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Fig. 2. EPA attenuates osteogenetic signals in the calcified aorta. (A and B) Immunohistochemical detection of osteopontin (OPN) (A) and alkaline phosphatase (ALP) (B)
colocalizing with the calcification in the common iliac artery of the control group. Arrows denote areas of positive staining. m, media; a, adventitia. Scale bar, 100 pm. (C)
Representative mRNA expressions assessed by RT-PCR. OPN (D), ALP (E), and Cbfal (F) mRNA expressions are normalized to GAPDH and evaluated densitometrically (n=6

per group). *p<0.05, **p<0.01.

3. Discussion

We set out to determine whether EPA significantly inhibits
AMC and to determine whether EPA decreases osteogenesis-
related gene expression and adventitial macrophage infiltration
with MMP-9 in the calcified aorta.

The major finding of this present study is that EPA reduces AMC
in vivo. We used a warfarin-induced AMC model established by
Price in 1998 [11] The mechanism of this model is inhibiting ~y-
carboxylation of MGP, a calcium-binding and vitamin K-dependent
protein that inhibits vascular calcification by antagonizing bone
morphogenetic protein and binding elastin. A typical form of mor-
phology of calcifications is linear deposit along the elastic lamina
in the abdominal aorta to the iliac arteries a common site of AMC

in humans, and those lesions progress to massive AMC similar
to Monckeberg's sclerosis without atherosclerosis. Although MGP-
deficient mice show similar AMC, they have osteogenic disorders
and calcification progresses faster than warfarin-treated rats and
resultin death from aortic rupture within 6 weeks [19]. Therefore, it
is difficult to use MGP-deficient mice for suppression experiments
of AMC. There have been other murine models to study inhibition
of vascular calcification such as treating low-density lipopro-
tein receptor (LDL)-deficient mice or apolipoprotein E-deficient
mice with high-fat or high-phosphate diet combined nephrectomy
[5,17,20]. However, mainly intimal calcification occurs in these
models and its pathogenesis is complicated. Although periadven-
titial application of CaCl,, which causes medial calcification, has
also been used in several studies [15], it requires surgery. In this
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(E and F) Co localization of MMP-2 (red) and CD68 (green) (E) and MMP-9 (red) and CD68 (green) (F) in adventitia along medial calcification of common iliac artery of rat
in the control group. Arrows indicate macrophages double positive for MMP-2 and CD68 (E) and MMP-9 and CD68 (F). Arrow heads indicate VSMC positive for MMP-2 (E).
(G) Quantitative evaluations of macrophages positive for CD68 in adventitia (n=5 in the iliac artery of the control group. n=6 in others). (H) Correlation between number of
macrophages and calcification ratio of abdominal aorta in both control and EPA groups (n=12). A, C, E and F, B and D are serial sections, respectively. m, media; a, adventitia.
Scale bar, 100 pm. **p <0.01. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

study, warfarin treatment requires only 2 weeks to induce calcifi-
cation, and provides less-invasive and highly reproducible model
of AMC. For this reason, it has been used in several preventive AMC
experiments [21,22].

-3 PUFA has pleiotropic effects and has been shown to decrease
the risk of major cardiovascular events, such as myocardial infarc-
tion [23], sudden cardiac death [24], arrhythmias [25], and death
in patients with heart failure [26]. Recent large randomized trials
have documented that EPA reduced the incidence of major coronary
events in patients with hyperlipidemia without affecting serum LDL
cholesterol [27]. Although detailed action mechanisms of EPA have

not been clarified, 2 basic mechanisms, the effects on atherothrom-
bosis and ion channels, are thought to be important. However, there
have been few reports on the effects of EPA in vascular calcification,
much less AMC.

AMC has demonstrated similar processes to intramembranous
bone formation, unlike intimal calcification, which forms via a pro-
cess similar to endochondral ossification [3]. Our finding that EPA
decreased the expressions of osteogenetic markers in the aorta
indicates that suppression of AMC by EPA might occur via inhibit-
ing transition of VSMC into osteoblast-like cells. However, EPAwas .
reported to have opposite effects on osteoblast, increasing osteo-
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Fig. 4. Inhibitory effects of EPA on MMP expressions in the aorta. (A and D) Representative MMP-2 and MMP-9 levels in the aorta assessed by Western blotting (A, n=5 per
group) and gelatin zymography (D, n=6 per group). Protein expressions of MMP-2 (B) and MMP-9 (C), and enzyme activity of MMP-2 (E) and MMP-9 (F) were evaluated by

densitometry and expressed as arbitrarily units. *p <0.05, **p<0.01.

genetic activity and prevention of loss of bone mineral density [28].
There seems to be a difference in the effect of EPA on osteoblast-
like VSMC and osteoblast in the bone. Our findings are supported by
in vitro observations that EPA inhibited osteoblastic differentiation
and mineralization of vascular cells by managing the p38-MAPK
and PPAR-y pathways [29]. Furthermore, Schlemmer reported that
EPA reduced calcium glubionate-induced ectopic calcification of rat
aortas [30].

This osteoblast-like phenotypical change of VSMC is speculated
to follow after preceding elastin degradation and activation of
MMP-2 and transforming growth factor (TGF)-B [31]. Our results
that calcium deposition was localized in elastic fibers with elastin
degeneration and MMP-9 elevation agree with a previous report
that elastase activity and extracellular matrix degradation are
essential to the early process of AMC, accompanied by the change
of MMP-9 and TGF- in warfarin-treated rat models [32]. Although
the type of elastase which contributes to the pathogenesis of AMC
may differ depending on the experimental methodology, inhibiting
MMP activity may have important implications for the treatment of
AMC[15,16]. We speculate that EPA plays an inhibitory role mainly

in the early process of AMC through suppressing MMP activity. In
addition, EPA may also have some benefits in secondary prevention
of AMC as shown by the results of late EPA group.

Inflammation may be an important contributor to vascular
calcification [5], especially, as macrophages contribute to elastin
degeneration and vascular calcification via expressing elastase such
as MMPs and cathepsin S [17], and TNF-q, a pleiotropic cytokine
that is reported to promote osteoblastic differentiation of VSMC
[18]. One striking result of our study was the presence of numer-
ous macrophages in adventitia around both tiny calcification in
early stage and progressive calcification. Moreover, some of these
macrophages expressed MMP-2 and MMP-9. These observations
indicate that adventitial macrophage may play an important role
in the process of AMC. Furthermore, EPA also inhibited MCP-
1, a chemokine inducing recruitment of monocytes, which was
detected in VSMC and adventitial macrophages. Taken together,
suppression of macrophage infiltration into adventitia via inhibi-
tion of MCP-1 might be in part responsible for the effect of EPA on
AMC. Further studies are needed to clarify the role of macrophages
in the pathogenesis of AMC.
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In conclusion, we showed that EPA reduces AMC in warfarin-
treated rats. Multiple effects of EPA may be beneficial for AMC
caused by various mechanisms.
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The Pleiotropic Effects of ARB in Vascular Endothelial Progenitor Cells

Katsuhisa Matsuura* and Nobuhisa Hagiwara
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Abstract: Angiotensin II regulates blood pressure and contributes to endothelial dysfunction and the progression of athe-
rosclerosis. Bone marrow-derived endothelial progenitor cells (EPCs) in peripheral blood contribute to postnatal vessel
repair and neovascularization. Impaired EPC function in patients with hypertension and diabetes inhibits the endogenous
repair of vascular lesions and leads to the progression of atherosclerosis. The number of EPCs in peripheral blood is in-
versely correlated with mortality and the occurrence of cardiovascular events. Angiotensin II-mediated signaling is impli-
cated in oxidative stress, inflammation and insulin resistance, factors that cause EPC dysfunction. Blockade of the angio-
tensin II type 1 receptor may therefore present a new therapeutic target for enhancing EPC function.

Keywords: EPC, angiotensin II, ARB, oxidative stress, PPARY.

INTRODUCTION

The renin-angiotensin system (RAS) plays a major role
in the physiological regulation of the cardiovascular system.
Angiotensin II (Angll) is a pivotal molecule in the RAS.
Angll causes vasoconstriction and increased blood pressure
and is implicated in inflammation, endothelial dysfunction,
atherosclerosis, hypertension, and congestive heart failure.
Most of the pathophysiological actions of Angll in the car-
diovascular system are mediated through the Angll type 1
(AT)) receptor. Pharmacological inhibition of the RAS is one
of the great success stories of cardiovascular medicine. Evi-
dence accumulated over the past decade shows that RAS
blockade with angiotensin converting enzyme (ACE) inhibi-
tors and Angll typel receptor blockers (ARBs) prevents pro-
gression of cardiac hypertrophy and atherosclerosis and re-
duces morbidity and mortality in patients with heart failure
[1]. Although RAS blockade is thought to reduce cardiovas-
cular events by lowering blood pressure, evidence suggests
that ARBs also protect the cardiovascular system by mecha-
nisms independent of their antihypertensive effect, including
anti-atherogenic, anti-diabetic, anti-platelet aggregatmg, anti-
arrhythmic and hypouricemic actions [2].

Repairing injured vessels and promoting neovasculariza-
tion are promising strategies for the treatment of ischemic
heart disease. Angiogenesis, the proliferation and migration
of preexisting endothelial cells, was thought to be the major
mechanism of postnatal vessel repair and neovascularization.
Recent evidence shows that bone marrow-derived endothe-
lial progenitor cells (EPCs) in peripheral blood also contrib-
ute to these processes [3]. EPCs migrate to injured areas and
differentiate into mature functional endothelial cells in situ
[4]. Cardiovascular risk factors, such as hypertension, diabe-
tes, dyslipidemia, smoking, and aging, influence EPC
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number and functions, including migration and colony-
forming ability [5, 6]. In diseases of the vessel wall, such as
atherosclerosis, EPCs show impaired function and a reduc-
tion in number of up to 40 % [5]. Vasa et al. demonstrated
that EPCs from patients with coronary artery disease (CAD)
have an impaired migratory function that is negatively corre-
lated with the number of vascular risk factors [5]. In patients
with CAD bone marrow-derived mononuclear cells (BM-
MNCs), presumed to include EPCs, have a reduced capacity
for neovascularization [7]. Hill e al. report that EPC num-
bers are inversely correlated with endothelial function [6].
These findings suggest that EPC number and function are
surrogate markers for endothelial function. Impaired EPC
function may limit the endogenous repair of vascular lesions
and cause progression of atherosclerosis. As the number and
colony-forming ability of EPCs predict cardiovascular
events, a strategy for improving EPC function may present a
novel therapeutic target for reducing vascular risk.

In this article, we review recent experimental and clinical
data that support the benefits of ARB treatment on EPC
function as a therapeutic target for cardiovascular disease.
We focus particularly on hypertension and diabetes.

EPC IN HYPERTENSION

Increased arterial blood pressure is associated with mi-
crovascular dysfunction, increased peripheral vascular resis-
tance, and impaired post ischemic neovascularization in
clinical studies and animal models of hypertension [8, 9].
While low levels of pro-angiogenic factors, such as vascular
endothelial growth factor (VEGF) and hepatocyte growth
factor (HGF) [10, 11], and defective endothelial function
[12] contribute to impaired angiogenesis in hypertensive
animals, EPC dysfunction may also contribute to the patho-
genesis of hypertension. Vasa ef al. report that the number
and migratory capacity of EPCs are reduced in patients with
hypertension [5], and Umemura et al. report that hyperten-
sion is an independent predictor of reduced EPC numbers
[13]. Hypertension is associated with an increase in reactive
oxygen species (ROS). ROS are thought to reduce nitric ox-

© 2011 Bentham Science Publishers Ltd.
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ide (NO) bioavailability, which may lead to defective mobi-
lization of EPCs from bone marrow [14]. Imanishi ef al. re-
port that ROS also affect the proliferation, senescence and
apoptosis of EPCs [15, 16]. You et al. report that hyperten-
sion-induced increases in ROS inhibit the differentiation of
BM-MNC s into cells with an endothelial phenotype in vitro
[9], leading to a reduced therapeutic effect in vivo. These
findings suggest ROS may be a major cause of impaired
EPC function in hypertension. Angll increases oxidative
stress, inflammation, and alters endothelial function via the
AT receptor. Kobayashi et al. report that an Angll infusion
reduces the number and accelerates senescence of EPCs in
rats [17]. Angll is also reported to accelerate EPC senes-
cence by a gp91 phox—mediated increase in oxidative stress
in humans [16]. Accordingly, ARBs decrease oxidative
stress in endothelial cells [18]. It is thus possible that ARBs
might improve EPC function by inhibiting Angll-mediated
ROS. Valsartan, an ARB, inhibits the senescence of EPC
caused by Angll-mediated oxidative stress in vitro [15].
ARBs such as losartan [9, 19] and candesartan [20] improve
impaired EPC function in hypertensive animals by attenuat-
ing oxidative stress via the reduced expression of gp91-phox,
p22-phox, and p47-phox. In a prospective study in nor-
motensive and moderately hypertensive individuals, Bahl-
mann et al. found that olmesartan increases EPC numbers
[21]. These findings support the important role of the RAS in
the regulation of EPC bioactivity in hypertensive patients.

EPC IN DIABETES

In patients with diabetes, atherosclerosis progression is
accelerated by direct endothelial damage and by the reduced
availability and function of EPCs. EPC numbers are reduced
in patients with type 1 and type 2 diabetes mellitus and EPCs
from diabetic patients have an impaired capacity for adhe-
sion, proliferation, and tubulization [22]. Uncontrolled
plasma glucose levels, assessed by glycated hemoglobin and
free plasma glucose levels, are inversely correlated with the
number of EPCs. In contrast, improvement in glycemic con-
trol after treatment is associated with increased EPC num-
bers [23]. Chen et al. report that advanced glycation end
products (AGE) impair the function of EPCs by affecting
Akt and cyclooxygenase-2 [24]. Recent reports suggest that
high glucose levels decrease the number of human EPCs in
vitro through the reduced expression of SIRT1 [25]. SIRT1
down-regulates p53 activity and prolongs the lifespan of
cells [26]. Hyperglycemia also impairs the proliferation and
increases the apoptosis of EPCs through up-regulation of
pl6Ink-4a and p21Waf-1 [27]. Krankel et al. report that hy-
perglycemia causes reduced MMP-9 activity leading to a
decreased capability of EPCs to invade a target tissue and
incorporate into tubular structures [27]. Hyperglycemia also
enhances protein phosphatase 2A activity in EPCs, causing a
reduction in eNOS phosphorylation at Ser''”” and a decline in
NO production [27]. In addition, hyperglycemia shifts the
endothelial differentiation of EPCs to a pro-inflammatory
phenotype [28]. The degree of impairment of EPC function
is related to the severity of diabetic vasculopathies such as
peripheral artery disease [29]. EPCs are thus thought to play
an important role in the pathogenesis of diabetic vasculopa-
thy.

Matsuura and Hagiwara

Angll-mediated signaling is also important in the patho-
genesis of the vascular complications of diabetes. As hyper-
glycemia-mediated endothelial dysfunction is largely attrib-
uted to oxidative stress via arachidonic acid metabolism,
glucose oxidation, and AGE formation [30], blockade of
RAS signaling is a promising potential therapeutic target for
preventing diabetic complications. In clinical trials, inhibi-
tion of the RAS prevents the progression of diabetic neph-
ropathy [31, 32]. Consistent with the evidence that ARB
inhibition of oxidative stress improves EPC function in hy-
pertension, olmesartan and irbesartan increase EPC numbers
in diabetic patients 12 weeks after treatment [21].

Recent evidence suggests that endothelial dysfunction is
already present in humans with insulin resistance and hyper-
insulinemia before they become diabetic [33]. In insulin-
resistant patients, the progression of atherosclerosis is asso-
ciated with down-regulation of the phosphatidylinositol 3
kinase (PI3K)/Akt/eNOS pathway [34]. Inactivation of the
PI3K/Akt/eNOS pathway is also reported to reduce mobili-
zation of EPCs from bone marrow through a decrease in NO
bioavailability [35]. Su et al. report that valsartan induces
NO production in endothelial cells through Src/PI3K/Akt-
dependent phosphorylation of eNOS [36]. As activation of
the PI3K/Akt signal contributes to statin-induced EPC pro-
liferation and inhibition of the senescence of EPCs [37, 38],
a strategy to activate the PI3K/Akt signal by ARB treatment
could present a target for preventing EPC dysfunction in
patients with insulin resistance. Angll infusion decreases
insulin sensitivity in diabetic and non-diabetic mice [39].

-‘ARBs reduce insulin resistance by promoting the insulin-

induced tyrosine phosphorylation of the insulin receptor sub-
strate (IRS)-1, the association of IRS-1 with p85, and the
translocation of GLUT4 [40]. Several clinical trials report
that ARB treatment inhibits the new occurrence of diabetes
in patients with hypertension [41, 42] and CAD [43]. Re-
cently Lee ef al. have reported that ARBs improve glucose
tolerance in OLETF rats, an animal model of type 2 diabetes
[44]. They also report that ARB treatment increases the
number of small differentiated adipocytes that produce adi-
ponectin. Adiponectin is the major adipokine that sensitizes
the body to insulin [45] and it also promotes the migration of
EPC through the PI3K/Cdc42/Racl pathway [46]. These
findings suggest that ARBs may not only directly improve
EPC function in diabetes by inhibiting oxidative stress, but
also indirectly affect EPC function by improving insulin sen-
sitivity and up-regulating adiponectin production.

THE PPARY DEPENDENT EFFECTS OF ARB

Telmisartan has recently been identified as a partial ago-
nist of peroxisome proliferator-activated receptor gamma
(PPARY)[47]. Other clinically approved ARBs have little or
no effect on PPARY activity with the exception of irbesartan
and a metabolite of losartan, both of which are less potent
activators of PPARY than telmisartan [48, 49]. PPARs are
transcription factors belonging to the nuclear receptor super-
family that heterodimerize with the retinoid X receptor and
bind to PPAR-responsive elements in target gene promoters.
The activation of PPARY in adipose tissue promotes adipose
differentiation and increases the number of small insulin-
sensitive adipocytes [50]. Thiazolidinediones (TZD), full
agonists of PPARY, increase endothelium-derived NO pro-
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duction [51] and reduce vascular inflammation [52], suggest-
ing that PPARY activation might be anti-atherosclerotic.
Telmisartan is thought to functionally activate PPARYy and to
induce adiponectin expression via PPARyactivation [53].
We recently reported that telmisartan increases the number
of human peripheral blood-derived EPC ir vitro via a PPARYy
dependent pathway in vitro [54]. Our results are consistent
with evidence that TZD increases EPC numbers [55, 56]. By
contrast, valsartan treatment does not affect the EPC num-
bers [54], suggesting that different ARBs have differing ef-
fects on EPC proliferation. We also found that the telmisar-
tan-mediated increase in EPCs is regulated by the PI3K/Akt
pathway [54]. As down-regulation of the PI3K/Akt/eNOS
pathway in patients with diabetes mellitus increases endothe-
lial dysfunction and reduces mobilization of EPC from bone
marrow, activation of the PI3K/Akt signal by telmisartan
may be a novel therapeutic target for improving endothelial
function. Pioglitazone, a TZD, attenuates Angll-induced
cellular senescence and oxidative stress in endothelial cells
in vitro [57]. Pioglitazone treatment also increases the num-
ber of circulating EPCs in type 2 diabetics and non-diabetic
_patients with CAD [58, 59]. As telmisartan causes AT re-
ceptor blockade and PPARY activation, it might be expected
to improve vascular function and promote neovascularization
via the proliferation of EPCs in ischemic tissue in the clinical
setting.

CONCLUSIONS

Accumulating data suggest that oxidative stress and in-
flammation in patients with cardiovascular risk factors im-
pair the proliferation, migration, and differentiation of EPCs.
ARBs improve EPC function by reducing oxidative stress
and inflammation, increasing insulin sensitivity and activat-
ing PPARY. Impaired EPC bioactivity is thought to play the
critical role in the progression of atherosclerosis and reduced
EPC numbers and impaired EPC function are associated with
increased mortality in patients with cardiovascular risk fac-
tors. However, treatments that improve EPC bioactivity have
not yet been shown to prevent cardiovascular death or new
myocardial infarction. Further basic and clinical research is
thus required to elucidate the interaction between pharma-
cological interventions such as ARB treatment and the oc-
currence of cardiovascular events in terms of the effects on
EPC function. Improving our understanding of EPC biology
will help us develop new treatments for ischemic cardiovas-
cular disease.
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NON-STANDARD ABBREVIATIONS

ACE = Angiotensin converting enzyme
AGE = Advanced glycation end products
Angll = Angiotensin II

ARBs = Angii typel receptor blockers
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AT, = Angll type 1

BM-MNCs = Bone marrow-derived mononuclear cells

CAD = Coronary artery disease

EPCs = Endothelial progenitor cells

HGF = Hepatocyte growth factor

IRS = Insulin receptor substrate

NO = Nitric oxide

PI3K = Phosphatidylinositol 3 kinase

PPARY = Peroxisome proliferator-activated receptor

gamma

RAS = Renin-angiotensin system

ROS = Reactive oxygen species

TZD = Thiazolidinediones

VEGF = Vascular endothelial growth factor
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