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B#EE, VERREBEETIPEROAVEERES HY, 1998 FLUE, OBONaF ¥ RIVEEBFE
£, LECaF v XNVEBEFEELE, ChETIKHSPOREREGEFIREINTVS,

| BrugadaifE{RE D

N

BrugadafEfREETIX, Ef=TEE%L
ERELT, AEREBOIERTH
M & ONaBH S CaBiit iz &5 AT
BAER, T EFRE R4 X B
EmLT, BEEMFEIHDOnotch?s
REL Y, OHME-OCRERICER
HEFEL S, ZNICEYJEOHEK
WKH&HNCSTER DR B, S5
W 2NmE BRSBTS L,
E2HDOdome BB ASBIEL, LA
il &9 OHHER TH S RANEN T, ST
FRIZMATHREOBESE LS, —F,
AHXT B % N & BIATE HI2EAT 5
EDHMEBI Tdome ANE L L, JEB &
DOEICKRELBMARIEL S 720
2, BEEEMER X OVDIMERE N TR

REOIELDENFREL L &L HIT,
dome DIEE L 72D BV THEES
WA 5, Z Nidphase2 reentry &
LiEh, ChhSVEEREET 57,
IS I B ERICE D { Brugada
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SCD : sudden cardiac death
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1. Introduction

Short-QT syndrome (SQTS) is a recently recognized disorder associated with atrial fibrillation (AF) and sudden death
due to ventricular arrhythmias. Mutations in several ion channel genes have been linked to SQTS; however, the mech-
anism remains unclear. This study describes a novel heterozygous gain-of-function mutatlon in the inward rectifier
potassium channel gene, KCNJ2, identified in SQTS. '

We studied an 8-year-old girl with.a markedly short-QT interval (QT = 172 ms, QTc = 194 ms) who suffered from
paroxysmal AF. Mutational analysis identified a novel heterozygous KCNJZ mutation, M301K. Functional assays dis-
played no Kir2.1 currents when M301K channels were expressed alone. However, co-expression of wild-t)?pe
(WT) with M301K resulted in larger outward currents than the WT at more than —30 mV. These results suggest
a gain-of-function type modulation due to decreased inward rectification. Furthermore, we analysed the functional

Vsngmflcance of the amino acid charge at M301 (neutral) by changing the residue. As with M301 K in MBO‘I R (posmve) b

the homozygous channels were non- functlonal whereas the heterozygous channels demonstrated decreased inward
rectlﬁcat|on Meanwhile, the currents recorded in M301A (neutra) showed normal inward rectification under both

homo- and heterozygous conditions. Heterozygous overexpression of WT and M301K in neonatal rat ventrlcular

myocytes ‘exhibited markedly shorter action potential durations than the'WT alone.

In this study, we identified a novel KCNJ2 gain- ~of-function mutatlon M301K, associated with SQTS Functional assays
revealed no functional currents in the homozygous channels, whereas impaired inward rectification demonstrated
under the heterozygous condition resulted in larger outward currents, which is a novel mechanism predssposmg
SQTS. o

Arrhythmia (mechanisms) ° Shor’c—QT syndrome o K-channel o Atrial fibrillation e Inward rectification

described by Gussak et al." in 2000 within the context of a familial

Short-QT syndrome (SQTY) is a recently recognized disorder, char-
acterized by a shortened QT interval in the electrocardiogram
(ECG), and associated with a high incidence of atrial fibrillation
(AF), syncope, and sudden death due to ventricular tachyarrhythmias
without structural cardiac abnormalities. The syndrome was first

AF case associated with short-QT interval. SQTS is a genetically het-
erogeneous disease, and five ion channel genes (SQT1-6) have been
identified as causative genes thus far: KCNH2 encoding the
a-subunit of the rapidly activating delayed rectifier potassium chan-
nels, I (SQT1)% KCNQT encoding the a-subunit of the slowly activat-
ing delayed rectifier potassium channels, [, (SQT2)* KCNJ2 encoding

* Corresponding author. Tel: +81 75 751 3196; fax: +81 75 751 3289, Email: makiyvama@kuhpkyoto-u.acjp

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2011. For permissions please email: journals.permissions@oup.com.
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the Kir2.1 channels that underlie the inward rectifier potassium cur-
rents, s (SQT3)" CACNATC, CACNB2b, and CACNA2D1, which
encode the a1C, B2b, and «28-1-subunits of cardiac L-type calcium
channels (SQT4, SQTS,” and SQT6®), respectively. SQT4 and SQTS
are considered clinical entities with the combined phenotypic charac-
teristics of SQTS and Brugada syndrome, manifesting in a } point and
ST-segment elevation in the right precordial ECG leads.

Regardless of the extensive genetic screening carried out on SQTS
patients, genetic mutations have been identified in a small number of
cases.2~>7® |n 2005, Priori et al.* first reported that a KCNJ2 mutation
was responsible for SQTS (SQT3); however, no additional SQT3 var-
iants have been reported thus far. This lack of progress has significant-
ty hindered our advances in understanding the mechanisms underlying
this disease. In the present study, we describe a novel KCNJ2 mutation
which impaired the inward rectification of Kir2.1 currents. This is a
novel KCNJ2 gain-of-function mechanism leading to SQTS.

2. Methods

2.1 Genetic analysis

Genetic analysis was performed after written informed consent in accord-
ance with the study protocol approved by the Kyoto University ethical
committee. The investigation conforms to the principles outlined in the
Declaration of Helsinki. Genomic DNA was isolated from blood lympho-
cytes, and screened for the entire open-reading frames of KCNQT,
KCNH?2, KCNE1-3, KCNJ2, CACNA1C, and SCN5A by denaturing high-
performance liquid chromatography using a WAVE System Model 3500
(Transgenomic, Omaha, NE, USA). Abnormal conformers were amplified
by polymerase chain reaction and sequencing was performed on an ABI
PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA,
USA), and compared with 400 Japanese control alleles.

2.2 Neonatal rat ventricular myocyte isolation

This investigation was performed in accordance with the Guide for the
Care and Use of Laboratory Animals, published by the National Institutes
of Health (NIH Publication No. 85-23, revised 1996), and was approved
by the Kyoto University Animal Experimentation Committee. A standard
trypsin dissociation method was used to prepare neonatal rat ventricular
myocytes (NRVMs).” The hearts were removed from 1- to 2-day-old
Wistar rats euthanized by decapitation. The ventricles were minced,
and the myocytes were dissociated with trypsin. Dispersed cells were pre-
plated on 100 mm culture dishes for 1 h at 37°C in 5% CO, to remove
fibroblasts. Non-attached, viable myocytes were collected, and placed
on 35 mm culture dishes.

2.3 Mutagenesis and transient transfection

of KCNJ2 plasmids

The entire coding region of the KCNJZ2 was subcloned into the
pCMS-EGFP vector (Clontech, Palo Alto, CA, USA) using methods previ-
ously described.”® The mutation was introduced by site-directed muta-
genesis using the QuikChange Mutagenesis Kit (Stratagene, La Jolla, CA,
USA). We sequenced the entire plasmid to confirm the presence of the
mutation and the absence of any unwanted variations. To assess the func-
tional modulation of mutant channels, human embryonic kidney (HEK)
293 cells were transiently transfected with KCNJ2 WT and/or mutant plas-
mids using FUuGENE 6 (Roche, Indianapolis, IN, USA) as directed in the
manufacturer’s instructions. In order to investigate the mutant’s
effects on myocyte action potentials, plasmids were transfected 1 day
after plating NRVMs, using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA).M

2.4 Cell surface expression of KCNJ2

Immunofluorescence microscopy was used to detect the presence of
KCN]J2 channels on the plasma membrane of HEK 293 cells. A haemagglu-
tinin  (HA) epitope (YPYDVPDYA) was introduced into the
pCMS-EGFP-KCN]J2 [wild-type (WT) and mutant] construct between
residues Ala-115 and Ser-116 (extracellular loop between TM1 and
TM2)."%"? HEK 293 cells were transfected with 1.0 ug of WT or
mutant plasmids, or 0.5 ng of each WT and mutant plasmids to assess
a heterozygous condition in 35 mm glass-bottom dishes. Two days
later, the cells were fixed with 4% paraformaldehyde solution, and
images were taken at x40 magnification on an LSM 510 confocal
microscope (Carl Zeiss, Jena, Germany).

2.5 Electrophysiological analysis

For voltage-clamp experiments, a total of 0.75 pg of WT and/or mutant
KCNJ2 plasmids were transfected in HEK 293 cells; 48—72 h after transfec-
tion, functional assays were conducted on GFP-positive cells by a conven-
tional whole-cell configuration of patch-clamp techniques at 37°C, using
an Axopatch 200A patch clamp amplifier and a Digidata 1322A digitizer
(Axon Instruments, Foster City, CA, USA)."? Pipettes were filled with a
solution (in mM): 140 KCl, 2 MgCl,, 1 EGTA, and 10 HEPES (pH 7.3
with KOH). The bath solution was composed of (in mM): 135 NaCl,
5 KCL, 1 MgCl,, 10 glucose, and 10 HEPES (pH 7.4 with NaOH).

In order to record action potentials on NRVMs, 3 g of WT, or a
mixture of 1.5 pug WT and 1.5 pg mutant KCNJ2 plasmids, were trans-
fected; 48—72 h after transfection, functional assays were conducted on
non-transfected or transfected cells that were recognized by their
obvious green fluorescence, using a whole-cell patch-clamp technique at
37°C with the same devices. Action potentials were evoked by 2ms
supra-threshold current pulses at 10 Hz in a current-clamp mode. The
pipette solution contained (in mM): KCl 140, MgCl, 1, MgATP 4, NaCl
10, and HEPES 10 (pH 7.2 with KOH). Tyrode solution contained (in
mM): NaCl 140, KCl 4, CaCl, 2, MgCl, 1, HEPES 10, and glucose 10
(pH 7.4 with NaOH). Action potential duration (APD) was measured
as the time from the overshoot to 90% repolarization (APDg).

2.6 Statistics

All the data are shown as mean =+ standard error of the mean. For mean
value and comparisons between two sample groups, an unpaired Stu-
dent’s t-test was used to evaluate statistical significance. For comparisons
between multiple groups, we applied a Steel—Dwass test. For either evalu-
ation, a P-value <0.05 was considered significant.

3. Results

3.1 Clinical features

An 8-year-old girl with a markedly shortened QT interval (QT =
172 ms, QTc = 194 ms; Figure 1A) had been suffering from multiple
disorders, such as severe mental retardation, abnormat proliferation
of oesophageal blood vessels, epilepsy, and Kawasaki disease. Upon
presentation during a routine check-up, her treating physician
noticed an irregular heart rhythm. Her 12-lead ECG showed AF
(Figure 1B), and she underwent external electrical cardioversion
because intravenous infusion of procainamide (15 mg/kg) failed to
recover sinus rhythm. The echocardiography revealed no significant
abnormality. During further evaluation with right-heart catheteriza-
tion, the Swan—Ganz catheter induced supra-ventricular tachycardia
when it was inserted in the right atrium, and ventricular fibrillation
occurred at the position of the right ventricular outflow tract,
which suggested the presence of increased myocardial irritability.
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Diedat7h QTc QTc QTc
after bith 430 ms 194 ms 390 ms

Figure 1 ECG of the proband and family pedigreé. ECG shows sinus rhythm (A) and AF (B). The QT and QTc intervals were 172 and 194 ms,
respectively. (C) Family pedigree. Arrow indicates the proband; a filled symbol indicates clinically and genetically affected individual.

She was diagnosed with SQTS from these clinical features (i.e. a mark-
edly shortened QT interval, paroxysmal AF, and VF inducibility).

The proband had a family history of perinatal death in her elder
sister (Figure 1C), but her family did not undergo genetic investigation
or further clinical evaluation with the exception of ECGs taken for her
father, elder brother, and younger sister. Genetic investigations could
not be carried out due to a lack of informed consent. The ECGs for
the family members displayed normal QTc intervals (410, 430, and
390 ms, respectively; Figure 1C).

3.2 Genetic analysis

In this patient, we screened for candidate cardiac ion channel genes
(KCNQ1, KCNH2, KCNE1-3, KCNJZ, CACNATC, and SCN5A). As a
result of the genetic analysis, we identified a novel heterozygous mu-
tation, a single-base substitution at nucleotide 902 (c.902T>A) in the
KCNJ2 gene, resulting in an amino acid change from methionine to
lysine at 307 in the Kir2.1 potassium channel (Figure 2A). Met-301 is
located in the C-terminal cytoplasmic domain of the channel

(Figure 2B)." The amino acid at codon 301 (methionine) is highly con-
served among different species (Figure 2C). Furthermore, this mutation
was absent in 400 Japanese control alleles. We failed to identify muta-
tions in any other candidate genes.

3.3 Cell surface expression of KCNJ2
mutants

In order to investigate whether the M301K mutations affect intracel-
lular Kir2.1 trafficking, we introduced an HA epitope into the extracel-
lular domain of KCN]J2, and examined the subcellular distribution of
channels in transfected HEK 293 cells using confocal microscopy'°
(Figure 2D). Figure 2D illustrates the typical results of confocal
imaging. HEK 293 cells were successfully transfected with either
HA-KCNJ2 WT, KCNJ2 WT/HA-M301K, or HA-M301K (Figure 2D,
upper panels). All types of HA-tagged Kir2.1 proteins exhibited red
fluorescence at the plasma membrane (Figure 2D, middle and lower
panels), indicating that both homo- and heterozygous mutant chan-
nels were trafficking-competent.
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A« Lo . B N C 301
o S APAY Human—IVVILEGMVEATAMT
AV E Mouse—IVVILEGMVEATAMT
3 Dog—IVVILEGMVEATAMT
|W> iy Pig—IVVILEGMVEATAMT
wt & Bovine—IVVILEGMVEATAMT
] ~coo Ral—IVVILEGMVEATAMT
ATG Chicken—IVVILEGMVEATAMT
7o Met>Lys M3B1K Xenopus—IVVILEGMVEATAMT
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EGFP

Anti-HA

HA-M301K  WT/ HA-M301K
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10 ym

Figure 2 DNA sequence, topology, and homology. (A) Mutated DNA sequences derived from patient’s genomic DNA. The trace shows a hetero-
zygous substitution of thymine to adenine resulting in the amino acid change M301K. (B) Topology of the Kir2.1 channel showing localization of M301.
(€) Amino acid sequence alignment of Kir2.1 channels from various species in the region surrounding codon 301 (highlighted). (D) Cellular localization

of WT and mutant Kir2.1 channels. HA-WT indicates

HA-tagged KCNJ2-WT, HA-M301K;HA-tagged KCNJ2-M301K, and WT/

HA-M301TK;KCNJ2-WT without HA-tagging and HA-tagged KCNJ2-M301K. The upper panel shows GFP, the middle panel shows the red fluores-
cence of the secondary anti-HA antibody, and the bottom panel is a mergence of the green fluorescence, red fluorescence, and transmission.

3.4 Cellular electrophysiology

We performed a functional characterization of the mutant channels in
HEK 293 cells. Figure 3A shows representative current traces from cells
expressing KCNJ2 WT, M301K, or WT/M301K, elicited by voltage-
clamp steps (duration 400 ms) from —120 to +100 mV (10 mV
step), applied from a holding potential of —60 mV. The currents
were normalized to cell capacitance and were plotted as a function
of test potentials (Figure 3B). As previously reported, expression of
the KCNJ2 WT in HEK 293 cells resulted in normal inward rectifying
potassium currents (Figure 3A left panel and blue symbols in
Figure 3B). When M301K mutant channels were expressed alone,
they were entirely non-functional (Figure 3A middle panel and green
symbols in Figure 3B). In contrast, when cells were co-transfected
with both equimolar WT and M301K, ample potassium currents
showing a very weak inward rectification could be recorded
(Figure 3A right panel and red symbols in Figure 3B). Average current
densities were significantly smaller than those of WT Kir2.1 channels
at potentials between —120 and —90 mV (P < 0.05), and significantly
larger at potentials between —30 and +100 mV (P < 0.05).

3.5 Contribution of amino acid charge
at residue 301 to Kir2.1 currents

Methionine at 301 is located within the G-loop that forms the nar-

rowest segment of the cytoplasmic ;:>athway,13'14

and negatively
charged amino acids on the inner wall of the cytoplasmic pore,
where the G-loop is located, are known to be important for the

strength of the inward rectification.”*™"® We therefore speculated

that the amino acid charge at this position may be crucial for the
inward rectification of Kir2.1 channels, and that its change from me-
thionine (neutrally charged) to lysine (positively charged) may result
in functional changes in Kir2.1 currents. In order to analyse the con-
tribution of the amino acid charge at 301 to inward rectification, we
changed the amino acid at M301 to another positively charged amino
acid, arginine, and to another neutral amino acid, alanine, for compari-
son. Figure 4A illustrates the whole-cell Kir2.1 currents in homo- and
heterozygous mutant conditions for M301R (left panel) and M301A
(right panel). Homozygous M301R mutant channels displayed no
functional currents, whereas WT/M301R attenuated the inward recti-
fication (Figure 4A left panel). These observations suggest that the cur-
rents through the M301R channels are similar to those of the M301K
channels (Figure 3) under both homo- and heterozygous conditions.
On the other hand, in the M301A channels—in which the residual
charge remained neutral—the currents showed normal inward recti-
fication in both homo- and heterozygous conditions similar to those
produced by WT Kir2.1 channels (Figure 4A right panel). In order to
evaluate the intensity of inward rectifying properties, we assessed the
rectification index, along with the ratio of the current amplitudes at 0
and —100 mV." Figure 4B shows the rectification indexes obtained
from WT, M301A (0.10 £ 0.02, n=10), WT/M301A (0.073 +
0.015, n=11), WT/M301K (1.12 £+ 0.16, n = 11), and WT/M301R
(0.99 + 0.14, n=11). Although the rectification indexes for WT/
301A and M301A showed no significant difference, the indexes for
both WT/M301K and WT/M301R were significantly increased in
comparison with WT (0.061 + 0.01, n=15, P <0.001, left-most
bar in Figure 4B).
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Figure 3 Voltage-clamp recordings from transfected HEK 293 cells. (A) Representative current traces of WT, M301K, and WT/M301K. Currents
were elicited by 400 ms depolarizing voltage steps from —120 to 4100 mV and from a holding potential of —60 mV. (B) Current—voltage relation-
ships are plotted as the current. Current density was calculated by dividing the whole-cell current amplitude by cell capacitance. No functional cur-
rents were recorded in the homozygous M301K channels. On the other hand, the mean current densities of the WT/M301K channels are significantly
larger than the WT (P < 0.05) at each voltage from —30 to +100 mV, and smaller at each voltage from =120 to =90 mV (P < 0.05).

3.6 Action potentials recording in
KCNJ2-M301K-transfected NRVMs

We investigated the impacts of M301K mutant Kir2.1 channels on
NRVMs' action potentials using a transient transfection method.
Figure 5A shows typical action potentials recorded for non-transfected
(control) NRVMs (Figure 5A, left panel), and NRVMs transfected with
KCNJ2 WT or WT/M301K (Figure 5A middle and right panels, respective-
ly). Phase 3 repolarization was accelerated in the KCNJ2 WT- and WT/
M301K-overexpressed groups (Figure 5A middle and right panels,
respectively) and we could further note that the dome is nearly lost in
the WT/M301K group. APDgo was significantly abbreviated in the
KCNJ2 WT-overexpressed group (282 + 34 ms, n= 10, P < 0.001,
Figure 5A, middle panel) in comparison with the control group
(123.3 + 122 ms, n = 11, Figure 5A, left panel; bar graphs in Figure 5B).
Additionally, APD90 was significantly shorter in the WT/M301K
mutant-overexpressed group (9.4 +21ms, n=16, P<0.001,
Figure 5A, right panel; bar graph in Figure 5B) than in the
WT-overexpressed group.

4. Discussion

4.1 Major findings

In the present study, we identified a novel heterozygous KCNJ2 muta-
tion, M301K, in a patient with a markedly shortened QT interval. The
QT interval, 172 ms, of this patient is the shortest among previous
SQTS reports,>™""® to our knowledge. The methionine at position

301 is located in the C-terminus of Kir2.1 channel, and is considered
to form a pore-facing loop region."® Functional assays using a heterol-
ogous expression system revealed that homozygous M301K Kir2.1
channels carried no currents with preserved plasma membrane ex-
pression; however, heterozygous WT/M301K Kir2.1 channels attenu-
ated inward rectifying properties, which resulted in increased outward
currents for positive voltages and negative voltages down to —30 mV.
Significant increases in outward currents within the voltage range of
the action potentials shortened APD by accelerating membrane repo-
larization as shown in Figure 5, which is implicated in increased cardiac
vulnerability.

4.2 Impaired inward rectification

of Kir2.1 currents: a novel mechanism
predisposing SQTS

In 2005, Priori et al.* first reported a heterozygous gain-of-function
KCNJ2 mutation, D172N, in a patient with SQTS. In the report, homo-
zygous D172N Kir2.1 channels displayed larger outward currents
compared with WT Kir2.1 alone, and heterozygous channels
yielded intermediate results. In both homozygous and heterozygous
D172N mutant channels, the inward rectification properties of
Kir2.1 currents were preserved. In heterozygous M301K mutant chan-
nels identified in our patient, however, the inward rectification was
significantly reduced, allowing ample outward potassium currents at
positive potentials. In addition, it should be emphasized that the
homozygous M301K mutant channels were non-functional. These
functional changes, such as the impaired inward rectification of the
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Figure 4 Comparison of macroscopic currents through WT Kir2.1 and mutants. (A) Current—voltage relationships for WT, M301R, and M301A are
shown. M301R mutant channels displayed no functional currents and WT/M301R mutant channels displayed decreased inward rectification. On the
other hand, the currents recorded in the homozygous M301A and heterozygous WT/M301A mutant channels showed no significant difference from
WT. (B) Rectification index for WT (n = 15), M301A (n = 10), WT/M301A (n = 11), WT/M301K (n = 11), and WT/M301R (n = 11) channels. The
rectification index was calculated by dividing the value of the outward currents measured at 0 mV by the absolute value of the inward currents

measured at —100 mV. *P < 0.001.

Kir 2.1 currents resulting in increased outward currents, are a novel
KCNJ2 gain-of-function mechanism predisposing SQTS.

The phenotypic characteristics of our index patient somewhat
differ from those of the KCNJ2-D172N mutation carriers.” No appar-
ent arrhythmias were recorded with D172N mutation carriers. On
the other hand, our M301K patient showed paroxysmal AF and mul-
tiple disorders. Additionally, mechanical stimulation by a Swan—Ganz
catheter induced paroxysmal supraventricular tachycardia and VF.
Moreover, the QTc interval in our patient was much shorter
(QTc = 194 ms, Figure 1) than that of the D172N carriers (QTc =
315 and 320 ms).* Another gain-of-function KCNJ2 mutation, V93,
was reported in a familial AF case.'” Their functional analysis
showed a similar resutt with D172N, but the affected members had
normal QT intervals. These diverse clinical manifestations may be
related to the extent and the different gain-of-function mechanisms
of the Kir2.1 currents.

4.3 Relationship between impaired
inward rectification and charged amino
acid residues at 301

Kir currents exhibit strong inward rectification, which is thought to be
due to pore blocking induced by multivalent ions from intracellular

Mg?T."82% Channel blockade by physiological concentrations of
Mg>* is influenced by the electrostatic negativity within the cytoplas-
mic pore.”® Negative charges on the inner wall of the cytoplasmic
pore are therefore key determinants of the strength of the inward
rectification. Many amino acid residues inside the pore demonstrate
interactions with the ion over long distances, suggesting that muta-
tions potentially affect ion or blocker energetics over the entire
pore profile."*?" The M301K mutation causes the change of the
amino acid residue at 301 from a non-charged amino acid residue, me-
thionine, to a positively charged residue, lysine. In order to evaluate
the importance of the charge at 301, additional whole-cell patch-
clamp recordings were carried out on M301A (remained neutral)
and M301R (neutral to positive) (Figure 4). Inward rectification of
Kir2.1 currents was well preserved in both homozygous and hetero-
zygous M301A channels. Heterozygous M301R channels, however,
attenuated inward rectification, and homozygous M301R channels
were non-functional similar to that of the M301K channels. These
electrophysiological results indicate that the neutral amino acid
residue at 301 plays an important role in generating Kir2.1 inward rec-
tification. The decrease in the net negative charge within the cytoplas-
mic pore may facilitate the reduction in both the susceptibility of the
channel to Mg?" block and the voltage dependence of the blockade. It
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Figure 5 Effects of the M301K mutation on NRVM action potentials. Typical action potentials were demonstrated in a non-transfected cell (A), ina
WT-overexpressed cell (B), and in a heterozygous overexpressed cell (C). Graphs show APD at 90% repolarization from the overshoot (D). In
WT-overexpressed NRYMs, the plateau phase of the cardiac AP was markedly abbreviated, resulting in short repolarization, Under the heterozygous
overexpressed condition, the results exhibited virtually no plateau phase, and the mean APDgq was significantly shorter in comparison with WT

overexpressed alone. *P < 0.001.

remains unknown why only tentative hetero-multimers of WT and
M301K are active and lose their inward rectification properties. In
homozygous M301K channels, all of the tetrameric subunits must
have a positively charged lysine at 301, which may impair potassium
jon permeation due to a conformational change in the near-pore
region.

4.4 Heterozygous KCNJ2-WT/M301K
overexpression shortened APD in NRVMs

In cardiomyocytes, Kir2.1, Kir2.2, and Kir2.3 channels are supposed to
be able to co-assemble in order to modulate their channel proper-
ties.2? Thus, there can be a multitude of Kir2x heteromultimers,
and to date a wide range of single-channel conductances of inward
rectifier channels have been reported in studies conducted on
various mammalian myocytes, including human.*~2* This variety at
the individual channel level may contribute to the different stoichiom-
etry of the tetrameric channels.?® Because Kir2.1 is a major compo-
nent of IK1 in the myocardium, we overexpressed the KCNJ2
M301K mutant channels in NRVMs to examine the effects of the mu-
tation on APD. Overexpression with WT alone resulted in shorter
APD in comparison with non-transfected myocytes (Figure 5B).
These results are consistent with a previously published report.*’
Notably, heterozygous overexpression with WT and M301K further

amplified the shortened APD (Figure 5C). These results were compat-
ible with the electrophysiological changes assessed in HEK 293 cells,
because the heterozygous WT/M301K channels showed a larger
outward current than WT Kir2.1 channels under the physiological
range of membrane potentials (Figure 3). Weak inward rectification
observed in the heterozygous WT/M301K channels suggests that po-
tassium ion can get through Kir2.1 channel at depolarized potential,
probably resulting in loss of the action potential dome recorded in
the KCNJ2 WT/M301K-overexpressed group. The experiments
were performed using a transient overexpression system that was dif-
ferent from the patient’s heart, and the amount of overexpressed
channels was difficult to be estimated accurately. But, these results
are beneficial in understanding that the heterozygous KCNJ2 M301K
mutation could abbreviate APD and cause an extremely short-QT
interval in the patient's ECG.

4.5 Clinical features of the index patient
with KCNJ2-M301K

Regarding the clinical criteria for the diagnosis of SQTS, they have yet
to be defined. However, we should consider SQTS in a patient pre-
senting with a QTc <340 ms and other factors suggestive of arrhyth-
mia (such as syncope or family history of sudden death).® A
prominent clinical manifestation of SQTS is arrhythmias, such as AF
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and VF."7>7 In this patient, however, additional medical histories not
limited to arrhythmias, such as severe mental retardation, abnormal
proliferation of the oesophageal blood vessels, epilepsy, and Kawasaki’
disease, were also documented. Because KCNJ2 is known to be
expressed in a variety of tissues, such as cardiac and skeletal
muscle, the brain, arterial smooth muscle cells and developing bony
structures of the craniofacial region, extremities, and vertebrae,”~
31 some of her compound disorders may be attributed to the
KCNJ2 mutation. In fact, loss-of-function mutations in KCNJ2 cause
Andersen—Tawil syndrome, which is characterized by prolonged
repolarization, dysmorphic features, and periodic par::tlysis‘m'32 In
the family of our female patient, we could not perform extensive
genetic testing. We cannot exclude the possibility of the presence
of other affected genes. Further analyses using knock-in mice or
induced pluripotent stem cells would culminate monumental insight
into the relationship between the KCNJ2 M301K mutation and the
patient’s extra-cardiac phenotypes.

4.6 Conclusions

We described a novel KCNJ2 gain-of-function mutation, M301K, in a
patient with SQTS. Functional assays revealed no functional currents
in the homozygous channels, whereas impaired inward rectification in
the heterozygous channels manifested in larger outward currents,
which is a novel mechanism predisposing SQTS.
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