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Figure 3. (A) U937 cells were first incubated with DCFH-DA for 30min and then treated with shikonin in a time-

dependent manner. Intracellular peroxide level was measured by flow cytometry. (B) Concentration and time-dependent
induction of Hsp70 was measured by western blotting. Hyperthermia (HT) 44°C for 15 min was used as a positive control.
(C) Bands were quantified by densitometry and normalised with -actin. Bars indicate standard deviation (n=3). (D) HSF1
phosphorylation was measured time-dependently by western blotting. Hyperthermia (HT) 44°C for 15min was used as a

positive control.

treated with 0.1 uM shikonin in a time-dependent
manner followed by western blot analysis.
Phosphorylation of HSF1 is usually detected as an
upward band shift [20]. No upward band shift was
observed after shikonin treatment till 3 h, while very
clear upward shift was observed in HT-treated cells.

This result indicates that HSFI is not playing a

role in shikonin-induced HSP up-regulation
(Figure 3D).

Identification of genes responsive to shikonin treatment

As shikonin treatment did not show the activation of
HSF1, we carried out gene chip analysis of cells
treated with or without shikonin after 3 h incubation.
Many probe sets were differentially expressed by
>2-fold in cells treated with the compound, 277 up-
regulated and 262 down-regulated in comparison to
control. The complete list of genes from all
samples is available on the Gene Expression
Omnibus  (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE24743). The biologically relevant
functions and networks of the up-regulated probe
sets obtained from the gene chip analysis were
identified using Ingenuity Pathways Knowledge
Base. Of 277 up-regulated probe sets analysed, 77
genes were functionally annotated. On the basis of
significance, the top three molecular functions were
cellular compromise (p value: 3.73E-12 to 2.68E-
02), cellular function and maintenance (3.73E-12 to
4.65E-02), and post-transcriptional modification
(1.36E-7 to 3.34E-02). As shown in Figure 4, a
significant gene network contained HSP-related

genes such as HSPA1A (heat shock 70kDa protein
1A), HSPA6 (heat shock 70kDa protein 6) and
DNAJA1 (DnaJ (Hsp40) homologue, subfamily A,
member 1) and Nrf2(NFE2L.2)-target genes such as
HMOX1 (heme oxygenase (decycling) 1), NQO1
(NAD®P)H dehydrogenase, quinone 1) and
SQSTMI1 (sequestosome 1). To confirm the results
of gene chip analysis, a real-time qgPCR assay was
performed for four selected genes in the network.
As we expected, the expression levels of these
genes were significantly increased by the treatment
(Figure 5).

Discussion

Toward the goal of developing novel cytoprotective
agents we did screening of 80 chemical compounds
isolated from medicinal plants for their HSP-indu-
cing activities. Among the five active Hsp70 indu-
cers, shikonin was most potent. Shikonin is a
chemical compound isolated from the root of a
plant Lithospermum erythrorhizon. It is known to have
antibacterial [21], antifungal [21}], anti-human
immunodeficiency virus [22], anticancer [23] and
anti-inflammatory activity [23]. But to our knowl-
edge there is no report on its ability to induce HSP
up-regulation.

Several chemical compounds are known to induce
HSP through the activation of HSF1 [11]. In this
study, after shikonin treatment significant Hsp70
up-regulation was observed without the activation
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Figure 4. A gene network including up-regulated genes. Cells were treated with the compound and cultured at 37°C
for 3h. Gene chip analysis was performed. Genes that were up-regulated were analysed using Ingenuity Pathways
Analysis tools. The network is displayed graphically as nodes (genes or protein group) and edges (the biological relationships
between the nodes). The node colour of genes indicated the expression level of genes. Nodes and edges are displayed in
various shapes and labels that present the functional class of genes and the nature of the relationship between the nodes,

respectively.

of HSF1. With the high-density oligonucleotide
microarrays and computational gene expression
tools we identified a unique gene network containing
HSPs and Nrf2-target genes. Nrf2 is an antioxidant
transcription master regulator and belongs to the cap
‘n’ collar family of transcription factors. Small Maf
proteins (MafF, MafG and MafK) possess the
region-leucine zipper (I-Zip) domain that is required
for homodimer or heterodimer complex formation
with other basic L-Zip transcription factors such as
Nrf2 [24]. Nrf2 is sequestered in cytoplasm by its
repressor Keapl, released and translocated into the
nucleus under oxidative stress [25]. In the nucleus,
the heterodimer complex of Nrf2 and small Maf
proteins binds to the antioxidant-responsive element
(ARE) sequence leading to transcriptional activation
of downstream genes encoding phase II detoxifying

enzymes, antioxidants [26] and
proteins [27].

Almeida et al. [28] recently indicated that Hsp70
expression is regulated by an ARE/EpRE sequence in
a Zebrafish model. In many studies, Nrf2 have been
reported to induce different Hsps [27, 29-31] and in
one study, Hsp70 was specifically up-regulated in
mouse liver in wild-type but not knockout mice [29].
Furthermore, it has also been reported that activation
of Nrf2 increases expression of Hsp40 [27]. In
addition, several studies reported a concomitant
induction of Hsp70 and Nrf2-regulated gene
HMOXI1 by electrophiles [32].

Although the detailed mechanisms by which
shikonin induces protein expression of Hsp70 are
not fully understood, Nrf2 and its target genes may
have participated in the up-regulation of Hsp70 in
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Figure 5. Verification of microarray results by QPCR assay. Cells were treated with 0.1 uM shikonin time-dependently and
then real-time qPCR assay was performed. (A) HMOXI! (heme oxygenase (decycling) 1) (B) NQO1 (NADP)H
dehydrogenase, quinone 1) (C) HSPA6 (heat shock 70 kDa protein 6) (D) DNAJA1(DnaJ (Hsp40) homologue, subfamily
A, member 1). Each mRNA expression level was normalised with GADPH. Data are presented as mean + SD (n=3).

U937 cells. The elucidation of the molecular mech-
anism to induce Hsp70 by shikonin remains for
further investigation in the future.
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TOF (matrix assisted laser desorption/ionization time-of-flight mass spectrometry)
analysis, Edman degradation and solid-phase synthesis. Two of them, eumenitin-R
(LNLKGLIKKVASLLN) and eumenitin-F (LNLKGLFKKVASLLT), are highly homologous to
eumenitin, an antimicrobial peptide from a solitary eumenine wasp, whereas the other two,
Soli EMP-ER (FDIMGLIKKVAGAL-NH;) and EMP-EF (FDVMGIIKKIAGAL-NH3), are similar to
olitary wasp R . . .
Linear cationic a-helical peptide eumenine mastoparan-AF (EMP-AF), a mast cell degranulating peptide from a solitary
Amphipathic o-helix structure eumenine wasp. These sequences have the characteristic features of linear cationic cytolytic
Antimicrobial activity peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly,
they can be predicted to adopt an amphipathic «-helix secondary structure. In fact, the CD
(circular dichroism) spectra of these peptides showed significant a-helical conformation
content in the presence of TFE (trifluoroethanol), SDS (sodium dodecylsulfate) and asolectin
vesicles. In the biological evaluation, all the peptides exhibited a significant broad-spectrum
antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities,
but showed virtually no hemolytic activity.

Keywords:

© 2011 Elsevier Ltd. All rights reserved.

Abbrevtatzons MALDI-TOF MS, matrix assisted laser desorption/ioniza- 1. Introduction
tion time-of-flight mass spectrometry; CD, circular dichroism; TFE, tri-
fluoroethanol; SDS, sodium dodecylsulfate; PC, L- -phosphatidylcholine;

litary wasps inject their ve i
PG, L- -phosphatidyl-DL-glycerol; HEPES, (N-[2-hydroxyethyl]pipera- Salivary ps are known to inj noms into
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polyamine toxins (Eldefrawi et al., 1988), peptide neuro-
toxins (Yasuhara et al, 1987; Konno et al, 1998) and
a protein paralyzing toxin (Yamamoto et al., 2007) have so
far been found in several solitary wasp venoms. Besides the
neurotoxins, we have found that cytolytic peptides are
also present in the solitary wasp venoms. Eumenine
mastoparan-AF (EMP-AF) was the first to be found (Konno
et al., 2000; dos Santos Cabrera et al., 2004), having similar
characteristics to those of mastoparan, a representative of
the cytolytic peptides in social wasp venoms. Eumenitin is
also homologous to mastoparan, but has an extra hydro-
philic amino acid at the C-terminus without amide modi-
fication (Konno et al., 2006). Anoplin was isolated from
spider wasp venom and is the smallest molecule in this
type of peptides (Konno et al.,, 2001). Decoralin, another
linear cationic a-helical peptide, has features similar to
anoplin, but like EMP-AF vs. eumenitin, it has an extra
hydrophilic amino acid without amide modification at the
C-terminus (Konno et al., 2007). Except for anoplin, these
cytolytic peptides were found in solitary eurnenine wasps,
alternatively called “mud dauber wasps” or “potter wasps”,
because they construct their pot-shaped nest with mud.
Additionally, the eumenine wasps prey only on caterpillars,
Lepidopteron larvae.

In our continuing survey of biologically active substances
in solitary wasp venoms, we have isolated four new linear
cationic a-helical peptides from two species of the eume-
nine solitary wasps, Eumenes rubrofemoratus and Eumenes
fraterculus. Two of them, named eumenitin-R and
eumenitin-F, are highly homologous to eumenitin, whereas
the other two, named eumenine mastoparan-ER (EMP-ER)
and eumenine mastoparan-EF (EMP-EF), are similar to EMP-
AF, and thus, can be classified as mastoparan peptides. We
now report the isolation, chemical characterization and
biological evaluation of these novel peptides, including
a secondary structure analysis and pore-forming activity.

2. Materials and methods
2.1. Purification

Female wasps of E. rubrofemoratus and E. fraterculus
were collected at Yokohama, Kanagawa in Japan. The
collected specimens were immediately frozen by dry ice
and kept at —75 °C until use. The venom sacs were
dissected immediately after being thawed and then
lyophilized.

Fourteen lyophilized venom sacs of E. rubrofemoratus
were extracted (5 x 1 mL) with 1:1 acetonitrile-water
containing 0.1% TFA (CH3CN/H;0/0.1% TFA). The extract was
lyophilized, re-dissolved in 50 pL of water and subjected to
reversed-phase HPLC (Shimadzu Corp., Kyoto, Japan) using
CAPCELL PAK Cyg, 6 x 150 mm (SHISEIDO Co., Ltd., Tokyo,
Japan) with linear gradient from 5% to 65% CH3CN/H0/0.1%
TFA at a flow rate of 1 mL/min over 30 min (Fig. 1A) to give
eumenitin-R and EMP-ER eluted at 26.1 and 27.6 min,
respectively.

Twenty lyophilized venom sacs of E. fraterculus were
subjected to the same extraction procedure to give
eumenitin-F and EMP-EF eluted at 26.2 and 29.0 min,
respectively (Fig. 1B).

2.2. Mass spectrometry

All mass spectra were acquired on an Autoflex TOF/TOF
mass spectrometer (Bruker Daltonics, Yokohama, Japan)
equipped with 337 nm pulsed nitrogen laser under
reflector mode. The accelerating voltage was 20 kV. Matrix,
o-cyano-4-hydroxycinnamic acid (Aldrich), was prepared
at a concentration of 10 mg/mL in 1:1 CH3CN/O.1%TFA.
External calibration was performed with [lle’]-angiotensin
Il (m/z 897.51, monoisotopic, Sigma) and human ACTH
fragment 18-39 (m/z 2465.19, monoisotopic, Sigma). The
sample solution (0.5 pL) dropped onto the MALDI sample
plate was added to the matrix solution (0.5 uL) and allowed
to dry at room temperature.

For TOF/TOF measurement, argon was used as a collision
gas and ion was accelerated at 19 kV. The series of b and y
ions were obtained which enabled identification of whole
amino acid sequence by manual analysis.

2.3. Amino acid sequencing

Automated Edman degradation was performed by a gas-
phase protein sequencer PPSQ-10 (Shimadzu Corp., Kyoto,
Japan).

2.4. Peptide synthesis

The peptides were synthesized using Fmoc chemistry on
a Prelude peptide synthesizer (Protein Technologies, Tuc-
son, AZ) at a scale of 20 umol. The synthesis of the peptide
amides involved a 1 h offline swell of the Rink Amide MBHA
resin in dichloromethane at room temperature prior to
online synthesis. The peptide acids were synthesized using
pre-loaded Wang resin. Subsequent residues, at a concen-
tration of 100 mM, were double coupled using 20% piperi-
dine as the deprotector and 1H-Benzotriazolium 1-
[bis(dimethylamino)methylene]-5chloro-, hexafluorophos-
phate (1),3-oxide (HCTU) as the activator.

Cleavage was performed online with 95:2.5:2.5 TFA:-
water:triisopropylsilane. The cleaved peptides were
removed from the synthesizer and their TFA volumes were
reduced under a stream of nitrogen. Ice cold ether was
added to precipitate the peptides and after centrifugation
at 13,000 rpm for 5 min, the ether layer was poured off. The
pellets were resolubilized in 0.1% TFA and lyophilized
(Modulyod, Thermo Savant).

The lyophilized pellets were resolubilized in 4 mL 12.5%
acetonitrile, 0.1% TFA in water. Purification was carried out
by reversed-phase HPLC Ultimate 3000 (Dionex, Sunny-
vale, CA), monitoring peptide elution at 230 nm. Approxi-
mately 20 mg of the crude peptides were chromatographed
using an Onyx Monolithic Cig column (10 x 100 mm, 13 nm
& 2 um pore size) with a linear gradient of 0.1% TFA in water
(v]v) and 0.85% TFA in acetonitrile (v/v) at a flow rate of
5 mL/min over 25 min.

The fractions of interest were spotted onto a stainless
steel MALDI plate and observed by MALDI-TOF (Applied
Biosystems/MDS SCIEX, Foster City, CA). Fractions con-
taining greater than 80% purity were pooled and lyophi-
lized. The synthetic peptides were used in the assays below.
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Fig. 1. Fractionation of venom extracts of (A) Eumenes rubrofemoratus and (B) Eumenes fraterculus by reverse-phase HPLC using CAPCELL PAK Cyg (6 x 150 mm)
with linear gradient of 5-65% CH3CN/H,0/0.1% TFA over 30 min at flow rate of 1 mL/min. UV absorption was monitored at 215 nm.

2.5. Circular dichroism (CD) spectroscopy

2.5.1. Small vesicles preparation (SUV)

Chloroform solution of asolectin was evaporated under
N, flow, rendering homogeneous films on round bottom
flasks that were further dried under vacuum for at least 3 h.
Films were hydrated at room temperature with buffer (Tris/
H3BO3 5 mM, 0.5 mM NaEDTA, 150 mM NaF, pH 7.5) to
reach a final lipid concentration of 10 mg/mL and vortex
mixed. SUVs were obtained after 50 min sonication (or
until clear) with a tip sonicator in an ice/water bath, under
N, flow; titanium debris was removed by centrifugation.
SUVs were then submitted to 6 extrusions, at room
temperature, through a 100 nm polycarbonate membrane
followed by 11 extrusions through two stacked 50 nm
polycarbonate membranes, using an Avanti mini-extruder.
SUVs were kept under refrigeration and used in the same
day of preparation.

2.5.2. CD spectroscopy experiments

CD spectra were obtained at 20 pM peptide concentra-
tion in different environments: bi-distilled water, 5 mM
Tris/H3BO3 buffer, pH 7.5, 8 mM sodium dodecylsulfate
(SDS) solution (above critical micelle concentration), 40% v/
v trifluoroethanol (TFE)/water mixture, and in the presence
of 100 and 250 pg/mL asolectin vesicles. TFE solutions are
known inductors of helical structures and micellar SDS as
well as vesicles are membrane mimetic environments with
anionic character, a feature common to bacterial
membranes (Yeaman and Yount, 2003). At 40% TFE or at
micellar concentration of SDS solutions (8 mM) they tend
to induce the maximum observable values (Prates et al.,
2004). In the presence of asolectin vesicles saturation was
found at 250 pg/mL concentration.

CD spectra were recorded from 260 to 203 or 190 nm
(depending on signal-to-noise ratio) with a Jasco-710
spectropolarimeter (JASCO International Co. Ltd., Tokyo,
Japan) which was routinely calibrated at 290.5 nm using
d-10-camphorsulfonic acid solution. Spectra were acquired
at 25 °C using 0.5-cm path length cell, averaged over eight
scans, at a scan speed of 20 nm/min, bandwidth of 1.0 nm,

0.5 s response, and 0.2 nm resolution. Following baseline
correction, the observed ellipticity, 6 (mdeg), was con-
verted to mean-residue ellipticity, [®] (deg cm?/dmol),
using the relationship [®] = 100 6/(Icn) where ‘' is the path
length in centimeters, ‘¢’ is peptide milimolar concentra-
tion, and ‘n’ the number of peptidic bonds. Assuming a two
state model, the observed mean-residue ellipticity at
222 nm ([@]Obszzz) was converted into a-helix fraction (fy)
using the method proposed by Rohl and Baldwin (1998)
and previously described (Konno et al., 2001).

2.6. Channel-like incorporation in mimetic lipid bilayers

2.6.1. Bilayer formation

The lipid bilayers were obtained from giant unilamellar
vesicles (GUVs), which were positioned onto the chip
aperture by application of negative pressure. The GUVs
burst as soon as they touch the glass surface of the chip and
form a bilayer that spans the aperture (Sondermann et al.,
2006). Asolectin (Sigma), a negatively charged mixture of
lipids, was used to form artificial membranes. GUVs were
formed by electroswelling, using the Nanion Technologies
(Munich, Germany) device Vesicle Prep Pro©. 20 pL of
10 mg/mL lipid solution (in chloroform) were deposited
onto an indium tin oxide (ITO) coated glass plate and
evaporated for 45-60 min. A nitrile ring was placed around
the dried lipid film and filled with 350 pL of 250 mM
D-Sorbitol dissolved in Milli-Q water. A second ITO coated
glass plate was placed on top of the ring. An AC voltage of
3V peak-to-peak amplitude at 5 Hz frequency was supplied
to the ITO slides over a period of 2 h at 36 °C(modified from
Sondermann et al., 2006). The formed vesicles were kept in
plastic vials under refrigeration (4 °C) until use or used
immediately. GUVs suspensions were always observed
under light microscope prior to use.

2.6.2. Electrophysiology

The experiments were performed with the automated
Patch-Clamp device Port-a-Patch (Nanion Technologies —
Munich, Germany), using borosilicate glass chips NPC-1
with aperture diameter of approximately 1 pm. The
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resistance of the apertures was approximately 1-3 MQ in
150 mM HCI solution. Current signals were amplified and
recorded by an amplifier EPC-10 (Heka Elektronik, Lam-
brecht, Germany) and an analogical/digital interface ITC-
1600. The system was computer controlled by the
PatchControl™ software (Nanion) (Fertig et al, 2002;
Sondermann et al., 2006).

During the experiments symmetrical solution of
150 mM HCI with 5 mM Tris was used. After a seal was
formed (Rm > 500 mg), the peptides diluted with Milli-Q
water at a 5 uM concentration were added to the cis side
of the chip (top) to observe the single channel activity. The
volume of peptide solution was never superior to 10% of
the solution at the cis side. Voltage pulses were applied at
the trans side of the chip (bottom). Usually, single channel
activity started approximately 10 min after adding the
peptides, as monitored by a constant Vhgqg of —100 mV.
Single channel conductance of incorporated channels was
determined under positive and negative voltage pulses. The
experiments were performed at room temperature
(~22 °C). The data was analyzed by PatchMaster and
Matlab softwares.

2.7. Antimicrobial activity

The microorganisms used were: Staphylococcus aureus
ATCC 25923, Micrococcus luteus ATCC 10240, Staphylococcus
epidermidis (clinical sample), Streptococcus pyogenes (clin-
ical sample), Bacillus subtilis ATCC 6633, Escherichia coli
ATCC 25922, Proteus mirabilis (clinical sample), Steno-
trophomonas maltophilia ATCC 13637, Pseudomonas aeru-
ginosa ATCC 27853 and Candida albicans ATCC 90112.

The MICs of the tested peptides were determined by 2-
fold serial broth microdilution in Mieller-Hinton broth
(Difco) in 96-well plates. Aliquots of 45 pL of Mieller-
Hinton broth (Difco) were placed in the microplates con-
taining 50 pL of the peptides solutions. The mixture was
completed by inoculation of 5 uL of bacterial suspension
(107 CFU/mL), according NCCLS (Wayne, 2004), resulting in
a final volume of 100 pL with 104 CFU/well. Following
inoculation, the microtitre plates were incubated at 37 °C
for 18 h before the results were recorded. After this time,
the turbidity of the cultures was measured in an ELISA
reader at 595 nm to assess bacterial growth. The results
were expressed as inhibition percentage of optical density
(OD) against a control; this control was obtained in each
situation by measuring the OD of the microorganisms
introduced into the plate in the absence of peptide. Also,
the lowest concentration of peptide at which there is no
visible growth after overnight incubation was observed.

2.8. Hemolytic activity

A 4% suspension of mouse erythrocytes (ES) was
prepared as described (Rangel et al, 1997). Different
concentrations of the peptides were incubated with the ES
at room temperature (~22 °C) in an Elisa plate (96 wells).
After 1 h it was centrifuged (1085x g/5 min), and the
hemolytic activity of the supernatant was measured by the
absorbance at 540 nm, considering as blank the absorbance
of Krebs-Henseleit physiological solution (mM: Na(Cl 113;

KH,PO41.2; KC14; MgS041.2; CaCly 2.5; NaHCO3 25; glucose
11.1), which was the vehicle for the peptides. Total hemo-
lysis was obtained with 1% Triton X-100 and the percentage
of hemolysis was calculated relative to this value.

2.9. Mast cell degranulation activity

The ability of the peptides to induce mast cells
degranulation was investigated in vitro using the protocol
of quantification of the granular enzyme B-hexosaminidase
released in the supernatants of PT18 cells (a connective
tissue-type mast cell model) and RBL-2H3 cells (a mucosal-
type mast cell model), according to Ortega et al. (1991). For
this, 4 x 10 PT18 cells or 1.2 x 10° RBL-2H3 cells (200 pL)
were incubated in the presence of the peptides for 30 min
in Tyrode’s buffer at 37 °C/5% CO;. After this, the cells were
centrifuged and the supernatants collected. The cells
incubated only with the Tyrode’s buffer were lysed with
0.5% Triton X-100 (200 pl) (Sigma-Aldrich) solution to
evaluate the total enzyme content. From each experimental
sample to be assayed, four aliquots (10 pL) of the super-
natant were taken to separate microwell plates. To these
samples, 90 pL of the substrate solution containing 1.3 mg/
mL of p-nitrophenyl-N-acetyl-p-p-glucosamine (Sigma) in
0.1 M citrate, pH 4.5, were added and the plates incubated
for 12 h at 37°C. The reactions were stopped by addition of
100 pL of 0.2 M glycine solution, pH 10.7, and the optical
density determined at 405 nm in an ELISA reader (Lab-
systems Multiskan Ex). The extent of secretion was
expressed as the net percentage of the total B-hexosamin-
idase activity in the supernatant of unstimulated cells. The
results represent the mean of quadruplicate
tests & standard deviation (SD).

2.10. Leishmanicidal activity

Medium 199 was used for the cultivation of promasti-
gotes of Leishmania major (MHOM/SU/73/5ASKH). Pro-
mastigotes were cultured in the medium [supplemented
with heat-inactivated (56 °C for 30 min) fetal bovine serum
(10%)] at 27 °C, in a 5% CO, atmosphere in an incubator
(Takahashi et al., 2004).

The leishmanicidal effects of the peptides were assessed
using the improved 3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-
nyltetrasodium bromide (MTT) method as follows. Cultured
promastigotes were seeded at 4 x 10°/50 mL of the medium
per well in 96-well microplates, and then 50 mL of different
concentrations of test compounds dissolved in a mixture of
DMSO and the medium were added to each well. Each
concentration was tested in triplicate. The microplate was
incubated at 27 °Cin5% CO, for 48 h. TetraColor ONE (10 mL) a
mixture of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-
5-(2,4-disulfophenyl)-2H-tetrazolium,monosodium salt and
1-methoxy-5-methylphenazinium methosulfate was added
to each well and the plates were incubated at 27 °C for 6 h.
Optical density values (test wavelength 450 nm; reference
wavelength 630 nm) were measured using a microplate
reader (Thermo BioAnalysis Japan Co., Ltd., Kanagawa, Japan).
The values of 50% inhibitory concentration of the peptides
were estimated from the dose-response curve.
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Eumenitin LNLKGIFKKVASLLT
Eumenitin-R LNLKGLIKKVASLLN
Eumenitin-F LNLKGLFKKVASLLT

EMP-ER FDIMGLIKKVAGAL-NH,
EMP-EF FDVMGIIKKIASAL-NH,
EMP-~AF INLLKIAKGIIKSL-NH,
HR-1 INLKATIAALVKKVL-NH,

Fig. 2. Amino acid sequences of the venom peptides from solitary eumenine
wasp and HR-1 (Histamine Releasing peptide) from social wasp Vespa ori-
entalis venom. Polar, charged residues are shown in bold types.

3. Results
3.1. Purification and sequence determination

The venom extracts of E. rubrofemoratus were subjected
to reversed-phase HPLC, and the purity and complexity of
each fraction was examined by MALDI-TOF MS. The HPLC
profile was rather simple, having only several intense peaks
(Fig. 1A). The two major fractions eluted at 26.1 and
27.6 min showed a high purity with protonated molecular
ion peaks at m/z 1623.9 and 1474.9 (MH™, monoisotopic),

EMP-ER

respectively. The molecular weight and chromatographic
behavior suggested these components to be peptides,
which we named eumenitin-R and eumenine mastoparan-
ER (EMP-ER), respectively.

The sequence of the peptides was analyzed first by
MALDI-TOF/TOF MS. Eumenitin-R had a sequence of 15
amino acids as I/L-N-I/L-K/Q-G-1/L-I/L-K/Q-K/Q-V-A-S-I/L-I/
L-N, which was consistent with the observed molecular
mass. However, contrary to expectation, there was no d or
w ions observed, and therefore, no information about the I/
L and K/Q differentiation. Accordingly, the sequence was
determined by Edman degradation using an automated
sequencer, giving whole sequence as L-N-L-K-G-L-I-K-K-V-
A-S-L-L-N. The solid-phase synthesis of this peptide and
the HPLC comparison of the synthetic specimen with the
natural peptide finally corroborated the sequence.

The MALDI-TOF/TOF MS analysis of EMP-ER showed a 14
amino acid sequence with a C-terminal amide as F-D-1/L-M-
G-I/L-1/L-K/Q-K/Q-V-A-G-A-1/L-NH,, which was consistent
with the observed molecular mass. However, there was
again no information about the I/L differentiation. Edman
degradation suggested a 13 amino acid sequence as F-D-I-
M-G-L-I-K-K-V-A-G-A, and so, the C-terminal I/L was still

EMP-EF

Fig. 3. Helical wheel projection of the sequences of the novel wasp venom peptides. In this view through the helix axis, the hydrophilic Ser (S), Thr (T), Asn (N)
and Lys (K) residues are located on one side and the hydrophobic Ile (I), Leu (L) and Val (V) residues on the other side of the helix.
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Fig. 4. CD spectra of the four peptides, eumenitin-R, EMP-ER, eumenitin-F and EMP-EF, obtained at 20 uM peptide concentration, at 25 °C in different envi-
ronments. Peptides assume an a-helical conformation in 40% TFE, 8 mM SDS and in the presence of asolectin vesicles, showing modest preference for the anionic

environments of SDS micelles and asolectin vesicles.

not determined. Finally, it was determined by the solid-
phase synthesis of both the %I and 'L peptides and their
HPLC behavior was compared to the natural peptide. As
a consequence, the L peptide was found to be identical to
the natural one, and therefore, the sequence was unam-
biguously determined as F-D-I-M-G-L-I-K-K-V-A-G-A-L-
NHo.

Similarly, eumenitin-F and eumenine mastoparan-EF
(EMP-EF) were purified from the extracts of E. fraterculus
(Fig. 1B), and in the same manner, the sequences were
determined to be L-N-L-K-G-L-F-K-K-V-A-S-L-L-T and F-D-
V-M-G-I-I-K-K-I-A-S-A-L-NHj, respectively. The chemical
features of these new peptides, rich in hydrophobic and
basic amino acids with no disulfide bond, are characteristic
of linear cationic cytolytic peptides (Kuhn-Nentwig, 2003),

in particular, eumenitin-R and eumenitin-F, are highly
homologous to eumenitin, whereas the other two, EMP-ER
and EMP-EF, are similar to EMP-AF, thus can be classified as
mastoparans (Fig. 2, Murata et al., 2009). This class of
peptides has been known to adopt an amphipathic
a~helical conformation, showing an amphiphilic character
under appropriate conditions (Wakamatsu et al., 1992; Hori
et al.,, 2001; Sforca et al.,, 2004; Todokoro et al., 2006).
The amphipaticity of peptides has been considered
essential for their biological activities (Wimley, 2010). In
fact, if the helical wheel projections of these peptide
sequences were drawn, they show that amphipathic
a~helical conformations could be possible as depicted in
Fig. 3. Based on this view, all the hydrophilic amino acid
residues, S, T, N and K, are located on one side, whereas the
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hydrophobic amino acid residues, I, L and V are on the other
side of the helix.

3.2. CD spectroscopy

The Eumenine wasp venom peptides as well as masto-
paran peptides are known to undergo a conformational
change from a random coil to helical upon binding to lipid
bilayers or in membrane mimetic environments (Park et al.,
1995; dos Santos Cabreraetal.,2004; Konnoetal.,2006). The
a-helix content of these short chain peptides is directly
related to favorable electrostatic interactions and the burial
of the backbone into a more hydrophobic region. Fig. 4 shows
the CD spectra of eumenitin-R, eumenitin-F, EMP-ER and
EMP-EF obtained in different environments, to evaluate the
relative importance of the electrostatic and hydrophobic
contributions to the observed ellipticity. In water (spectra
not shown) or in Tris/H3BOs3 buffer, the spectra of the four
peptides are equally characteristic of unordered structures,
while assuming the features of an a-helical conformation
with double minima around 208 and 222 nm in the
membrane mimetic environments and in the presence of
anionic asolectin vesicles (Fig. 4). The spectra acquired with
100 (not shown) and 250 pg/mL lipid contents, to check for
further binding, showed a slight increase in the helical
content (fy), which for the four peptides is favored in the
presence of anionic environments such as an 8 mM SDS
solution or asolectin vesicles as already observed with EMP-
AF (dos Santos Cabrera et al., 2004), eumenitin (Konno et al.,
2006) and decoralin (Konno et al.,, 2007). These findings
indicate that these helical peptides may present an amphi-
patic structure as determined for EMP-AF (Sforcaetal., 2004)
and mastoparans (Wakamatsu et al.,, 1992; Chuang et al,,
1996; Hori et al., 2001; Todokoro et al., 2006).

3.3. Channel-like incorporation in mimetic lipid bilayers

The novel wasp venom peptides, at concentrations of 0.5-
2 uM, induced an ion channel-like incorporation in lipid
bilayers formed from the GUVs of asolectin (Figs. 5 and 6)
under positive and negative voltage pulses, using a 150 mM
HCI solution, within a 10 min incubation time. At peptide
concentrations higher than 2 pM, the great number of
incorporated channels (over 10) induced a breakdown of the
lipid bilayers 2-3 s after applying our standard initial Vija
of —100 mV. The unitary channel conductances were deter-
mined at Voiq of +100 and —100 mV (see Table 2). Different
levels were detected in different peptide sequences (Figs. 5
and 6), and only eumenitin-F and -R formed pores with
conductances higher than 500 pS. From that we can assume
that clusters can be formed and several units of the peptides
organize to form bigger pores. Rectification was detected only
in the eumenitin-F channels. Similar ion-channel like activity

Fig. 5. Single channel incorporation in asolectin lipid bilayers in the pres-
ence of the peptides eumenitin-R (a and b) and eumenitin-F (c and d) (0.5-
2 uM). Solution: 150 mM HCl (symmetrical). Arrows indicate some channel
apertures/closings. (a) Conductance 80 pS; (b) conductance = 410 pS; (c) the
conductances were 81 pS (+100 mV) and 73 pS (-100 mV); (d) conduc-
tances were 190 and 885.7 pS (70 mV), and 238.6 and 332.9 pS (—70 mV).



1088 M. Rangel et al. / Toxicon 57 (2011) 1081-1092

Viaaie = =100 mV

Curvent {pA)

w0t
-40+4
% . : 3 4 5
Time (s)
b Viaa = +100 mV
30 -

Ve = -100 MV

Current {pA}
a
‘

20¢

30+

40

-500 2 ; 1] B ;G
Time (s)

Fig. 6. Single channel incorporation in asolectin lipid bilayers in the presence of the peptides EMP-ER (a) and EMP-EF (b) (0.5-2 uM). Solution: 150 mM HCI
(symmetrical). Arrows indicate some channel apertures. (a) Conductances were 28 and 60 pS; (b) conductances were 35 and 60 pS (+100 mV) and 35 and 75 pS
(~100 mvV).

was found with other peptides from solitary and social wasp 3.4. Biological activities
venoms, as anoplin (dos Santos Cabrera et al., 2008), eume-
nitin (Arcisio-Miranda et al., 2008) and HR-1 (dos Santos The mast cell degranulation, hemolysis, antimicrobial

Cabrera et al., 2009), as discussed below. and antiprotozoan (leishmanicidal) activities were tested
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Table 1

Structural and physicochemical properties of the new wasp venom
peptides in comparison to eumenitin and mastoparan HR-1. Features
shown are: number of amino acid residues in the sequence (N,,), net
charge (Q), hydrophobicity (H), time elapsed in the HPLC elution process,
in minutes, and e~helix fraction (standard deviation + 0.02).

N, Q@  HP  Elution o-helix fraction
time N .
(min) 40% 8 mM Asolectin
TFE SDS
Eumenitin-R 15 +3 -0.034 26.1 043 048 0.49
EMP-ER 14 +2 0131 276 053 0.59 0.65
Eumenitin-F 15 +3 -0.011 262 034 041 0.41
EMP-EF 14 +2 0115 290 041 044 0.48
Eumenitin® 15 +3 0.002 Na 043 0.50° na
Mast. HR1Y 14 +4 0.067 Na 056 053 na

rc = random coil; na = unavailable.
2 For peptides with an amidated C-terminus, includes an extra-charge.
b Calculated according to Eisenberg et al., consensus scale (1984).
¢ Konno et al., 2006.
4 dos Santos Cabrera et al., 2009.

because these are characteristic biological activities for
these types of peptide.

3.4.1. Antimicrobial activity

The peptide eumenitin-R was the most efficient in the
antimicrobial assay, presenting the lowest MIC values
against both Gram-positive and Gram-negative strains.
Furthermore, all the peptides had more potent activities
against the yeast C. albicans (Table 3). The four peptides
described here showed an antimicrobial activity at very
similar doses when compared to eumenitin (Konno et al,,
2006).

3.4.2. Hemolytic activity

The solitary wasp peptides presented low to moderate
hemolytic activities against mice erythrocytes in a dose-
dependent manner (Fig. 7). A one-way analysis of vari-
ance (ANOVA) of the log ECsg (50% effective concentration)
followed by the Newman-Keuls multiple comparison test
indicated that EMP-ER and EMP-EF were more effective
than eumenitin-R and eumenitin-F in this assay, presenting
lower ECsq values (see Table 4 for ECsg values). Generally
speaking, these peptides can be considered weakly hemo-
lytic, especially eumenitin-R. These results well correlated
with the hydrophobicity and shorter elution times of the

Table 2

Mean, minimum and maximum conductances of anionic (AZO) bilayers
induced by eumenine peptides according to the Vpoq (3 different
experiments).

Peptide Vhoa Conductance SEM Minimum Maximum
(mV) (pS) conductance conductance
(pS) (pS)
Eumenitin-R —100 82.5 17.1 22 500
+100 118.8 44 22 751
Eumenitin-F  —100 298.6 51 37 980
+100 1871 67.7 49 710
EMP-ER —100 68.2 4 21 210
+100 61.4 3.7 22 126
EMP-EF -100 33.6 8.9 10 138
+100 32.2 6.9 16 157

Table 3

Minimum inhibitory concentration (MIC) of the peptides from the wasps
Eumenes rubrofemoratus (Eumenitin-R and EMP-ER) and Eumenes fra-
terculus (Eumenitin-F and EMP-EF), in uM.

Microorganism Eumenitin- EMP- Eumenitin- EMP-

R ER F EF
Gram-positive
Staphylococcus aureus 60 30 >60 30
ATCC 25923
Staphylococcus epidermidis 30 30 30 30
(clinical sample)
Micrococcus luteus 15 >30 30 30
ATCC 10240
Streptococcus pyogenes 15 >30 30 >30
(clinical sample)
Bacillus subtilis 7.5 30 30 30
ATCC 6633
Gram-negative
Escherichia coli ATCC 25922 30 30 30 30
Proteus mirabilis 60 60 >60 60
(clinical sample)
Pseudomonas aeruginosa 30 >30 30 >30
ATCC 27853
Stenotrophomonas 15 >30 15 >30
maltophilia ATCC 13637
Yeast
C. albicans ATCC 90112 <75 7.5 7.5 7.5

respective peptides (see Table 1). The erythrocytes
membranes show a zwitterionic character (Yeaman and
Yount, 2003), and peptides with a lower charge and
higher hydrophobicity present a stronger interaction with
this type of membrane (de Souza et al., 2010).

3.4.3. Mast cell degranulation

The ability of the peptides to induce mast cells
degranulation was assayed in vitro in PT18 cells and RBL-
2H3 cells, by the measurement of the enzyme B-hexosa-
minidase released. As shown in Fig. 8A, all the new
peptides were able to induce mild degranulation in
connective tissue-type mast cells with equivalent potencies
and dose-dependent, similarly to Eumenitin, and weaker
than mastoparan (Konno et al., 2006). On the other hand, in
mucosal-type mast cells EMP-ER and EMP-EF, which are
similar to EMP-AF, exhibited more intense mast cell
degranulation than eumenitin-R and eumenitin-F, which
are highly homologous to eumenitin (Fig. 8B).

100+ & eumenitin-R
- = EMP-ER
R 80 4 eumenitin-F
2 ) v EMP-EF
£ 60
g J
5 40
§ -
20-
04 ey ey rrrrT -
1.0 1.5 20 2.5 3.0

log [uM}

Fig. 7. The dose-response curves of the hemolytic activity of the wasp
venom peptides in mouse erythrocytes show a dose-dependent relation.
More hydrophilic peptides, eumenitin-R and eumenitin-F, present higher
ECsq values. See also Table 3.
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Table 4
Effective concentration (ECsg) of hemolytic activity of the wasp peptides
and the 95% confidence intervals (CI), in uM (n = 4).

Peptide ECso (M) 95% I
Eumenitin-R 5303 512.9 to 548.3
EMP-ER 200.0 189.6 to 211.0

Eumenitin-F 3534
EMP-EF 181.1

251.7 to 496.3
142.6 to 229.9

3.4.4. Leishmanicidal activity

The results of the leishmanicidal assay are summarized in
Table 5. For comparison, eumenitin and EMP-AF were also
tested. Most peptides showed an activity, but only moder-
ately. It is noteworthy that the eumenitin series (C-terminal
free) are weaker than the EMP series (C-terminal amide). This
is similar to our previous results of decoralin (C-terminal free)
vs. decoralin-NH; (C-terminal amide) (Konno et al.,, 2007).

4. Discussion

In the present study, we have purified four new linear
cationic a-helical peptides from two species of the eume-
nine solitary wasps, E. rubrofemoratus and E. fraterculus, and
characterized them both chemically and biologically. Of
these, eumenitin-R and eumenitin-F are highly homolo-
gous to eumenitin, whereas the others, eumenine
mastoparan-ER (EMP-ER) and eumenine-mastoparan-EF
(EMP-EF), are similar to EMP-AF, and thus, can be classi-
fied into mastoparan peptides. These results suggested that
these types of peptide are commonly and widely distrib-
uted in the eumenine wasp venoms. All these peptides and
anoplin present the following common interesting physi-
cochemical and biological features: short chain length - 10
to 15 residues long, polycationic character, they assume
a-helical conformation upon contact with membrane
mimetic environments, and they are antimicrobial, hemo-
lytic and mast cell degranulators at various levels.

Conformational and pore-forming activity of these new
peptides were investigated in asolectin bilayers, which due
to its anionic character mimic the cytoplasmic membrane
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of bacteria. This phospholipid, whose approximate
composition is 23.5% phosphatidylcholine, 20% phospha-
tidylethanolamine, and 14% inositol phosphatides (other
components are 39.5% other phospholipids, lipids and
carbohydrates, and 2% triglycerides, tocopherols, sterols),
holds some similarities to the lipid composition of rat mast
cells; the phospholipids amount roughly to 50% of the total
lipids, from these phosphatidylcholine is 30%, phosphati-
dylethanolamine 27%, sphingomyelin 20%, and phosphati-
dylserine and phosphatidylinositol are 16%. An important
difference lies in that cholesterol represent around 20% of
the total lipids content in rat mast cell membranes, while in
asolectin sterols, it represents less than 0.3% (Strandberg
and Westerberg, 1976). In relation to sterols and the
general anionic character, this bilayer can also be consid-
ered a mimetic of microbial membranes. Thus the behavior
of these new Eumenine peptides can be reasonably well
modeled and their mechanism of action understood
through the use of asolectin bilayers.

Peptides such as mastoparans adopt an amphipatic
a-helical conformation in anisotropic or membrane
mimetic media (Wakamatsu et al, 1992; Chuang et al,
1996; Hori et al., 2001; Sforga et al., 2004; Todokoro et al.,
2006). Similarly the four peptides in our study presented
circular dichroism spectra that are characteristic of helical
structures with practically equivalent c-helix content,
except for EMP-ER, which showed a higher helical content.

The experiments of electrical measurements in planar
lipid bilayers of anionic asolectin showed that all the new
peptides present a pore- or channel-like activity, in both the
positive and negative voltage pulses, as previously demon-
strated for eumenitin (Arcisio-Miranda et al., 2008), anoplin
(dos Santos Cabrera et al., 2008) and other mastoparan
peptides (Mellor and Sansom, 1990; dos Santos Cabrera
et al., 2009). Channels with lower and higher conductance
levels were recorded, but the latter ones were less frequent,
and formed only in the presence of the non-amidated C-
terminal peptides (eumenitin-R and eumenitin-F).

The channel-like activity of these peptides is similar to
that observed with eumenitin in the same lipid bilayer as

[t}

Fig. 8. The degranulation in PT18 cells (A: a connective tissue-type mast cell model) and RBL-2H3 cells (B: a mucosal-type mast cell model) measured by the
B-hexosaminidase release, basal and after treatment with the peptides from the wasps Eumenes rubrofemoratus (eumenitin-R and EMP-ER) and Eumenes fra-
terculus (eumenitin-F and EMP-EF). Concentrations are in pM (values inside parentheses). Data represent the mean from 2-4 independent experiments.
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Table 5

Leishmanicidal activity of the wasp venom peptides.
Peptide ICsp (UM)?
Eumenitin 35
Eumenitin-R >62
Eumenitin-F 52
EMP-ER 20
EMP-EF 40
EMP-AF 35
Ampbhotericin B® <0.1

2 ICsp: 50% inhibitory concentration.
b Used as positive control.

could be foreseen from the high homology in their respec-
tive sequences. However, eumenitin-F channels presented
strong rectification under negative voltage pulses, similarly
to the mastoparan peptide HR-1 pores, whose conductances
were nearly four times higher when the Vyo1q was changed
to negative pulses (dos Santos Cabrera et al., 2009).

Concerning EMP-ER and EMP-EF, their pore conduc-
tance levels are equivalent to those for mastoparan HR-1,
although they present a lower degree of homology,
different net charges and different hydrophobicities (Fig. 2
and Table 1). These physicochemical differences could
account for the double conductance levels found with EMP-
ER and EMP-EF, which were not detected in HR-1 (dos
Santos Cabrera et al., 2009).

Overall, the electrophysiology results confirmed the lytic
activity of these new peptides. Short chain peptides, shorter
than the bilayer thickness, made of bulky residues and
showing pore-like activity combine characteristics that
favor the toroidal pore model (Matsuzaki et al., 1996; Yang
et al.,, 2001), by which the pore is described as a complex
made of lipid molecules, predominantly, and peptide
molecules that induced the bilayer destabilization by
inserting into it. Models describing peptide membrane
interactions have recently been determined as not reflect-
ing static structures to which one or multiple peptide
monomers contribute (Quian et al., 2008; Marsh, 2009;
Leontiadou et al,, 2006; Herce and Garcia, 2007). Addi-
tional experiments to describe the mechanisms of pore
formation, besides the preliminary results described herein,
are currently ongoing in our laboratories. Based on the
bioassays performed with the synthetic peptides, their
antimicrobial, leishmanicidal and cytolytic properties were
determined. The leishmanicidal activity of the peptides was
detected in concentrations similar or slightly higher than
the antimicrobial activity, and EMP-ER presented the
strongest inhibition of the L. major promastigotes. This
activity was dependent of the C-terminal amide, in a way
similar to the results with decoralin vs. decoralin-NH;
(Konno et al., 2007). All four peptides induced mast cell
degranulation in a dose-dependent manner with similar
potencies. The peptides were also hemolytic against mouse
erythrocytes, but in higher concentrations than those used
in the antimicrobial assays. The peptides eumenitin-R and
eumenitin-F showed a weak hemolytic activity, probably
because of the low hydrophobicity, in a way similar to
eumenitin (Konno et al., 2006) or also due to the lack of the
C-terminal amide modification as in EMP-AF1 (dos Santos
Cabrera et al, 2004). Furthermore, the peptides
eumenitin-R and to a similar extent eumenitin-F, presented

the strongest antimicrobial activity, which could be attrib-
uted to their higher net charges (Dathe and Wieprecht,
1999; Dathe et al., 2002). All four peptides inhibited the
growth of the yeast C. albicans at low concentrations, and
again we emphasize the eumenitin-R activity.

Based on these results, eumenitin-R appears as the
peptide showing higher potential as a leading compound in
drug development. Like eumenitin it associates an average
net charge and low hydrophobicity, which resulted in an
interesting antimicrobial activity, mainly considering clin-
ical samples, and practically devoid of undesirable effects
as hemolytic and mast cell degranulating activities.
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