT). Quality
assurance for anthropogenic compounds was confirmed by
analyzing standard reference materials (cod liver oil
1588b) provided from the National Institute of Standard
and Technology (Gaithersburg, MD). Data from our labo-
ratory were in good agreement with the certified values
(within 15% difference).

The stable isotope ratios (513C and 515N) in dried akami
samples after the removal of lipids using chloroform/
methanol extraction were analyzed by mass spectrometry
(Delta S; Finnigan, Germany) coupled with an elemental
analyzer (EA1108; Fisons, Italy) as reported previously
(Endo et al. 2009).

Concentrations of T-Hg and M-Hg in tuna samples were
expressed by Hg concentration/wet-weight basis, and or-
ganohalogen concentrations were expressed on a wet-
weight basis as well as on a lipid-weight basis.

Statistical Analysis

The data were analyzed using Statcell 12 (Scheffe’s F or
Tukey-Kramer test), and the level of significance was set at
p < 0.05. All data were expressed as means + SDs.

Results

Analytical results for §°°C, §'°N, T-Hg, M-Hg, HEL, and
organohalogen compounds in akami and toro samples from
Okinawa, Kagoshima, Kochi, and Nagasaki Prefectures
(southern region) and Wakayama (-I and -II) and Mie
Prefectures (central region) are listed in Table 1.

The average T-Hg and M-Hg levels in akami samples
from Wakayama-II (0.67 % 0.14 and 0.43 & 0.07 pg/wet
g (n = 6), respectively) were the highest among the seven
locations studied, exceeding the Japanese limits for T-Hg
(0.4 pg/wet g) and M-Hg (0.3 pg/wet g), respectively
(Table 1; Fig. 2). In contrast, average T-Hg and M-Hg in
akami and toro samples from the southern region tended to
increase with a decrease in latitude. The average levels of
T-Hg and M-Hg found in foro samples from all locations
were significantly lower than the corresponding levels in
akami samples (p < 0.05), with the percentage of M-Hg to
T-Hg found in those samples being in the range of 60-90%.

The average HEL value in akami samples tended to
increase with an increase in latitude, except for samples
from Wakayama-I and -II (Table 1; Fig. 2), and the aver-
age HEL in akami samples from Wakayama-Il was the
lowest among all of the locations. The average HEL con-
centrations in toro samples from all locations were sig-
nificantly greater than the corresponding levels found in
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Table 1 Analytical results of bluefin tuna cultured in different regions of Japan®

Region Tissue type (%o) (i/wet g) (ng/wet g) (%)
é%c 6N T-Hg M-Hg PCBs p,p’DDE Trans- Ql TBA HCB HEL
nonachlor
Okinawa Akami (n=7) —-172+£07 134+15 033£016° 026+0.11° 277+ 151* 335+ 18.7° 51439 120+37 129+ 095" 1.02+0.51° 57+39
Toro (n = 8) ND ND 0.17 £ 0.11*  0.15 £ 0.08* 368 £ 146 591 £ 431° 727 £ 446 176 &+ 104 10.6 = 8.9° 598 + 424" 334+ 126
Kagosima Akami (n = 10) —17.1£08 140+ 09" 0.31£009 024+ 007" 507+ 265 424 4 21.3° 82+ 5.1 95+£59 131+ 120° 0.97%0.82° 7.0+ 2.1
Toro (n = 9) ND ND 0.20 4+ 0.08*  0.16 &+ 0.07* 528 + 225 506 + 257° 164 + 88° 191 & 87 5.90 +293* 546+ 1.80* 39.6+ 11.7
Kochi Akami (n = 11) -17.1£070 147 +03 026+ 0.06° 0.21 4+ 0.04° 454+ 242 135 & 101 71 +£37 143+58 0754030 099+ 0.56* 70+ 36
Toro (n =7) ND ND 0.16 = 0.08®  0.13 4 0.06* 519 + 388 1211 £ 843" 761 576 163 £ 141 536 +222° 600+ 195 395+58
Nagasaiki Akami (n = 11) —174409 155+ 12° 021 £0.12° 0.6+ 008" 87.5+695° 188+ 193° 132493 227 +£80 3.18+ 190 205+ 128 9.2 +54°
Toro (n = 7) ND ND 0.11 £0.07° 0.09+ 0.04° 636 £ 270° 2183 & 1042° 122 + 63 301 £ 134  14.8 £ 4.0° 9.16 & 2.48 38.1 + 13.0
‘Wakayama-1 Akami (n =4) —166+04 144+08 024005 020+ 004> 215+ 142° 162+ 77° 50+ 4.1 129+£96 194+ 187" 118+ 1.12 51+ 4.0
Toro (n = 10) ND ND 0.14 + 0.05* 0.11 £0.03* 144 4 712 127 £ 123 299 + 13.0° 8134389 103 +5.1° 6.11 £ 2.65"  29.2 + 13.2
Wakayama-II (FC) Akami (n=6) -—165+02 13.6+03* 067 +0.14° 043 +£007° 2254258 134+ 15.4° 8.2 £ 10.0 97+£99 053+0.53" 036035 23+ 18"
Toro (n = 12) ND ND 043 4013 029+ 0.07? 224 £ 134° 147 £ 94° 87.0 + 55.5° 121 - 83 3.05 £ 2.01° 3.06 +2.68* 25.1 + 14.3
Mie Akami (n =35) -175£0.1 135+03* 0254005 019+ 004> 374 +360 168+ 7.7° 115+ 78 1524+ 123 6124288 277+ 137° 105 + 4.6°
Toro (n = 9) ND ND 0.13£0.05% 0.12+0.04" 199 £ 144® 913+ 69.7* 44.8 £23.6° 66.0+ 483 33.1 £24.7° 1551 4+ 13.04° 45.7 + 143
Region (ng/g lipid)
PCBs p,p'-DDE Trans-nonachlor Q1 TBA HCB
Okinawa 0.54 £ 0.27 0.60 & 0.27° 0.09 £ 0.05° 0.21 + 0.08 0.022 + 0.004° 0.020 £ 0.007
1.30 + 0.52 2.01 £ 0.93* 0.25 &£ 0.17 0.59 £ 0.21* 0.032 + 0.020" 0.017 £ 0.008*
Kagosima 0.81 + 0.51 0.66 + 0.37° 0.13 + 0.09 0.13 £ 0.05* 0.019 £ 0.012° 0.014 £ 0.009
1.32 + 0.39 1.32 & 0.40° 0.40 + 0.15 0.47 £ 0.11* 0.017 £ 0.013* 0.015 + 0.006"
Kochi 0.71 + 0.37 1.94 £ 1.01 0.11 £ 0.07* 0.23 + 0.10 0.012 + 0.003" 0.014 + 0.004
1.29 £ 0.98 2.95 + 1.88° 0.19 £ 0.13* 0.40 + 0.33 0.013 £ 0.005* 0.015 + 0.005°
Nagasaiki 0.98 + 0.41° 2.25 + 1.60° 0.15 + 0.07 0.29 +£0.13 0.042 + 0.024* 0.026 + 0.015
1.63 + 0.44 5.48 + 1.82° 0.30 + 0.12 0.76 + 0.23" 0.042 + 0.018% 0.026 + 0.009
Wakayama-I 0.47 £+ 0.13 0.44 £ 0.22° 0.09 + 0.01* 0.27 + 0.04 0.032 + 0.011 0.021 + 0.012
0.47 £ 0.11 0.37 £ 0.22° 0.10 £ 0.02* 0.27 £ 0.07 0.037 £ 0.013° 0.020 % 0.002
Wakayama-II (FC) 0.84 + 032 0.45 + 0.21° 0.26 & 0.16° 0.36 + 0.12° 0.032 + 0.011* 0.021 4+ 0.012
0.93 £ 0.36 0.59 + 0.20° 0.35 £ 0.13° 0.49 + 0.24 0.012 + 0.004* 0.011 + 0.004*
Mie 0.34 £ 0.15 0.16 + 0.03* 0.10 + 0.04* 0.14 + 0.07* 0.059 =+ 0.009° 0.026 + 0.004
0.43 + 0.23° 0.19 + 0.09° 0.10 £+ 0.03* 0.14 & 0.06" 0.069 =% 0.033° 0.032 =+ 0.018°

ND not determined

* PCB concentration was the sum of 13 PCB congener concentrations. Different superscript letter indicate significant difference between the locations (» < 0.05)

S0£-962°79 (Z10T) [09IX0], WEIUOD) UONIAUT YOIy
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Fig. 2 T-Hg and HEL in akami and toro samples from tuna cultured
in Okinawa, Kagoshima, Kochi, Nagasaki, Wakayama, and Mie
Prefectures (see Table 1)
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Fig. 3 Stable isotope ratios in akami samples from tuna cultured in
Okinawa (O), Kagoshima (KS), Kochi (KC), Nagasaki (N), Wakayama
(W-I and W-II), and Mie (M) Prefectures (see Table 1)

akami samples, and no clear latitude-dependent increase in
HEL concentration was observed in toro samples.

The average 6'°N value found in akami samples from
tuna cultured in the southern region was the lowest in
Okinawa Prefecture and highest in Nagasaki Prefecture:
The 6"°N value tended to increase with an increase in
latitude (Table 1; Fig. 3). However, SN values in
Wakayama Prefecture (-I and -II) and Mie Prefecture (cen-
tral region) were lower than that in Nagasaki Prefecture.
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In contrast, no spatial trend was observed in the average
6'3C values among the seven locations. Furthermore, no
correlation was found between 6'°C and §'°N values of
combined akami samples from all seven locations.

PCB (sum of 13 congeners), p,p’-DDE, trans-nonachlor,
Q1, TBA, and HCB levels, all expressed on a wet-weight
basis, were approximately 10 times greater in foro samples
than in akami samples from the seven locations, respec-
tively (Table 1). PCB concentrations found in some foro
samples exceeded the limit for PCBs set by the Japanese
government (500 ng/wet g). Contamination levels of PCBs
and p,p'-DDE found in akami and toro samples of Naga-
saki Prefectures, expressed on both wet-weight (Figs. 4,
S1) and lipid-weight bases (Figs. 5, S2), were the highest
among the seven locations, and the levels of PCBs and
p,p-DDE tended to increase with increases in latitude for
locations in the southern region (Okinawa, Kagoshima,
Kochi, and Nagasaki Prefectures). Contamination levels of
PCBs and p,p’-DDE found in akami and foro samples from
Wakayama-I and -II and Mie Prefecture (central region),
expressed on a wet-weight basis, were lower than those
from samples obtained from tuna in the southern region,
respectively (Figs. 4, S1). No spatial trend was found in
contaminations levels of trans-nonachlor or QI in akami
and roro samples (Figs. 4, 5, S1, S2). Levels of TBA and
HCB in gkami and toro samples from the southern and
central regions were one or two orders of magnitude lower
than those of p,p’-DDE, PCBs, trans-nonachlor, and Q1
(Figs. 4, 5, S1, S2). High levels of TBA and HCB were
found in akami and toro samples from Nagasaki and Mie
Prefectures. Contamination levels of p,p-DDE found in
akami and toro samples cultured in the southern region,
except for Kagoshima Prefecture, were greater than those
of PCBs, respectively, whereas those of PCBs in the central
region were lower.

Figure 6 shows the relation between HEL (%) and
T-Hg, M-Hg, PCBs, p,p’-DDT, trans-nonachlor, Q1, TBA,
and HCB concentration (wet-weight basis) in the combined
samples of akami and toro. T-Hg and M-Hg concentrations
decreased with an increase in HEL, whereas all organo-
halogen compounds increased with an increase in HEL, up
to approximately 60%, at which point they reached con-
stant levels.

Discussion

Except for Wakayama-II, average concentrations of T-Hg
and M-Hg in akami and toro samples did not exceed the
permitted levels in fish and shellfish set at 0.4 and 0.3 pg/wet
g, respectively (Fig. 2), although this Japanese legislation
for Hg does not cover tuna. In general, the Hg contamination
level in tuna correlates to their body length and weight
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Fig. 4 Levels of organohalogen compounds in akami samples from tuna cultured in Okinawa, Kagoshima, Kochi, Wakayama, and Mie

Prefectures expressed on a wet weight basis (see Table 1)

(Yamashita et al. 2005; Kojadinovic et al. 2006). We pre-
viously reported that the average levels of T-Hg and M-Hg
in akami samples from wild bluefin tuna caught off the coast
of Japan were 1.45 £ 0.73 and 1.25 £ 0.66 pg/wet g,
respectively, although the body size of the tuna analyzed was
unknown (Hisamichi et al. 2010). Because commercially
available tuna cultured in Japan are generally younger and
smaller (approximately 2.5-3 years and approximately
30-50 kg), lower contamination levels of T-Hg and M-Hg
found in tuna samples cultured in Japan may be due to the
younger age and smaller size (Tudela and Garcia 2004). The
fattening of tuna has been reported to decrease Hg levels in
the muscle of southern bluefin tuna (Balshaw et al. 2008a, b)
and probably in that of Atlantic bluefin tuna (Vizzini et al.
2010). However, it is unclear whether the culture techniques
used in Japan decrease the Hg concentration in the tuna
muscle because no comparative data on Hg concentrations
in wild and cultured tuna of similar sizes (and ages) are
available.

T-Hg and M-Hg levels in akemi samples from
Wakayama-II (0.67 = 0.14 and 0.43 + 0.07 pg/wet g,
respectively, n = 6) were the highest among all of the
locations (Fig. 2). In agreement with the present values for
T-Hg, Ando et al. (2008) reported that the average T-Hg
concentration in akami samples from Wakayama-II (FC
tuna, approximately 20-60 kg) was approximately 0.6 pg/
wet g. The Wakayama-II farm (Kushimoto, Wakayama
Prefecture) was located near the Wakayama-I location.
However, contamination levels of T-Hg and HEL (Fig. 2)
and some organohalogens (Figs. 4, 5, S1, S2) in the sam-
ples from Wakayama-II were markedly different from
those in samples from Wakayama-I. The differences in
HEL and other contaminants may be ascribed to the dif-
ferences in HEL and contaminant levels in the prey fish
used as bait rather than in the seawater. The contamination
level of T-Hg in akami samples from Wakayama-II was
similar to that in samples from wild bluefin tuna -at an
average body weight of 50 kg (0.59 & 0.34 pg/wet g,
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Fig. 5 Levels of organohalogen compounds in akami samples from tuna cultured in Okinawa, Kagoshima, Kochi, Wakayama, and Mie

Prefectures expressed on a lipid basis (see Table 1)

n = 15 [Yamashita et al. 2005]). However, Hg concen-
tration in wild tuna increases with increased body weight,
whereas that in Wakayama-II samples was almost constant
between 20 and 60 kg (approximately 0.6 pg/wet g [Ando
et al. 2008]). Probably the Hg concentration is greater in
smaller FC tuna (Wakayama-II) than in wild tuna, whereas
it is lower in larger FC tuna. In contrast, HEL in cultured
tuna from Wakayama-II (2.3 £ 1.8%) was the lowest
among all of the locations and was compatible with that in
wild bluefin tuna caught off Japan (1.28 £+ 1.00%, n = 62
[Hisamichi et al. 2010]). Figure 6 shows the negative
correlations between HEL (%) and T-Hg or M-Hg con-
centration. In agreement with these findings, Balshaw et al.
(2008b) reported an inverse relation between lipid content
and Hg concentration in muscle of farmed tuna. A lower
lipid content, expressed by HEL, may be an additional
reason for the greater Hg concentration observed in akami
samples from Wakayama-II. .

T-Hg level in akami samples tended to be greater those
in tuna farmed in the southern region compared with those
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from the northern region, except for Wakayama-II (Fig. 2).
We previously reported that T-Hg contamination levels in
red meat (muscle) of toothed whale species (Endo et al.
2010) and wild bluefin, yellowfin, and albacore tuna
(Hisamichi et al. 2010) tended to be greater in the southern
region, probably reflecting greater Hg concentrations in the
southern marine environment. The same spatial trend in Hg
contamination in the tuna cultured in Japan, except for
Wakayama (-II) and Mie Prefectures, may reflect Hg
concentrations in the marine environment around the farm
locations.

Contamination levels of p,p’-DDE in tuna cultured in
Okinawa, Kagoshima, Kochi, and Nagasaki Prefectures
(southern region) tended to increase with an increase in
latitude (Figs. 4, 5, S1, S2). A similar but less prominent
tendency was also found in the contamination levels of
PCBs. Similarly, we previously reported that contamina-
tion levels of p,p’-DDE and PCBs in wild bluefin, yel-
lowfin, and albacore tuna tended to be greater in the
northern and central regions than in the southern region of
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Fig. 6 Correlation between
HEL and T-Hg, M-Hg, or
organohalogen compounds in
combined samples of akami and
toro (see Table 1)

Japan, probably reflecting the spatial contamination pattern
of those compounds in the marine environment (Hisamichi
et al. 2010). In contrast, contamination levels of p,p’-DDE
in Wakayama-I and -II and Mie Prefecture (central region)
were lower than those in the southern region. The reason
for the lower levels of p,p’-DDE and PCBs found in the
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central region remains unclear, A possible reason for these
spatial differences in p,p’-DDE and PCBs is the existence
of differences in the contamination levels of those com-
pounds in the prey fish used as bait.

No clear spatial trends in the contamination levels of
trans-nonachlor and Q1 were observed (Figs. 4, 5, S1, S2).
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The contamination levels of trans-nonachlor and Q1 were
markedly lower than those of p,p’-DDE and PCBs. The lower
contamination levels of trans-nonachlor have been reported
in wild bluefin tuna caught off the coast of Japan, whereas the
contamination level of Q1 in the wild tuna was the same as
that of p,p-DDE and PCBs (Hisamichi et al. 2010). The
reason for the difference in Q1 accumulation remains open.

Contamination levels of p,p’-DDE, PCBs, and tans-no-
nachlor in agkami samples from cultured tuna (Fig. 5),
expressed on a lipid-weight basis, were similar to those in
samples from wild tuna caught off the coast of Japan
(Hisamichi et al. 2010). Similarly, Vizzini et al. (2010)
reported that contamination levels of PCBs, p,p'-DDE, and
HCB in wild bluefin tuna caught in the Mediterranean Sea,
expressed on a lipid basis, were similar to those in farmed
bluefin tuna.

Contamination levels of TBA and HCB in foro samples,
expressed on both wet-weight and lipid-weight bases, were
one or two orders of magnitude lower than those of
p,p’-DDE and PCBs. The highest averages of TBA and
HCB (approximately 69 ng/g lipid and 32 ng/g lipid,
respectively) were found in the foro sample of Mie Pre-
fecture (Table 1), which is contrary to the spatial pattern
observed for p,p-DDE and PCB contamination. TBA is
reported to be derived from the natural methylation of trib-
romophenol, which is mostly produced by algae, and found
in the muscle of wild bluefin tuna (0.8-6.4 ng/g lipid) and
farmed bluefin tuna (0.4-1.0 ng/g lipid) from the Mediter-
ranean Sea (Penta-Abaurrea et al. 2009). The contamination
level of HCB in muscle of wild bluefin tuna from the
Mediterranean Sea (approximately 36 kg body weight
[n = 7]) was 5.2 % 3.5 ng/g lipid (Corsolini et al. 2007),
and those in the muscle of skipjack tuna and in the liver of
wild bluefin tuna from the Pacific Ocean were 1-10 ng/g
lipid (Ueno et al. 2003) and 10-30 ng/g lipid (Ueno et al.
2002), respectively. Contamination levels of TBA and HCB
found in bluefin tuna cultured in Japan were greater and
similar levels to the reported levels, respectively.

Average 6°N and 6'°C values in akami samples from
tuna cultured in Japan ranged between 13.4 and 15.5 and
between —17.5 and —16.5, respectively (Table 1; Fig. 3).
In contrast, average 6°°N and 6'>C values in akami samples
from wild bluefin tuna caught off the coast of Japan were
133+ 1.1 and —169£0.5 (n=61), respectively
(Hisamichi et al. 2010). Thus, the average 0 15N in cultured
tuna in Japan was greater than that in wild tuna. In
agreement with these findings, Vizzini et al. (2010)
reported a greater 5"N value in farmed bluefin tuna than in
wild bluefin tuna from the Mediterranean Sea. Greater
5'5N values have also been reported in farmed fish than in
wild fish of other species (Serrano et al. 2007).

The average 6"°N value in akami samples from the
southern region (four locations) tended to increase with an
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increase in latitude, and that in samples from the central
region was intermediate compared with those of the
southern region. In contrast, there were no clear spatial
differences in 6'>C values. No correlation was found
between 6'°N and §*°C values in combined akami samples
from the southern and central regions. In contrast, we
previously reported a positive correlation between 5N
and 6'3C values in combined wild bluefin tuna samples
from both regions, probably reflecting their wide-ranging
migration (Hisamichi et al. 2010). We also reported neg-
ative correlations due to latitudinal effect in combined
yellowfin tuna samples, combined albacore tuna samples
(Hisamichi et al. 2010), and combined toothed-whale
samples (Endo et al. 2010). Fish culturing may decrease the
strength of these migration- and/or the latitude-related
correlations.

Average HEL values in akami samples, except for those
from Wakayama-I and -II, tended to increase with an
increase in latitude (Fig. 2). We previously reported greater
HEL values in akami samples from wild bluefin tuna
caught in the northern region than in those in the southern
region of Japan (Hisamichi et al. 2010). Furthermore, we
reported that the average HEL value in samples from wild
yellowfin and albacore tuna tended to be greater in the
central region than in the southern region (Hisamichi et al.
2010). The difference in seawater temperature may be
a possible cause for the latitude-dependent tendency
observed in HEL values. However, the reason for the lower
HEL value in tuna samples from Wakayama-I and -II is
unclear. Lower HEL concentrations in prey fish used for
tuna culturing is a possible reason.

The average HEL value in toro samples from each
region was markedly greater than that in the respective
akami samples. The latitude-dependent increase in HEL
observed in akami samples was not found in toro samples.
Fattening may decrease spatial difference in the lipid
content of toro samples. A greater lipid content in cultured
tuna compared with wild tuna was reported in bluefin tuna
from the Mediterranean Sea (Vizzini et al. 2010) and in the
southern bluefin tuna (Padula et al. 2008).

Nakao et al. (2007) analyzed T-Hg levels in prey fish
used in Wakayama-Il (FC tuna), but T-Hg levels in the
prey fish used in other locations in Japan are unavailable.
Furthermore, no data on contamination levels of organo-
halogen compounds in prey fish used in tuna culturing in
Japan are available for business reasons. To elucidate
spatial trends in Hg and organohalogen contaminations
found in cultured tuna in Japan, analyses of the contami-
nation levels in prey fish are necessary.
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1. PBDE(pentabromodiphenylether) & & O
PCBs ¢ #BEDORER) RFHLE T ==
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(polybrominated biphenyls)D A FE % &1k L 72,
BEZNDLIZA by 7 ANVLEND Annex A
wHEEEHhTW5, 10 23k PBDE(Decabrom
odiphenylether)|ZfE Y X7 TH 3 & L THAE
FCHERAINTET,

PBDEs i PCBs & R#k. AT ORRRT
DEHEELEBRMEBOEWVWIZLY 209 ED
congener BB, b OYBEIERMEIL

ERBHROBEICLYRES B2, @826

STAMERRARICL S L. AHBREREN
5 B34k PBDE TIX 11700-1650 T& % D IZx%f
LT, 10 2%1k PBDE TIX 50 LT TH 5,
10 23k PBD I octanol-water S BEfREX DS
W GHIZBETRTW) bbb T. AW
YRR I fh > POPs X 5 12& < ix72vy, SD
Sy Mo+ 3REERICLD &, 10 BHE1{L
PBD D A RILE X LB K<, K 10%TH
E) 23)0 .

A% 3 EXD 19 BOFAD T RITHT
5 10B%F{LPBD 0RO EE TIT REE20.1
mg/kg CBWTHBREEIBE S Y, —
#.5 823k PBDE Cii#& 5 & 0.8 mg/kg YA E
TITRHNCEERENDIZ b, BBRRERERD
£\ PBDEs LYV bEMHENBNI L BFRS
ﬂé 25)D

AARCBT AR ALEOMERE TiE.
PBDEs & 0 %({TEHEIX 1980 £ T 0.5
ng/g lipid, 1990 X C 1.8 ng/glipid TH o7z
8, 2005 £0BATOLREDRH MmIFF
PBDEs J& [ O % F ¥ E X 2.9 ng/g lipid T,
BEREZELZITIEHA LV ITHEHEWET
Bofe it B e &b IcEMERICH o Y,
BB BVWTIZ 4 2K/ PBDE B’ b %
<. RWT 6 251k PBDE ORKEER L -
7z, 10 R%{L PBD O 5 2E|E1IA 10 % T
HoT,

9.7 PBDEs JBE % 2008 FICRT VT D
Eorichkilz ® (K 4), &% PBDEs
BPEOVEHEEIEE CR b & (3.7 ng/e

lipid) . #E (1.9 ng/glipid). BA (1.5 ng/g
lipid) . X & (0.42 ng/g lipid) DIETH -
7=, BETIXI PBDEs BEDIXL2Z NKE W
(0.82-24 ng/g lipid) = &%, PBDEsiZxt
LTWEEBVBRELZZIT CWAEAR—F
BoTWBAI LBRREIND, BATORE
R TIZ. PBDEs REOEF—ETH D, F
EiR THOFEETIX., B+ PBDEs RE
2008 £ DFE R (1.9 ng/g lipid) X 2005 4 (1.2
ng/glipid) LV &< . BEV-IVOEMER
CEBbDTHLIARERS D, BT VT
BT 3B+ PBDEs BE X, BOKFEE. &I
KE & BT nIEEY, PBDE congener @ |
FEENEL THD XV z, BELV-VITIE
HIFIC LV ERDDLEE XD,

10

BDE-47+153

O BDE-153 46 ng/g-lipid

g | mBDE-47

LR EE (ng/g-lipid)

2004
*E

2004 | 2005 | 2008 | 2008 | 2004 | 2005 | 2008
B& PE

2002 1
xE

4 3. PBDEs BENEERTOLEK

2) 7 v HE{LEY

B v ={E4Y (perfluorinated compounds;
PFCs) X% D/ N —TBEET 5 ALTEE
MTHY .7 yRTEBRLEREHNPORD,
60 ELL EITb iz > TEER R b, &l
aFf, A, b—2y b, REOREER, 7
v ERIERLE AR EEER 2 & Oke 2T,
EREEARCAASNTE L, ZO0+FH.
Ry TNFaFy v ANVE B (PROS).,
NI NFut s Z B (PFOA) LWoTz
PRCs 2SFFRE- k72 Ehf o AR T I
BomoTEY, izt FOMESLFATIE
HREMmTHRESHTVND %,
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Ty bRw U RIZRBWT PFCs 2N F A « %
BREETLIILPBEINTEY., Zhic
FOIFIBREEOEM,. RESCKEDEN &
WoltbDRdH B, £z, PFOS 8 L U PFOA
BDROFZCEEEREZDHZ L BRBTHE
FWRPNL 2ondH B P, [RFH 8 D PFOA
LTV REOBT v RINVR B (PFCAs) i
XV AEYMBMEER TS5, R&EH 9 © PFCA
(PFNA) & k%44 11 @ PFCA (PFUnDA) @
2000 FOPEHEBIXENEN 25 P/ T b T
HO W FTELRPFHBIRT T THB, =
NoDERIZNE CREFLEEHRAR LD
BEHIh T3,

Zh6®D PECAs [ZHOWT, BT V7 TO
2008 72 5 2010 F O FARAB E R/~ 2(K
5). PFCAs @723 T% PFOA BEIAMNEL .
TYVT 3IETARTIBWTRE® 60 %24 _Eas
bR &Nz, PFOA BED P RMEIZAAT
&b @< (89 pg/mL) YR\ THEE (62 pg/mL) |
FE (51 pg/mL) DIETH -7, PFNA B &
U'PFUnNDARE S R PR TRIEIh, Th T
AWAA (P RfE 31 pg/mL. 35 pg/mL). #[EH
(P ofE 15 pg/mL, 19 pg/mL), HE (FR
& 15 pg/mL, 15 pg/mL) Th o7z, EBREN
Z LT EBETIXRFRHE 13 ® PRCA(PFTIDA)
PEARBOFEICHRH AR LV TEE
NTHEY, 3 BOFTRELBEP-7 (PR
& 10 pg/mL), BA, #®E, PET, AR
£ O PFCAs 81238\ T PFOA D 5% 5 &l
BIXENTN 48 %, 54 %, 61l % Th-o7, B
A, PEOANIHL bFA /L 25 PFOA,
PFNA. PFDA, PFUnDA 2 E THE S h.
TNENAAT21.8,21.6,10.1,10.1 pg/mL.
FET 28.1, 22.4, 11.1, <5pg/mL Tho7=
B, BRETHERRER 2ok ¥, BA,
FEOATALRABF O PFOA RE LR
PRELVES, Thfhimnl, 2501
DETH -7z,

BELH PFCAs REICBIT 2 UMIER S h

TebD LRV, TRNETERT V7 LHKE
ETIX PFOARECHBERZIRON R -
7z, PFOA L4+ D PRCAs DM IZ oW TidEe
W RER = DITONTI R No T, O
7o OREF D PFCAs &0 E & FEMIEIFH
BREETHoTl, FRNIZOWFIENREET
i, kx2Eor NEUITBIT S PFCAs
BEZOVWTORBMOBEVEHALNIRSE T
b5,

250
BPFTIDA

BPFDoDA

n
Q
o

OPFDA

o
8

mPFOA

BAR-mE 8RN  PEAAR kB L4

B5 &F5 PFCAs REDZEM TOHE

BFLpREE (pg/mL)
2
o

o
o

0

IV. RRDO-HDE FBEPILLEHED) R
© 5T i

BE. BFHCL D) 27 2REBAT I3
A— BBHE (tolerable daily intake; TDI) &
BEE~—3 (margin of exposure; MOE) &
WO ZODEHER NS, TDI Lixk FEM
W& oT, EEWMRBRBEIRIIZORNBEZ
EDRN—RREED, THREMEZERLZ
HEETHDI MOEIBREDREEN LM
LTV ENEFIIVWRERTERTHD, B
%, MOE = TDI / BR#E&, MOE100 72 5%
BRD2VRAIFMBPLBETH D, RRIZ, 2
D2ODEHEEZIXARO =D OB
FMEDIV A ERAT L LN TE S,
AROBHERHAHEE R ((KE 5kg T 750
g day™?) WZESWT, FRPWEO— RERE
DHEMORET 21T > 72, BRAPILLEHEIC
DOWTIE, ZhETRELNET—% LRI
TERDPOTHKNEREZEEE D 2008 F0
FHHEIZ L B & \PFOA @ TDI % 1500 ng kg body
wighttday ! &2 o TWA, BE7 V7 ICBIT 3
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v MEM D PFCAs EERE D EEIZZ O TDI
D2%ATFTHD (FHE0.9-1.9%), RIKRD
F¥EZ BV T PBDEs BEEZ ML 7,
PBDEs @A D EFER &L 5 BRR{L PBDE ©
TDI(0.4 mg/kg body wight/day)?® 1 ¥RRE TH
V. ZDZ LA XD PBDEs DY
ATIXEWEE X B,

V. tEE

POPs = 0@ mtE, EEE. £WRGEE
DD, ERPLDOLDOBFHRDOEDL,
ALEBLCHEIPLARCEZ CHEESND,
BW7YVT70OE~Oe bEAITEEND POPs
DM S, POPs %, HEBRBESOHR
BIZoWTORENHEBLTALPITT LI L
NT&EB, i, PEAORI T DDT
% HCB BEMNBEWA, BAANTIE CHL, #
E ATk PBDEs DBENE WV, Z 3 Vo ok
MOBESNREVNTIEICBT2BRENGER
EOZEYEREOHFMEELTVLIOT
B, TOERTEALOET=F) VI hbiX
B OBEREB/BLIENTE D, &b
. BREARIZE o TEERIRALTF—IR
ThHIVRERTHD., BAFOLEHENIL
ROBEPRBRCEFELZRETZIELEX
bhd, o TFELOBEDIZDIZLE b
BAHOWENRT=F ) VI RMERDTH
%,

BAE=FV VI REETHITE21DH
L INETELNET —FIIRLTELIZ
R, mElRE=F Y v RERHET D
BDITIE, 3 PO FERILTOILERD D,
B B mMEFORELDOERERTFH.
OIS FEOES, BE=ZFRKAERE b
BRI THD,

i
==XV ORDOFLRBOREI D
BN T, RALAFERRE O LIRS

£, BER+FHERE V¥ —OBARILL
£, BIWRTFRRFROFEFELE, T
7 )=y 7 OB EE, FEEREAR
EROH FEBEE, R EMIBERT
HEOBAHETHE. ANRER, E50T T
B, FEERK. RERRTHR KBEBR,
BHETR, BOBTFH. FIETKR BR
FEEML XD EHR L EFET,
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Biological monitoring of persistent organic
pollutants using breast milk

Akio Koizumi, Yukiko Fujii, Tamon Niisoe, Kouji Harada

Department of Health and Environmental Sciences, Kyoto University
Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan

Persistent Organic Pollutants (POPs) are ubiquitous and persistent environmental
contaminants that bioaccumulate in biota. The screening of POPs contamination in milk is
important to assess current exposure in infants. Since POPs are lipophilic and small
molecules, they tend to be transported from blood vessels to breast milk via passive
transport pathway. Human breast milks in east Asian countries showed unique POPs
profiles. Concentrations of DDT and hexachlorobenzene are very high in breast milks of
Chinese mothers while chlordanes, polychlorobiphenyls and perfluorooctanoic acid are
high in breast milk of Japanese mothers and polybrominated diphenyl ethers in breast milks
of Korean mothers. Those salient differences of profiles are associated with the past and
current exposure profiles of chemicals in the three countries. Levels of classical POPs,
which have been regulated, are decreasing in human breast milk and health risk in infants is
unlikely. However, there have been large numbers of emerging new classes of POPs and
detected in recent studies, warranting continuous monitoring of chemicals in human breast
milk for child health.

Key words : breast milk, persistent organic pollutants, monitoring, East Asia, human

specimen bank
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